1
0

audio-io.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473
  1. /******************************************************************************
  2. Copyright (C) 2023 by Lain Bailey <[email protected]>
  3. This program is free software: you can redistribute it and/or modify
  4. it under the terms of the GNU General Public License as published by
  5. the Free Software Foundation, either version 2 of the License, or
  6. (at your option) any later version.
  7. This program is distributed in the hope that it will be useful,
  8. but WITHOUT ANY WARRANTY; without even the implied warranty of
  9. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  10. GNU General Public License for more details.
  11. You should have received a copy of the GNU General Public License
  12. along with this program. If not, see <http://www.gnu.org/licenses/>.
  13. ******************************************************************************/
  14. #include <math.h>
  15. #include <inttypes.h>
  16. #include "../util/threading.h"
  17. #include "../util/darray.h"
  18. #include "../util/circlebuf.h"
  19. #include "../util/platform.h"
  20. #include "../util/profiler.h"
  21. #include "../util/util_uint64.h"
  22. #include "audio-io.h"
  23. #include "audio-resampler.h"
  24. #ifdef _WIN32
  25. #define WIN32_LEAN_AND_MEAN
  26. #include <Windows.h>
  27. #include <avrt.h>
  28. #endif
  29. extern profiler_name_store_t *obs_get_profiler_name_store(void);
  30. /* #define DEBUG_AUDIO */
  31. #define nop() \
  32. do { \
  33. int invalid = 0; \
  34. } while (0)
  35. struct audio_input {
  36. struct audio_convert_info conversion;
  37. audio_resampler_t *resampler;
  38. audio_output_callback_t callback;
  39. void *param;
  40. };
  41. static inline void audio_input_free(struct audio_input *input)
  42. {
  43. audio_resampler_destroy(input->resampler);
  44. }
  45. struct audio_mix {
  46. DARRAY(struct audio_input) inputs;
  47. float buffer[MAX_AUDIO_CHANNELS][AUDIO_OUTPUT_FRAMES];
  48. float buffer_unclamped[MAX_AUDIO_CHANNELS][AUDIO_OUTPUT_FRAMES];
  49. };
  50. struct audio_output {
  51. struct audio_output_info info;
  52. size_t block_size;
  53. size_t channels;
  54. size_t planes;
  55. pthread_t thread;
  56. os_event_t *stop_event;
  57. bool initialized;
  58. audio_input_callback_t input_cb;
  59. void *input_param;
  60. pthread_mutex_t input_mutex;
  61. struct audio_mix mixes[MAX_AUDIO_MIXES];
  62. };
  63. /* ------------------------------------------------------------------------- */
  64. static bool resample_audio_output(struct audio_input *input,
  65. struct audio_data *data)
  66. {
  67. bool success = true;
  68. if (input->resampler) {
  69. uint8_t *output[MAX_AV_PLANES];
  70. uint32_t frames;
  71. uint64_t offset;
  72. memset(output, 0, sizeof(output));
  73. success = audio_resampler_resample(
  74. input->resampler, output, &frames, &offset,
  75. (const uint8_t *const *)data->data, data->frames);
  76. for (size_t i = 0; i < MAX_AV_PLANES; i++)
  77. data->data[i] = output[i];
  78. data->frames = frames;
  79. data->timestamp -= offset;
  80. }
  81. return success;
  82. }
  83. static inline void do_audio_output(struct audio_output *audio, size_t mix_idx,
  84. uint64_t timestamp, uint32_t frames)
  85. {
  86. struct audio_mix *mix = &audio->mixes[mix_idx];
  87. struct audio_data data;
  88. pthread_mutex_lock(&audio->input_mutex);
  89. for (size_t i = mix->inputs.num; i > 0; i--) {
  90. struct audio_input *input = mix->inputs.array + (i - 1);
  91. float(*buf)[AUDIO_OUTPUT_FRAMES] =
  92. input->conversion.allow_clipping ? mix->buffer_unclamped
  93. : mix->buffer;
  94. for (size_t i = 0; i < audio->planes; i++)
  95. data.data[i] = (uint8_t *)buf[i];
  96. data.frames = frames;
  97. data.timestamp = timestamp;
  98. if (resample_audio_output(input, &data))
  99. input->callback(input->param, mix_idx, &data);
  100. }
  101. pthread_mutex_unlock(&audio->input_mutex);
  102. }
  103. static inline void clamp_audio_output(struct audio_output *audio, size_t bytes)
  104. {
  105. size_t float_size = bytes / sizeof(float);
  106. for (size_t mix_idx = 0; mix_idx < MAX_AUDIO_MIXES; mix_idx++) {
  107. struct audio_mix *mix = &audio->mixes[mix_idx];
  108. /* do not process mixing if a specific mix is inactive */
  109. if (!mix->inputs.num)
  110. continue;
  111. for (size_t plane = 0; plane < audio->planes; plane++) {
  112. float *mix_data = mix->buffer[plane];
  113. float *mix_end = &mix_data[float_size];
  114. /* Unclamped mix is copied directly. */
  115. memcpy(mix->buffer_unclamped[plane], mix_data, bytes);
  116. while (mix_data < mix_end) {
  117. float val = *mix_data;
  118. val = (val == val) ? val : 0.0f;
  119. val = (val > 1.0f) ? 1.0f : val;
  120. val = (val < -1.0f) ? -1.0f : val;
  121. *(mix_data++) = val;
  122. }
  123. }
  124. }
  125. }
  126. static void input_and_output(struct audio_output *audio, uint64_t audio_time,
  127. uint64_t prev_time)
  128. {
  129. size_t bytes = AUDIO_OUTPUT_FRAMES * audio->block_size;
  130. struct audio_output_data data[MAX_AUDIO_MIXES];
  131. uint32_t active_mixes = 0;
  132. uint64_t new_ts = 0;
  133. bool success;
  134. memset(data, 0, sizeof(data));
  135. #ifdef DEBUG_AUDIO
  136. blog(LOG_DEBUG, "audio_time: %llu, prev_time: %llu, bytes: %lu",
  137. audio_time, prev_time, bytes);
  138. #endif
  139. /* get mixers */
  140. pthread_mutex_lock(&audio->input_mutex);
  141. for (size_t i = 0; i < MAX_AUDIO_MIXES; i++) {
  142. if (audio->mixes[i].inputs.num)
  143. active_mixes |= (1 << i);
  144. }
  145. pthread_mutex_unlock(&audio->input_mutex);
  146. /* clear mix buffers */
  147. for (size_t mix_idx = 0; mix_idx < MAX_AUDIO_MIXES; mix_idx++) {
  148. struct audio_mix *mix = &audio->mixes[mix_idx];
  149. memset(mix->buffer, 0, sizeof(mix->buffer));
  150. for (size_t i = 0; i < audio->planes; i++)
  151. data[mix_idx].data[i] = mix->buffer[i];
  152. }
  153. /* get new audio data */
  154. success = audio->input_cb(audio->input_param, prev_time, audio_time,
  155. &new_ts, active_mixes, data);
  156. if (!success)
  157. return;
  158. /* clamps audio data to -1.0..1.0 */
  159. clamp_audio_output(audio, bytes);
  160. /* output */
  161. for (size_t i = 0; i < MAX_AUDIO_MIXES; i++)
  162. do_audio_output(audio, i, new_ts, AUDIO_OUTPUT_FRAMES);
  163. }
  164. static void *audio_thread(void *param)
  165. {
  166. #ifdef _WIN32
  167. DWORD unused = 0;
  168. const HANDLE handle = AvSetMmThreadCharacteristics(L"Audio", &unused);
  169. #endif
  170. struct audio_output *audio = param;
  171. size_t rate = audio->info.samples_per_sec;
  172. uint64_t samples = 0;
  173. uint64_t start_time = os_gettime_ns();
  174. uint64_t prev_time = start_time;
  175. os_set_thread_name("audio-io: audio thread");
  176. const char *audio_thread_name =
  177. profile_store_name(obs_get_profiler_name_store(),
  178. "audio_thread(%s)", audio->info.name);
  179. while (os_event_try(audio->stop_event) == EAGAIN) {
  180. samples += AUDIO_OUTPUT_FRAMES;
  181. uint64_t audio_time =
  182. start_time + audio_frames_to_ns(rate, samples);
  183. os_sleepto_ns_fast(audio_time);
  184. profile_start(audio_thread_name);
  185. input_and_output(audio, audio_time, prev_time);
  186. prev_time = audio_time;
  187. profile_end(audio_thread_name);
  188. profile_reenable_thread();
  189. }
  190. #ifdef _WIN32
  191. if (handle)
  192. AvRevertMmThreadCharacteristics(handle);
  193. #endif
  194. return NULL;
  195. }
  196. /* ------------------------------------------------------------------------- */
  197. static size_t audio_get_input_idx(const audio_t *audio, size_t mix_idx,
  198. audio_output_callback_t callback, void *param)
  199. {
  200. const struct audio_mix *mix = &audio->mixes[mix_idx];
  201. for (size_t i = 0; i < mix->inputs.num; i++) {
  202. struct audio_input *input = mix->inputs.array + i;
  203. if (input->callback == callback && input->param == param)
  204. return i;
  205. }
  206. return DARRAY_INVALID;
  207. }
  208. static inline bool audio_input_init(struct audio_input *input,
  209. struct audio_output *audio)
  210. {
  211. if (input->conversion.format != audio->info.format ||
  212. input->conversion.samples_per_sec != audio->info.samples_per_sec ||
  213. input->conversion.speakers != audio->info.speakers) {
  214. struct resample_info from = {
  215. .format = audio->info.format,
  216. .samples_per_sec = audio->info.samples_per_sec,
  217. .speakers = audio->info.speakers};
  218. struct resample_info to = {
  219. .format = input->conversion.format,
  220. .samples_per_sec = input->conversion.samples_per_sec,
  221. .speakers = input->conversion.speakers};
  222. input->resampler = audio_resampler_create(&to, &from);
  223. if (!input->resampler) {
  224. blog(LOG_ERROR, "audio_input_init: Failed to "
  225. "create resampler");
  226. return false;
  227. }
  228. } else {
  229. input->resampler = NULL;
  230. }
  231. return true;
  232. }
  233. bool audio_output_connect(audio_t *audio, size_t mi,
  234. const struct audio_convert_info *conversion,
  235. audio_output_callback_t callback, void *param)
  236. {
  237. bool success = false;
  238. if (!audio || mi >= MAX_AUDIO_MIXES)
  239. return false;
  240. pthread_mutex_lock(&audio->input_mutex);
  241. if (audio_get_input_idx(audio, mi, callback, param) == DARRAY_INVALID) {
  242. struct audio_mix *mix = &audio->mixes[mi];
  243. struct audio_input input;
  244. input.callback = callback;
  245. input.param = param;
  246. if (conversion) {
  247. input.conversion = *conversion;
  248. } else {
  249. input.conversion.format = audio->info.format;
  250. input.conversion.speakers = audio->info.speakers;
  251. input.conversion.samples_per_sec =
  252. audio->info.samples_per_sec;
  253. }
  254. if (input.conversion.format == AUDIO_FORMAT_UNKNOWN)
  255. input.conversion.format = audio->info.format;
  256. if (input.conversion.speakers == SPEAKERS_UNKNOWN)
  257. input.conversion.speakers = audio->info.speakers;
  258. if (input.conversion.samples_per_sec == 0)
  259. input.conversion.samples_per_sec =
  260. audio->info.samples_per_sec;
  261. success = audio_input_init(&input, audio);
  262. if (success)
  263. da_push_back(mix->inputs, &input);
  264. }
  265. pthread_mutex_unlock(&audio->input_mutex);
  266. return success;
  267. }
  268. void audio_output_disconnect(audio_t *audio, size_t mix_idx,
  269. audio_output_callback_t callback, void *param)
  270. {
  271. if (!audio || mix_idx >= MAX_AUDIO_MIXES)
  272. return;
  273. pthread_mutex_lock(&audio->input_mutex);
  274. size_t idx = audio_get_input_idx(audio, mix_idx, callback, param);
  275. if (idx != DARRAY_INVALID) {
  276. struct audio_mix *mix = &audio->mixes[mix_idx];
  277. audio_input_free(mix->inputs.array + idx);
  278. da_erase(mix->inputs, idx);
  279. }
  280. pthread_mutex_unlock(&audio->input_mutex);
  281. }
  282. static inline bool valid_audio_params(const struct audio_output_info *info)
  283. {
  284. return info->format && info->name && info->samples_per_sec > 0 &&
  285. info->speakers > 0;
  286. }
  287. int audio_output_open(audio_t **audio, struct audio_output_info *info)
  288. {
  289. struct audio_output *out;
  290. bool planar = is_audio_planar(info->format);
  291. if (!valid_audio_params(info))
  292. return AUDIO_OUTPUT_INVALIDPARAM;
  293. out = bzalloc(sizeof(struct audio_output));
  294. if (!out)
  295. goto fail0;
  296. memcpy(&out->info, info, sizeof(struct audio_output_info));
  297. out->channels = get_audio_channels(info->speakers);
  298. out->planes = planar ? out->channels : 1;
  299. out->input_cb = info->input_callback;
  300. out->input_param = info->input_param;
  301. out->block_size = (planar ? 1 : out->channels) *
  302. get_audio_bytes_per_channel(info->format);
  303. if (pthread_mutex_init_recursive(&out->input_mutex) != 0)
  304. goto fail0;
  305. if (os_event_init(&out->stop_event, OS_EVENT_TYPE_MANUAL) != 0)
  306. goto fail1;
  307. if (pthread_create(&out->thread, NULL, audio_thread, out) != 0)
  308. goto fail2;
  309. out->initialized = true;
  310. *audio = out;
  311. return AUDIO_OUTPUT_SUCCESS;
  312. fail2:
  313. os_event_destroy(out->stop_event);
  314. fail1:
  315. pthread_mutex_destroy(&out->input_mutex);
  316. fail0:
  317. audio_output_close(out);
  318. return AUDIO_OUTPUT_FAIL;
  319. }
  320. void audio_output_close(audio_t *audio)
  321. {
  322. void *thread_ret;
  323. if (!audio)
  324. return;
  325. if (audio->initialized) {
  326. os_event_signal(audio->stop_event);
  327. pthread_join(audio->thread, &thread_ret);
  328. os_event_destroy(audio->stop_event);
  329. pthread_mutex_destroy(&audio->input_mutex);
  330. }
  331. for (size_t mix_idx = 0; mix_idx < MAX_AUDIO_MIXES; mix_idx++) {
  332. struct audio_mix *mix = &audio->mixes[mix_idx];
  333. for (size_t i = 0; i < mix->inputs.num; i++)
  334. audio_input_free(mix->inputs.array + i);
  335. da_free(mix->inputs);
  336. }
  337. bfree(audio);
  338. }
  339. const struct audio_output_info *audio_output_get_info(const audio_t *audio)
  340. {
  341. return audio ? &audio->info : NULL;
  342. }
  343. bool audio_output_active(const audio_t *audio)
  344. {
  345. if (!audio)
  346. return false;
  347. for (size_t mix_idx = 0; mix_idx < MAX_AUDIO_MIXES; mix_idx++) {
  348. const struct audio_mix *mix = &audio->mixes[mix_idx];
  349. if (mix->inputs.num != 0)
  350. return true;
  351. }
  352. return false;
  353. }
  354. size_t audio_output_get_block_size(const audio_t *audio)
  355. {
  356. return audio ? audio->block_size : 0;
  357. }
  358. size_t audio_output_get_planes(const audio_t *audio)
  359. {
  360. return audio ? audio->planes : 0;
  361. }
  362. size_t audio_output_get_channels(const audio_t *audio)
  363. {
  364. return audio ? audio->channels : 0;
  365. }
  366. uint32_t audio_output_get_sample_rate(const audio_t *audio)
  367. {
  368. return audio ? audio->info.samples_per_sec : 0;
  369. }