|
|
@@ -8,253 +8,300 @@ using System.Threading;
|
|
|
|
|
|
namespace System.Reactive.Linq.ObservableImpl
|
|
|
{
|
|
|
- internal sealed class Timer : Producer<long>
|
|
|
+ internal static class Timer
|
|
|
{
|
|
|
- private readonly DateTimeOffset? _dueTimeA;
|
|
|
- private readonly TimeSpan? _dueTimeR;
|
|
|
- private readonly TimeSpan? _period;
|
|
|
- private readonly IScheduler _scheduler;
|
|
|
-
|
|
|
- public Timer(DateTimeOffset dueTime, TimeSpan? period, IScheduler scheduler)
|
|
|
- {
|
|
|
- _dueTimeA = dueTime;
|
|
|
- _period = period;
|
|
|
- _scheduler = scheduler;
|
|
|
- }
|
|
|
-
|
|
|
- public Timer(TimeSpan dueTime, TimeSpan? period, IScheduler scheduler)
|
|
|
+ internal abstract class Single : Producer<long>
|
|
|
{
|
|
|
- _dueTimeR = dueTime;
|
|
|
- _period = period;
|
|
|
- _scheduler = scheduler;
|
|
|
- }
|
|
|
+ private readonly IScheduler _scheduler;
|
|
|
|
|
|
- protected override IDisposable Run(IObserver<long> observer, IDisposable cancel, Action<IDisposable> setSink)
|
|
|
- {
|
|
|
- if (_period.HasValue)
|
|
|
+ public Single(IScheduler scheduler)
|
|
|
{
|
|
|
- var sink = new TimerImpl(this, observer, cancel);
|
|
|
- setSink(sink);
|
|
|
- return sink.Run();
|
|
|
+ _scheduler = scheduler;
|
|
|
}
|
|
|
- else
|
|
|
+
|
|
|
+ internal sealed class Relative : Single
|
|
|
{
|
|
|
- var sink = new _(this, observer, cancel);
|
|
|
- setSink(sink);
|
|
|
- return sink.Run();
|
|
|
- }
|
|
|
- }
|
|
|
+ private readonly TimeSpan _dueTime;
|
|
|
|
|
|
- class _ : Sink<long>
|
|
|
- {
|
|
|
- private readonly Timer _parent;
|
|
|
+ public Relative(TimeSpan dueTime, IScheduler scheduler)
|
|
|
+ : base(scheduler)
|
|
|
+ {
|
|
|
+ _dueTime = dueTime;
|
|
|
+ }
|
|
|
|
|
|
- public _(Timer parent, IObserver<long> observer, IDisposable cancel)
|
|
|
- : base(observer, cancel)
|
|
|
- {
|
|
|
- _parent = parent;
|
|
|
+ protected override IDisposable Run(IObserver<long> observer, IDisposable cancel, Action<IDisposable> setSink)
|
|
|
+ {
|
|
|
+ var sink = new _(observer, cancel);
|
|
|
+ setSink(sink);
|
|
|
+ return sink.Run(this, _dueTime);
|
|
|
+ }
|
|
|
}
|
|
|
|
|
|
- public IDisposable Run()
|
|
|
+ internal sealed class Absolute : Single
|
|
|
{
|
|
|
- if (_parent._dueTimeA.HasValue)
|
|
|
+ private readonly DateTimeOffset _dueTime;
|
|
|
+
|
|
|
+ public Absolute(DateTimeOffset dueTime, IScheduler scheduler)
|
|
|
+ : base(scheduler)
|
|
|
{
|
|
|
- return _parent._scheduler.Schedule(_parent._dueTimeA.Value, Invoke);
|
|
|
+ _dueTime = dueTime;
|
|
|
}
|
|
|
- else
|
|
|
+
|
|
|
+ protected override IDisposable Run(IObserver<long> observer, IDisposable cancel, Action<IDisposable> setSink)
|
|
|
{
|
|
|
- return _parent._scheduler.Schedule(_parent._dueTimeR.Value, Invoke);
|
|
|
+ var sink = new _(observer, cancel);
|
|
|
+ setSink(sink);
|
|
|
+ return sink.Run(this, _dueTime);
|
|
|
}
|
|
|
}
|
|
|
|
|
|
- private void Invoke()
|
|
|
+ private sealed class _ : Sink<long>
|
|
|
{
|
|
|
- base._observer.OnNext(0);
|
|
|
- base._observer.OnCompleted();
|
|
|
- base.Dispose();
|
|
|
+ public _(IObserver<long> observer, IDisposable cancel)
|
|
|
+ : base(observer, cancel)
|
|
|
+ {
|
|
|
+ }
|
|
|
+
|
|
|
+ public IDisposable Run(Single parent, DateTimeOffset dueTime)
|
|
|
+ {
|
|
|
+ return parent._scheduler.Schedule(dueTime, Invoke);
|
|
|
+ }
|
|
|
+
|
|
|
+ public IDisposable Run(Single parent, TimeSpan dueTime)
|
|
|
+ {
|
|
|
+ return parent._scheduler.Schedule(dueTime, Invoke);
|
|
|
+ }
|
|
|
+
|
|
|
+ private void Invoke()
|
|
|
+ {
|
|
|
+ base._observer.OnNext(0);
|
|
|
+ base._observer.OnCompleted();
|
|
|
+ base.Dispose();
|
|
|
+ }
|
|
|
}
|
|
|
}
|
|
|
|
|
|
- class TimerImpl : Sink<long>
|
|
|
+ internal abstract class Periodic : Producer<long>
|
|
|
{
|
|
|
- private readonly Timer _parent;
|
|
|
private readonly TimeSpan _period;
|
|
|
+ private readonly IScheduler _scheduler;
|
|
|
|
|
|
- public TimerImpl(Timer parent, IObserver<long> observer, IDisposable cancel)
|
|
|
- : base(observer, cancel)
|
|
|
+ public Periodic(TimeSpan period, IScheduler scheduler)
|
|
|
{
|
|
|
- _parent = parent;
|
|
|
- _period = _parent._period.Value;
|
|
|
+ _period = period;
|
|
|
+ _scheduler = scheduler;
|
|
|
}
|
|
|
|
|
|
- public IDisposable Run()
|
|
|
+ internal sealed class Relative : Periodic
|
|
|
{
|
|
|
- if (_parent._dueTimeA.HasValue)
|
|
|
+ private readonly TimeSpan _dueTime;
|
|
|
+
|
|
|
+ public Relative(TimeSpan dueTime, TimeSpan period, IScheduler scheduler)
|
|
|
+ : base(period, scheduler)
|
|
|
{
|
|
|
- var dueTime = _parent._dueTimeA.Value;
|
|
|
- return _parent._scheduler.Schedule(default(object), dueTime, InvokeStart);
|
|
|
+ _dueTime = dueTime;
|
|
|
}
|
|
|
- else
|
|
|
- {
|
|
|
- var dueTime = _parent._dueTimeR.Value;
|
|
|
|
|
|
- //
|
|
|
- // Optimize for the case of Observable.Interval.
|
|
|
- //
|
|
|
- if (dueTime == _period)
|
|
|
- {
|
|
|
- return _parent._scheduler.SchedulePeriodic(0L, _period, (Func<long, long>)Tick);
|
|
|
- }
|
|
|
-
|
|
|
- return _parent._scheduler.Schedule(default(object), dueTime, InvokeStart);
|
|
|
+ protected override IDisposable Run(IObserver<long> observer, IDisposable cancel, Action<IDisposable> setSink)
|
|
|
+ {
|
|
|
+ var sink = new _(_period, observer, cancel);
|
|
|
+ setSink(sink);
|
|
|
+ return sink.Run(this, _dueTime);
|
|
|
}
|
|
|
}
|
|
|
|
|
|
- //
|
|
|
- // BREAKING CHANGE v2 > v1.x - No more correction for time drift based on absolute time. This
|
|
|
- // didn't work for large period values anyway; the fractional
|
|
|
- // error exceeded corrections. Also complicated dealing with system
|
|
|
- // clock change conditions and caused numerous bugs.
|
|
|
- //
|
|
|
- // - For more precise scheduling, use a custom scheduler that measures TimeSpan values in a
|
|
|
- // better way, e.g. spinning to make up for the last part of the period. Whether or not the
|
|
|
- // values of the TimeSpan period match NT time or wall clock time is up to the scheduler.
|
|
|
- //
|
|
|
- // - For more accurate scheduling wrt the system clock, use Generate with DateTimeOffset time
|
|
|
- // selectors. When the system clock changes, intervals will not be the same as diffs between
|
|
|
- // consecutive absolute time values. The precision will be low (1s range by default).
|
|
|
- //
|
|
|
- private long Tick(long count)
|
|
|
+ internal sealed class Absolute : Periodic
|
|
|
{
|
|
|
- base._observer.OnNext(count);
|
|
|
- return unchecked(count + 1);
|
|
|
- }
|
|
|
-
|
|
|
- private int _pendingTickCount;
|
|
|
- private IDisposable _periodic;
|
|
|
+ private readonly DateTimeOffset _dueTime;
|
|
|
|
|
|
- private IDisposable InvokeStart(IScheduler self, object state)
|
|
|
- {
|
|
|
- //
|
|
|
- // Notice the first call to OnNext will introduce skew if it takes significantly long when
|
|
|
- // using the following naive implementation:
|
|
|
- //
|
|
|
- // Code: base._observer.OnNext(0L);
|
|
|
- // return self.SchedulePeriodicEmulated(1L, _period, (Func<long, long>)Tick);
|
|
|
- //
|
|
|
- // What we're saying here is that Observable.Timer(dueTime, period) is pretty much the same
|
|
|
- // as writing Observable.Timer(dueTime).Concat(Observable.Interval(period)).
|
|
|
- //
|
|
|
- // Expected: dueTime
|
|
|
- // |
|
|
|
- // 0--period--1--period--2--period--3--period--4--...
|
|
|
- // |
|
|
|
- // +-OnNext(0L)-|
|
|
|
- //
|
|
|
- // Actual: dueTime
|
|
|
- // |
|
|
|
- // 0------------#--period--1--period--2--period--3--period--4--...
|
|
|
- // |
|
|
|
- // +-OnNext(0L)-|
|
|
|
- //
|
|
|
- // Different solutions for this behavior have different problems:
|
|
|
- //
|
|
|
- // 1. Scheduling the periodic job first and using an AsyncLock to serialize the OnNext calls
|
|
|
- // has the drawback that InvokeStart may never return. This happens when every callback
|
|
|
- // doesn't meet the period's deadline, hence the periodic job keeps queueing stuff up. In
|
|
|
- // this case, InvokeStart stays the owner of the AsyncLock and the call to Wait will never
|
|
|
- // return, thus not allowing any interleaving of work on this scheduler's logical thread.
|
|
|
- //
|
|
|
- // 2. Scheduling the periodic job first and using a (blocking) synchronization primitive to
|
|
|
- // signal completion of the OnNext(0L) call to the Tick call requires quite a bit of state
|
|
|
- // and careful handling of the case when OnNext(0L) throws. What's worse is the blocking
|
|
|
- // behavior inside Tick.
|
|
|
- //
|
|
|
- // In order to avoid blocking behavior, we need a scheme much like SchedulePeriodic emulation
|
|
|
- // where work to dispatch OnNext(n + 1) is delegated to a catch up loop in case OnNext(n) was
|
|
|
- // still running. Because SchedulePeriodic emulation exhibits such behavior in all cases, we
|
|
|
- // only need to deal with the overlap of OnNext(0L) with future periodic OnNext(n) dispatch
|
|
|
- // jobs. In the worst case where every callback takes longer than the deadline implied by the
|
|
|
- // period, the periodic job will just queue up work that's dispatched by the tail-recursive
|
|
|
- // catch up loop. In the best case, all work will be dispatched on the periodic scheduler.
|
|
|
- //
|
|
|
+ public Absolute(DateTimeOffset dueTime, TimeSpan period, IScheduler scheduler)
|
|
|
+ : base(period, scheduler)
|
|
|
+ {
|
|
|
+ _dueTime = dueTime;
|
|
|
+ }
|
|
|
|
|
|
- //
|
|
|
- // We start with one tick pending because we're about to start doing OnNext(0L).
|
|
|
- //
|
|
|
- _pendingTickCount = 1;
|
|
|
+ protected override IDisposable Run(IObserver<long> observer, IDisposable cancel, Action<IDisposable> setSink)
|
|
|
+ {
|
|
|
+ var sink = new _(_period, observer, cancel);
|
|
|
+ setSink(sink);
|
|
|
+ return sink.Run(this, _dueTime);
|
|
|
+ }
|
|
|
+ }
|
|
|
|
|
|
- var d = new SingleAssignmentDisposable();
|
|
|
- _periodic = d;
|
|
|
- d.Disposable = self.SchedulePeriodic(1L, _period, (Func<long, long>)Tock);
|
|
|
+ private sealed class _ : Sink<long>
|
|
|
+ {
|
|
|
+ private readonly TimeSpan _period;
|
|
|
|
|
|
- try
|
|
|
+ public _(TimeSpan period, IObserver<long> observer, IDisposable cancel)
|
|
|
+ : base(observer, cancel)
|
|
|
{
|
|
|
- base._observer.OnNext(0L);
|
|
|
+ _period = period;
|
|
|
}
|
|
|
- catch (Exception e)
|
|
|
+
|
|
|
+ public IDisposable Run(Periodic parent, DateTimeOffset dueTime)
|
|
|
{
|
|
|
- d.Dispose();
|
|
|
- e.Throw();
|
|
|
+ return parent._scheduler.Schedule(default(object), dueTime, InvokeStart);
|
|
|
}
|
|
|
|
|
|
- //
|
|
|
- // If the periodic scheduling job already ran before we finished dispatching the OnNext(0L)
|
|
|
- // call, we'll find pendingTickCount to be > 1. In this case, we need to catch up by dispatching
|
|
|
- // subsequent calls to OnNext as fast as possible, but without running a loop in order to ensure
|
|
|
- // fair play with the scheduler. So, we run a tail-recursive loop in CatchUp instead.
|
|
|
- //
|
|
|
- if (Interlocked.Decrement(ref _pendingTickCount) > 0)
|
|
|
+ public IDisposable Run(Periodic parent, TimeSpan dueTime)
|
|
|
{
|
|
|
- var c = new SingleAssignmentDisposable();
|
|
|
- c.Disposable = self.Schedule(1L, CatchUp);
|
|
|
+ //
|
|
|
+ // Optimize for the case of Observable.Interval.
|
|
|
+ //
|
|
|
+ if (dueTime == _period)
|
|
|
+ {
|
|
|
+ return parent._scheduler.SchedulePeriodic(0L, _period, (Func<long, long>)Tick);
|
|
|
+ }
|
|
|
|
|
|
- return StableCompositeDisposable.Create(d, c);
|
|
|
+ return parent._scheduler.Schedule(default(object), dueTime, InvokeStart);
|
|
|
}
|
|
|
|
|
|
- return d;
|
|
|
- }
|
|
|
-
|
|
|
- private long Tock(long count)
|
|
|
- {
|
|
|
//
|
|
|
- // Notice the handler for (emulated) periodic scheduling is non-reentrant.
|
|
|
+ // BREAKING CHANGE v2 > v1.x - No more correction for time drift based on absolute time. This
|
|
|
+ // didn't work for large period values anyway; the fractional
|
|
|
+ // error exceeded corrections. Also complicated dealing with system
|
|
|
+ // clock change conditions and caused numerous bugs.
|
|
|
//
|
|
|
- // When there's no overlap with the OnNext(0L) call, the following code will cycle through
|
|
|
- // pendingTickCount 0 -> 1 -> 0 for the remainder of the timer's execution.
|
|
|
+ // - For more precise scheduling, use a custom scheduler that measures TimeSpan values in a
|
|
|
+ // better way, e.g. spinning to make up for the last part of the period. Whether or not the
|
|
|
+ // values of the TimeSpan period match NT time or wall clock time is up to the scheduler.
|
|
|
//
|
|
|
- // If there's overlap with the OnNext(0L) call, pendingTickCount will increase to record
|
|
|
- // the number of catch up OnNext calls required, which will be dispatched by the recursive
|
|
|
- // scheduling loop in CatchUp (which quits when it reaches 0 pending ticks).
|
|
|
+ // - For more accurate scheduling wrt the system clock, use Generate with DateTimeOffset time
|
|
|
+ // selectors. When the system clock changes, intervals will not be the same as diffs between
|
|
|
+ // consecutive absolute time values. The precision will be low (1s range by default).
|
|
|
//
|
|
|
- if (Interlocked.Increment(ref _pendingTickCount) == 1)
|
|
|
+ private long Tick(long count)
|
|
|
{
|
|
|
base._observer.OnNext(count);
|
|
|
- Interlocked.Decrement(ref _pendingTickCount);
|
|
|
+ return unchecked(count + 1);
|
|
|
}
|
|
|
|
|
|
- return unchecked(count + 1);
|
|
|
- }
|
|
|
+ private int _pendingTickCount;
|
|
|
+ private IDisposable _periodic;
|
|
|
|
|
|
- private void CatchUp(long count, Action<long> recurse)
|
|
|
- {
|
|
|
- try
|
|
|
+ private IDisposable InvokeStart(IScheduler self, object state)
|
|
|
{
|
|
|
- base._observer.OnNext(count);
|
|
|
+ //
|
|
|
+ // Notice the first call to OnNext will introduce skew if it takes significantly long when
|
|
|
+ // using the following naive implementation:
|
|
|
+ //
|
|
|
+ // Code: base._observer.OnNext(0L);
|
|
|
+ // return self.SchedulePeriodicEmulated(1L, _period, (Func<long, long>)Tick);
|
|
|
+ //
|
|
|
+ // What we're saying here is that Observable.Timer(dueTime, period) is pretty much the same
|
|
|
+ // as writing Observable.Timer(dueTime).Concat(Observable.Interval(period)).
|
|
|
+ //
|
|
|
+ // Expected: dueTime
|
|
|
+ // |
|
|
|
+ // 0--period--1--period--2--period--3--period--4--...
|
|
|
+ // |
|
|
|
+ // +-OnNext(0L)-|
|
|
|
+ //
|
|
|
+ // Actual: dueTime
|
|
|
+ // |
|
|
|
+ // 0------------#--period--1--period--2--period--3--period--4--...
|
|
|
+ // |
|
|
|
+ // +-OnNext(0L)-|
|
|
|
+ //
|
|
|
+ // Different solutions for this behavior have different problems:
|
|
|
+ //
|
|
|
+ // 1. Scheduling the periodic job first and using an AsyncLock to serialize the OnNext calls
|
|
|
+ // has the drawback that InvokeStart may never return. This happens when every callback
|
|
|
+ // doesn't meet the period's deadline, hence the periodic job keeps queueing stuff up. In
|
|
|
+ // this case, InvokeStart stays the owner of the AsyncLock and the call to Wait will never
|
|
|
+ // return, thus not allowing any interleaving of work on this scheduler's logical thread.
|
|
|
+ //
|
|
|
+ // 2. Scheduling the periodic job first and using a (blocking) synchronization primitive to
|
|
|
+ // signal completion of the OnNext(0L) call to the Tick call requires quite a bit of state
|
|
|
+ // and careful handling of the case when OnNext(0L) throws. What's worse is the blocking
|
|
|
+ // behavior inside Tick.
|
|
|
+ //
|
|
|
+ // In order to avoid blocking behavior, we need a scheme much like SchedulePeriodic emulation
|
|
|
+ // where work to dispatch OnNext(n + 1) is delegated to a catch up loop in case OnNext(n) was
|
|
|
+ // still running. Because SchedulePeriodic emulation exhibits such behavior in all cases, we
|
|
|
+ // only need to deal with the overlap of OnNext(0L) with future periodic OnNext(n) dispatch
|
|
|
+ // jobs. In the worst case where every callback takes longer than the deadline implied by the
|
|
|
+ // period, the periodic job will just queue up work that's dispatched by the tail-recursive
|
|
|
+ // catch up loop. In the best case, all work will be dispatched on the periodic scheduler.
|
|
|
+ //
|
|
|
+
|
|
|
+ //
|
|
|
+ // We start with one tick pending because we're about to start doing OnNext(0L).
|
|
|
+ //
|
|
|
+ _pendingTickCount = 1;
|
|
|
+
|
|
|
+ var d = new SingleAssignmentDisposable();
|
|
|
+ _periodic = d;
|
|
|
+ d.Disposable = self.SchedulePeriodic(1L, _period, (Func<long, long>)Tock);
|
|
|
+
|
|
|
+ try
|
|
|
+ {
|
|
|
+ base._observer.OnNext(0L);
|
|
|
+ }
|
|
|
+ catch (Exception e)
|
|
|
+ {
|
|
|
+ d.Dispose();
|
|
|
+ e.Throw();
|
|
|
+ }
|
|
|
+
|
|
|
+ //
|
|
|
+ // If the periodic scheduling job already ran before we finished dispatching the OnNext(0L)
|
|
|
+ // call, we'll find pendingTickCount to be > 1. In this case, we need to catch up by dispatching
|
|
|
+ // subsequent calls to OnNext as fast as possible, but without running a loop in order to ensure
|
|
|
+ // fair play with the scheduler. So, we run a tail-recursive loop in CatchUp instead.
|
|
|
+ //
|
|
|
+ if (Interlocked.Decrement(ref _pendingTickCount) > 0)
|
|
|
+ {
|
|
|
+ var c = new SingleAssignmentDisposable();
|
|
|
+ c.Disposable = self.Schedule(1L, CatchUp);
|
|
|
+
|
|
|
+ return StableCompositeDisposable.Create(d, c);
|
|
|
+ }
|
|
|
+
|
|
|
+ return d;
|
|
|
}
|
|
|
- catch (Exception e)
|
|
|
+
|
|
|
+ private long Tock(long count)
|
|
|
{
|
|
|
- _periodic.Dispose();
|
|
|
- e.Throw();
|
|
|
+ //
|
|
|
+ // Notice the handler for (emulated) periodic scheduling is non-reentrant.
|
|
|
+ //
|
|
|
+ // When there's no overlap with the OnNext(0L) call, the following code will cycle through
|
|
|
+ // pendingTickCount 0 -> 1 -> 0 for the remainder of the timer's execution.
|
|
|
+ //
|
|
|
+ // If there's overlap with the OnNext(0L) call, pendingTickCount will increase to record
|
|
|
+ // the number of catch up OnNext calls required, which will be dispatched by the recursive
|
|
|
+ // scheduling loop in CatchUp (which quits when it reaches 0 pending ticks).
|
|
|
+ //
|
|
|
+ if (Interlocked.Increment(ref _pendingTickCount) == 1)
|
|
|
+ {
|
|
|
+ base._observer.OnNext(count);
|
|
|
+ Interlocked.Decrement(ref _pendingTickCount);
|
|
|
+ }
|
|
|
+
|
|
|
+ return unchecked(count + 1);
|
|
|
}
|
|
|
|
|
|
- //
|
|
|
- // We can simply bail out if we decreased the tick count to 0. In that case, the Tock
|
|
|
- // method will take over when it sees the 0 -> 1 transition.
|
|
|
- //
|
|
|
- if (Interlocked.Decrement(ref _pendingTickCount) > 0)
|
|
|
+ private void CatchUp(long count, Action<long> recurse)
|
|
|
{
|
|
|
- recurse(unchecked(count + 1));
|
|
|
+ try
|
|
|
+ {
|
|
|
+ base._observer.OnNext(count);
|
|
|
+ }
|
|
|
+ catch (Exception e)
|
|
|
+ {
|
|
|
+ _periodic.Dispose();
|
|
|
+ e.Throw();
|
|
|
+ }
|
|
|
+
|
|
|
+ //
|
|
|
+ // We can simply bail out if we decreased the tick count to 0. In that case, the Tock
|
|
|
+ // method will take over when it sees the 0 -> 1 transition.
|
|
|
+ //
|
|
|
+ if (Interlocked.Decrement(ref _pendingTickCount) > 0)
|
|
|
+ {
|
|
|
+ recurse(unchecked(count + 1));
|
|
|
+ }
|
|
|
}
|
|
|
}
|
|
|
}
|