// Licensed to the .NET Foundation under one or more agreements. // The .NET Foundation licenses this file to you under the MIT license. // See the LICENSE file in the project root for more information. using System.Collections.Generic; using System.Threading; using System.Threading.Tasks; namespace System.Linq { public static partial class AsyncEnumerable { public static ValueTask MaxAsync(this IAsyncEnumerable source, CancellationToken cancellationToken = default) { if (source == null) throw Error.ArgumentNull(nameof(source)); return Core(source, cancellationToken); static async ValueTask Core(IAsyncEnumerable _source, CancellationToken _cancellationToken) { int value; await using (var e = _source.GetConfiguredAsyncEnumerator(_cancellationToken, false)) { if (!await e.MoveNextAsync()) { throw Error.NoElements(); } value = e.Current; while (await e.MoveNextAsync()) { var x = e.Current; if (x > value) { value = x; } } } return value; } } public static ValueTask MaxAsync(this IAsyncEnumerable source, Func selector, CancellationToken cancellationToken = default) { if (source == null) throw Error.ArgumentNull(nameof(source)); if (selector == null) throw Error.ArgumentNull(nameof(selector)); return Core(source, selector, cancellationToken); static async ValueTask Core(IAsyncEnumerable _source, Func _selector, CancellationToken _cancellationToken) { int value; await using (var e = _source.GetConfiguredAsyncEnumerator(_cancellationToken, false)) { if (!await e.MoveNextAsync()) { throw Error.NoElements(); } value = _selector(e.Current); while (await e.MoveNextAsync()) { var x = _selector(e.Current); if (x > value) { value = x; } } } return value; } } internal static ValueTask MaxAwaitAsyncCore(this IAsyncEnumerable source, Func> selector, CancellationToken cancellationToken = default) { if (source == null) throw Error.ArgumentNull(nameof(source)); if (selector == null) throw Error.ArgumentNull(nameof(selector)); return Core(source, selector, cancellationToken); static async ValueTask Core(IAsyncEnumerable _source, Func> _selector, CancellationToken _cancellationToken) { int value; await using (var e = _source.GetConfiguredAsyncEnumerator(_cancellationToken, false)) { if (!await e.MoveNextAsync()) { throw Error.NoElements(); } value = await _selector(e.Current).ConfigureAwait(false); while (await e.MoveNextAsync()) { var x = await _selector(e.Current).ConfigureAwait(false); if (x > value) { value = x; } } } return value; } } #if !NO_DEEP_CANCELLATION internal static ValueTask MaxAwaitWithCancellationAsyncCore(this IAsyncEnumerable source, Func> selector, CancellationToken cancellationToken = default) { if (source == null) throw Error.ArgumentNull(nameof(source)); if (selector == null) throw Error.ArgumentNull(nameof(selector)); return Core(source, selector, cancellationToken); static async ValueTask Core(IAsyncEnumerable _source, Func> _selector, CancellationToken _cancellationToken) { int value; await using (var e = _source.GetConfiguredAsyncEnumerator(_cancellationToken, false)) { if (!await e.MoveNextAsync()) { throw Error.NoElements(); } value = await _selector(e.Current, _cancellationToken).ConfigureAwait(false); while (await e.MoveNextAsync()) { var x = await _selector(e.Current, _cancellationToken).ConfigureAwait(false); if (x > value) { value = x; } } } return value; } } #endif public static ValueTask MaxAsync(this IAsyncEnumerable source, CancellationToken cancellationToken = default) { if (source == null) throw Error.ArgumentNull(nameof(source)); return Core(source, cancellationToken); static async ValueTask Core(IAsyncEnumerable _source, CancellationToken _cancellationToken) { int? value = null; await using (var e = _source.GetConfiguredAsyncEnumerator(_cancellationToken, false)) { // Start off knowing that we've a non-null value (or exit here, knowing we don't) // so we don't have to keep testing for nullity. do { if (!await e.MoveNextAsync()) { return value; } value = e.Current; } while (!value.HasValue); // Keep hold of the wrapped value, and do comparisons on that, rather than // using the lifted operation each time. var valueVal = value.GetValueOrDefault(); if (valueVal >= 0) { // We can fast-path this case where we know HasValue will // never affect the outcome, without constantly checking // if we're in such a state. Similar fast-paths could // be done for other cases, but as all-positive or mostly- // positive integer values are quite common in real-world // uses, it's only been done for int? and long?. while (await e.MoveNextAsync()) { var cur = e.Current; var x = cur.GetValueOrDefault(); if (x > valueVal) { valueVal = x; value = cur; } } } else { while (await e.MoveNextAsync()) { var cur = e.Current; var x = cur.GetValueOrDefault(); // Do not replace & with &&. The branch prediction cost outweighs the extra operation // unless nulls either never happen or always happen. if (cur.HasValue & x > valueVal) { valueVal = x; value = cur; } } } } return value; } } public static ValueTask MaxAsync(this IAsyncEnumerable source, Func selector, CancellationToken cancellationToken = default) { if (source == null) throw Error.ArgumentNull(nameof(source)); if (selector == null) throw Error.ArgumentNull(nameof(selector)); return Core(source, selector, cancellationToken); static async ValueTask Core(IAsyncEnumerable _source, Func _selector, CancellationToken _cancellationToken) { int? value = null; await using (var e = _source.GetConfiguredAsyncEnumerator(_cancellationToken, false)) { // Start off knowing that we've a non-null value (or exit here, knowing we don't) // so we don't have to keep testing for nullity. do { if (!await e.MoveNextAsync()) { return value; } value = _selector(e.Current); } while (!value.HasValue); // Keep hold of the wrapped value, and do comparisons on that, rather than // using the lifted operation each time. var valueVal = value.GetValueOrDefault(); if (valueVal >= 0) { // We can fast-path this case where we know HasValue will // never affect the outcome, without constantly checking // if we're in such a state. Similar fast-paths could // be done for other cases, but as all-positive or mostly- // positive integer values are quite common in real-world // uses, it's only been done for int? and long?. while (await e.MoveNextAsync()) { var cur = _selector(e.Current); var x = cur.GetValueOrDefault(); if (x > valueVal) { valueVal = x; value = cur; } } } else { while (await e.MoveNextAsync()) { var cur = _selector(e.Current); var x = cur.GetValueOrDefault(); // Do not replace & with &&. The branch prediction cost outweighs the extra operation // unless nulls either never happen or always happen. if (cur.HasValue & x > valueVal) { valueVal = x; value = cur; } } } } return value; } } internal static ValueTask MaxAwaitAsyncCore(this IAsyncEnumerable source, Func> selector, CancellationToken cancellationToken = default) { if (source == null) throw Error.ArgumentNull(nameof(source)); if (selector == null) throw Error.ArgumentNull(nameof(selector)); return Core(source, selector, cancellationToken); static async ValueTask Core(IAsyncEnumerable _source, Func> _selector, CancellationToken _cancellationToken) { int? value = null; await using (var e = _source.GetConfiguredAsyncEnumerator(_cancellationToken, false)) { // Start off knowing that we've a non-null value (or exit here, knowing we don't) // so we don't have to keep testing for nullity. do { if (!await e.MoveNextAsync()) { return value; } value = await _selector(e.Current).ConfigureAwait(false); } while (!value.HasValue); // Keep hold of the wrapped value, and do comparisons on that, rather than // using the lifted operation each time. var valueVal = value.GetValueOrDefault(); if (valueVal >= 0) { // We can fast-path this case where we know HasValue will // never affect the outcome, without constantly checking // if we're in such a state. Similar fast-paths could // be done for other cases, but as all-positive or mostly- // positive integer values are quite common in real-world // uses, it's only been done for int? and long?. while (await e.MoveNextAsync()) { var cur = await _selector(e.Current).ConfigureAwait(false); var x = cur.GetValueOrDefault(); if (x > valueVal) { valueVal = x; value = cur; } } } else { while (await e.MoveNextAsync()) { var cur = await _selector(e.Current).ConfigureAwait(false); var x = cur.GetValueOrDefault(); // Do not replace & with &&. The branch prediction cost outweighs the extra operation // unless nulls either never happen or always happen. if (cur.HasValue & x > valueVal) { valueVal = x; value = cur; } } } } return value; } } #if !NO_DEEP_CANCELLATION internal static ValueTask MaxAwaitWithCancellationAsyncCore(this IAsyncEnumerable source, Func> selector, CancellationToken cancellationToken = default) { if (source == null) throw Error.ArgumentNull(nameof(source)); if (selector == null) throw Error.ArgumentNull(nameof(selector)); return Core(source, selector, cancellationToken); static async ValueTask Core(IAsyncEnumerable _source, Func> _selector, CancellationToken _cancellationToken) { int? value = null; await using (var e = _source.GetConfiguredAsyncEnumerator(_cancellationToken, false)) { // Start off knowing that we've a non-null value (or exit here, knowing we don't) // so we don't have to keep testing for nullity. do { if (!await e.MoveNextAsync()) { return value; } value = await _selector(e.Current, _cancellationToken).ConfigureAwait(false); } while (!value.HasValue); // Keep hold of the wrapped value, and do comparisons on that, rather than // using the lifted operation each time. var valueVal = value.GetValueOrDefault(); if (valueVal >= 0) { // We can fast-path this case where we know HasValue will // never affect the outcome, without constantly checking // if we're in such a state. Similar fast-paths could // be done for other cases, but as all-positive or mostly- // positive integer values are quite common in real-world // uses, it's only been done for int? and long?. while (await e.MoveNextAsync()) { var cur = await _selector(e.Current, _cancellationToken).ConfigureAwait(false); var x = cur.GetValueOrDefault(); if (x > valueVal) { valueVal = x; value = cur; } } } else { while (await e.MoveNextAsync()) { var cur = await _selector(e.Current, _cancellationToken).ConfigureAwait(false); var x = cur.GetValueOrDefault(); // Do not replace & with &&. The branch prediction cost outweighs the extra operation // unless nulls either never happen or always happen. if (cur.HasValue & x > valueVal) { valueVal = x; value = cur; } } } } return value; } } #endif public static ValueTask MaxAsync(this IAsyncEnumerable source, CancellationToken cancellationToken = default) { if (source == null) throw Error.ArgumentNull(nameof(source)); return Core(source, cancellationToken); static async ValueTask Core(IAsyncEnumerable _source, CancellationToken _cancellationToken) { long value; await using (var e = _source.GetConfiguredAsyncEnumerator(_cancellationToken, false)) { if (!await e.MoveNextAsync()) { throw Error.NoElements(); } value = e.Current; while (await e.MoveNextAsync()) { var x = e.Current; if (x > value) { value = x; } } } return value; } } public static ValueTask MaxAsync(this IAsyncEnumerable source, Func selector, CancellationToken cancellationToken = default) { if (source == null) throw Error.ArgumentNull(nameof(source)); if (selector == null) throw Error.ArgumentNull(nameof(selector)); return Core(source, selector, cancellationToken); static async ValueTask Core(IAsyncEnumerable _source, Func _selector, CancellationToken _cancellationToken) { long value; await using (var e = _source.GetConfiguredAsyncEnumerator(_cancellationToken, false)) { if (!await e.MoveNextAsync()) { throw Error.NoElements(); } value = _selector(e.Current); while (await e.MoveNextAsync()) { var x = _selector(e.Current); if (x > value) { value = x; } } } return value; } } internal static ValueTask MaxAwaitAsyncCore(this IAsyncEnumerable source, Func> selector, CancellationToken cancellationToken = default) { if (source == null) throw Error.ArgumentNull(nameof(source)); if (selector == null) throw Error.ArgumentNull(nameof(selector)); return Core(source, selector, cancellationToken); static async ValueTask Core(IAsyncEnumerable _source, Func> _selector, CancellationToken _cancellationToken) { long value; await using (var e = _source.GetConfiguredAsyncEnumerator(_cancellationToken, false)) { if (!await e.MoveNextAsync()) { throw Error.NoElements(); } value = await _selector(e.Current).ConfigureAwait(false); while (await e.MoveNextAsync()) { var x = await _selector(e.Current).ConfigureAwait(false); if (x > value) { value = x; } } } return value; } } #if !NO_DEEP_CANCELLATION internal static ValueTask MaxAwaitWithCancellationAsyncCore(this IAsyncEnumerable source, Func> selector, CancellationToken cancellationToken = default) { if (source == null) throw Error.ArgumentNull(nameof(source)); if (selector == null) throw Error.ArgumentNull(nameof(selector)); return Core(source, selector, cancellationToken); static async ValueTask Core(IAsyncEnumerable _source, Func> _selector, CancellationToken _cancellationToken) { long value; await using (var e = _source.GetConfiguredAsyncEnumerator(_cancellationToken, false)) { if (!await e.MoveNextAsync()) { throw Error.NoElements(); } value = await _selector(e.Current, _cancellationToken).ConfigureAwait(false); while (await e.MoveNextAsync()) { var x = await _selector(e.Current, _cancellationToken).ConfigureAwait(false); if (x > value) { value = x; } } } return value; } } #endif public static ValueTask MaxAsync(this IAsyncEnumerable source, CancellationToken cancellationToken = default) { if (source == null) throw Error.ArgumentNull(nameof(source)); return Core(source, cancellationToken); static async ValueTask Core(IAsyncEnumerable _source, CancellationToken _cancellationToken) { long? value = null; await using (var e = _source.GetConfiguredAsyncEnumerator(_cancellationToken, false)) { // Start off knowing that we've a non-null value (or exit here, knowing we don't) // so we don't have to keep testing for nullity. do { if (!await e.MoveNextAsync()) { return value; } value = e.Current; } while (!value.HasValue); // Keep hold of the wrapped value, and do comparisons on that, rather than // using the lifted operation each time. var valueVal = value.GetValueOrDefault(); if (valueVal >= 0) { // We can fast-path this case where we know HasValue will // never affect the outcome, without constantly checking // if we're in such a state. Similar fast-paths could // be done for other cases, but as all-positive or mostly- // positive integer values are quite common in real-world // uses, it's only been done for int? and long?. while (await e.MoveNextAsync()) { var cur = e.Current; var x = cur.GetValueOrDefault(); if (x > valueVal) { valueVal = x; value = cur; } } } else { while (await e.MoveNextAsync()) { var cur = e.Current; var x = cur.GetValueOrDefault(); // Do not replace & with &&. The branch prediction cost outweighs the extra operation // unless nulls either never happen or always happen. if (cur.HasValue & x > valueVal) { valueVal = x; value = cur; } } } } return value; } } public static ValueTask MaxAsync(this IAsyncEnumerable source, Func selector, CancellationToken cancellationToken = default) { if (source == null) throw Error.ArgumentNull(nameof(source)); if (selector == null) throw Error.ArgumentNull(nameof(selector)); return Core(source, selector, cancellationToken); static async ValueTask Core(IAsyncEnumerable _source, Func _selector, CancellationToken _cancellationToken) { long? value = null; await using (var e = _source.GetConfiguredAsyncEnumerator(_cancellationToken, false)) { // Start off knowing that we've a non-null value (or exit here, knowing we don't) // so we don't have to keep testing for nullity. do { if (!await e.MoveNextAsync()) { return value; } value = _selector(e.Current); } while (!value.HasValue); // Keep hold of the wrapped value, and do comparisons on that, rather than // using the lifted operation each time. var valueVal = value.GetValueOrDefault(); if (valueVal >= 0) { // We can fast-path this case where we know HasValue will // never affect the outcome, without constantly checking // if we're in such a state. Similar fast-paths could // be done for other cases, but as all-positive or mostly- // positive integer values are quite common in real-world // uses, it's only been done for int? and long?. while (await e.MoveNextAsync()) { var cur = _selector(e.Current); var x = cur.GetValueOrDefault(); if (x > valueVal) { valueVal = x; value = cur; } } } else { while (await e.MoveNextAsync()) { var cur = _selector(e.Current); var x = cur.GetValueOrDefault(); // Do not replace & with &&. The branch prediction cost outweighs the extra operation // unless nulls either never happen or always happen. if (cur.HasValue & x > valueVal) { valueVal = x; value = cur; } } } } return value; } } internal static ValueTask MaxAwaitAsyncCore(this IAsyncEnumerable source, Func> selector, CancellationToken cancellationToken = default) { if (source == null) throw Error.ArgumentNull(nameof(source)); if (selector == null) throw Error.ArgumentNull(nameof(selector)); return Core(source, selector, cancellationToken); static async ValueTask Core(IAsyncEnumerable _source, Func> _selector, CancellationToken _cancellationToken) { long? value = null; await using (var e = _source.GetConfiguredAsyncEnumerator(_cancellationToken, false)) { // Start off knowing that we've a non-null value (or exit here, knowing we don't) // so we don't have to keep testing for nullity. do { if (!await e.MoveNextAsync()) { return value; } value = await _selector(e.Current).ConfigureAwait(false); } while (!value.HasValue); // Keep hold of the wrapped value, and do comparisons on that, rather than // using the lifted operation each time. var valueVal = value.GetValueOrDefault(); if (valueVal >= 0) { // We can fast-path this case where we know HasValue will // never affect the outcome, without constantly checking // if we're in such a state. Similar fast-paths could // be done for other cases, but as all-positive or mostly- // positive integer values are quite common in real-world // uses, it's only been done for int? and long?. while (await e.MoveNextAsync()) { var cur = await _selector(e.Current).ConfigureAwait(false); var x = cur.GetValueOrDefault(); if (x > valueVal) { valueVal = x; value = cur; } } } else { while (await e.MoveNextAsync()) { var cur = await _selector(e.Current).ConfigureAwait(false); var x = cur.GetValueOrDefault(); // Do not replace & with &&. The branch prediction cost outweighs the extra operation // unless nulls either never happen or always happen. if (cur.HasValue & x > valueVal) { valueVal = x; value = cur; } } } } return value; } } #if !NO_DEEP_CANCELLATION internal static ValueTask MaxAwaitWithCancellationAsyncCore(this IAsyncEnumerable source, Func> selector, CancellationToken cancellationToken = default) { if (source == null) throw Error.ArgumentNull(nameof(source)); if (selector == null) throw Error.ArgumentNull(nameof(selector)); return Core(source, selector, cancellationToken); static async ValueTask Core(IAsyncEnumerable _source, Func> _selector, CancellationToken _cancellationToken) { long? value = null; await using (var e = _source.GetConfiguredAsyncEnumerator(_cancellationToken, false)) { // Start off knowing that we've a non-null value (or exit here, knowing we don't) // so we don't have to keep testing for nullity. do { if (!await e.MoveNextAsync()) { return value; } value = await _selector(e.Current, _cancellationToken).ConfigureAwait(false); } while (!value.HasValue); // Keep hold of the wrapped value, and do comparisons on that, rather than // using the lifted operation each time. var valueVal = value.GetValueOrDefault(); if (valueVal >= 0) { // We can fast-path this case where we know HasValue will // never affect the outcome, without constantly checking // if we're in such a state. Similar fast-paths could // be done for other cases, but as all-positive or mostly- // positive integer values are quite common in real-world // uses, it's only been done for int? and long?. while (await e.MoveNextAsync()) { var cur = await _selector(e.Current, _cancellationToken).ConfigureAwait(false); var x = cur.GetValueOrDefault(); if (x > valueVal) { valueVal = x; value = cur; } } } else { while (await e.MoveNextAsync()) { var cur = await _selector(e.Current, _cancellationToken).ConfigureAwait(false); var x = cur.GetValueOrDefault(); // Do not replace & with &&. The branch prediction cost outweighs the extra operation // unless nulls either never happen or always happen. if (cur.HasValue & x > valueVal) { valueVal = x; value = cur; } } } } return value; } } #endif public static ValueTask MaxAsync(this IAsyncEnumerable source, CancellationToken cancellationToken = default) { if (source == null) throw Error.ArgumentNull(nameof(source)); return Core(source, cancellationToken); static async ValueTask Core(IAsyncEnumerable _source, CancellationToken _cancellationToken) { float value; await using (var e = _source.GetConfiguredAsyncEnumerator(_cancellationToken, false)) { if (!await e.MoveNextAsync()) { throw Error.NoElements(); } value = e.Current; // NaN is ordered less than all other values. We need to do explicit checks // to ensure this, but once we've found a value that is not NaN we need no // longer worry about it, so first loop until such a value is found (or not, // as the case may be). while (float.IsNaN(value)) { if (!await e.MoveNextAsync()) { return value; } value = e.Current; } while (await e.MoveNextAsync()) { var x = e.Current; if (x > value) { value = x; } } } return value; } } public static ValueTask MaxAsync(this IAsyncEnumerable source, Func selector, CancellationToken cancellationToken = default) { if (source == null) throw Error.ArgumentNull(nameof(source)); if (selector == null) throw Error.ArgumentNull(nameof(selector)); return Core(source, selector, cancellationToken); static async ValueTask Core(IAsyncEnumerable _source, Func _selector, CancellationToken _cancellationToken) { float value; await using (var e = _source.GetConfiguredAsyncEnumerator(_cancellationToken, false)) { if (!await e.MoveNextAsync()) { throw Error.NoElements(); } value = _selector(e.Current); // NaN is ordered less than all other values. We need to do explicit checks // to ensure this, but once we've found a value that is not NaN we need no // longer worry about it, so first loop until such a value is found (or not, // as the case may be). while (float.IsNaN(value)) { if (!await e.MoveNextAsync()) { return value; } value = _selector(e.Current); } while (await e.MoveNextAsync()) { var x = _selector(e.Current); if (x > value) { value = x; } } } return value; } } internal static ValueTask MaxAwaitAsyncCore(this IAsyncEnumerable source, Func> selector, CancellationToken cancellationToken = default) { if (source == null) throw Error.ArgumentNull(nameof(source)); if (selector == null) throw Error.ArgumentNull(nameof(selector)); return Core(source, selector, cancellationToken); static async ValueTask Core(IAsyncEnumerable _source, Func> _selector, CancellationToken _cancellationToken) { float value; await using (var e = _source.GetConfiguredAsyncEnumerator(_cancellationToken, false)) { if (!await e.MoveNextAsync()) { throw Error.NoElements(); } value = await _selector(e.Current).ConfigureAwait(false); // NaN is ordered less than all other values. We need to do explicit checks // to ensure this, but once we've found a value that is not NaN we need no // longer worry about it, so first loop until such a value is found (or not, // as the case may be). while (float.IsNaN(value)) { if (!await e.MoveNextAsync()) { return value; } value = await _selector(e.Current).ConfigureAwait(false); } while (await e.MoveNextAsync()) { var x = await _selector(e.Current).ConfigureAwait(false); if (x > value) { value = x; } } } return value; } } #if !NO_DEEP_CANCELLATION internal static ValueTask MaxAwaitWithCancellationAsyncCore(this IAsyncEnumerable source, Func> selector, CancellationToken cancellationToken = default) { if (source == null) throw Error.ArgumentNull(nameof(source)); if (selector == null) throw Error.ArgumentNull(nameof(selector)); return Core(source, selector, cancellationToken); static async ValueTask Core(IAsyncEnumerable _source, Func> _selector, CancellationToken _cancellationToken) { float value; await using (var e = _source.GetConfiguredAsyncEnumerator(_cancellationToken, false)) { if (!await e.MoveNextAsync()) { throw Error.NoElements(); } value = await _selector(e.Current, _cancellationToken).ConfigureAwait(false); // NaN is ordered less than all other values. We need to do explicit checks // to ensure this, but once we've found a value that is not NaN we need no // longer worry about it, so first loop until such a value is found (or not, // as the case may be). while (float.IsNaN(value)) { if (!await e.MoveNextAsync()) { return value; } value = await _selector(e.Current, _cancellationToken).ConfigureAwait(false); } while (await e.MoveNextAsync()) { var x = await _selector(e.Current, _cancellationToken).ConfigureAwait(false); if (x > value) { value = x; } } } return value; } } #endif public static ValueTask MaxAsync(this IAsyncEnumerable source, CancellationToken cancellationToken = default) { if (source == null) throw Error.ArgumentNull(nameof(source)); return Core(source, cancellationToken); static async ValueTask Core(IAsyncEnumerable _source, CancellationToken _cancellationToken) { float? value = null; await using (var e = _source.GetConfiguredAsyncEnumerator(_cancellationToken, false)) { // Start off knowing that we've a non-null value (or exit here, knowing we don't) // so we don't have to keep testing for nullity. do { if (!await e.MoveNextAsync()) { return value; } value = e.Current; } while (!value.HasValue); // Keep hold of the wrapped value, and do comparisons on that, rather than // using the lifted operation each time. var valueVal = value.GetValueOrDefault(); // NaN is ordered less than all other values. We need to do explicit checks // to ensure this, but once we've found a value that is not NaN we need no // longer worry about it, so first loop until such a value is found (or not, // as the case may be). while (float.IsNaN(valueVal)) { if (!await e.MoveNextAsync()) { return value; } var cur = e.Current; if (cur.HasValue) { valueVal = (value = cur).GetValueOrDefault(); } } while (await e.MoveNextAsync()) { var cur = e.Current; var x = cur.GetValueOrDefault(); // Do not replace & with &&. The branch prediction cost outweighs the extra operation // unless nulls either never happen or always happen. if (cur.HasValue & x > valueVal) { valueVal = x; value = cur; } } } return value; } } public static ValueTask MaxAsync(this IAsyncEnumerable source, Func selector, CancellationToken cancellationToken = default) { if (source == null) throw Error.ArgumentNull(nameof(source)); if (selector == null) throw Error.ArgumentNull(nameof(selector)); return Core(source, selector, cancellationToken); static async ValueTask Core(IAsyncEnumerable _source, Func _selector, CancellationToken _cancellationToken) { float? value = null; await using (var e = _source.GetConfiguredAsyncEnumerator(_cancellationToken, false)) { // Start off knowing that we've a non-null value (or exit here, knowing we don't) // so we don't have to keep testing for nullity. do { if (!await e.MoveNextAsync()) { return value; } value = _selector(e.Current); } while (!value.HasValue); // Keep hold of the wrapped value, and do comparisons on that, rather than // using the lifted operation each time. var valueVal = value.GetValueOrDefault(); // NaN is ordered less than all other values. We need to do explicit checks // to ensure this, but once we've found a value that is not NaN we need no // longer worry about it, so first loop until such a value is found (or not, // as the case may be). while (float.IsNaN(valueVal)) { if (!await e.MoveNextAsync()) { return value; } var cur = _selector(e.Current); if (cur.HasValue) { valueVal = (value = cur).GetValueOrDefault(); } } while (await e.MoveNextAsync()) { var cur = _selector(e.Current); var x = cur.GetValueOrDefault(); // Do not replace & with &&. The branch prediction cost outweighs the extra operation // unless nulls either never happen or always happen. if (cur.HasValue & x > valueVal) { valueVal = x; value = cur; } } } return value; } } internal static ValueTask MaxAwaitAsyncCore(this IAsyncEnumerable source, Func> selector, CancellationToken cancellationToken = default) { if (source == null) throw Error.ArgumentNull(nameof(source)); if (selector == null) throw Error.ArgumentNull(nameof(selector)); return Core(source, selector, cancellationToken); static async ValueTask Core(IAsyncEnumerable _source, Func> _selector, CancellationToken _cancellationToken) { float? value = null; await using (var e = _source.GetConfiguredAsyncEnumerator(_cancellationToken, false)) { // Start off knowing that we've a non-null value (or exit here, knowing we don't) // so we don't have to keep testing for nullity. do { if (!await e.MoveNextAsync()) { return value; } value = await _selector(e.Current).ConfigureAwait(false); } while (!value.HasValue); // Keep hold of the wrapped value, and do comparisons on that, rather than // using the lifted operation each time. var valueVal = value.GetValueOrDefault(); // NaN is ordered less than all other values. We need to do explicit checks // to ensure this, but once we've found a value that is not NaN we need no // longer worry about it, so first loop until such a value is found (or not, // as the case may be). while (float.IsNaN(valueVal)) { if (!await e.MoveNextAsync()) { return value; } var cur = await _selector(e.Current).ConfigureAwait(false); if (cur.HasValue) { valueVal = (value = cur).GetValueOrDefault(); } } while (await e.MoveNextAsync()) { var cur = await _selector(e.Current).ConfigureAwait(false); var x = cur.GetValueOrDefault(); // Do not replace & with &&. The branch prediction cost outweighs the extra operation // unless nulls either never happen or always happen. if (cur.HasValue & x > valueVal) { valueVal = x; value = cur; } } } return value; } } #if !NO_DEEP_CANCELLATION internal static ValueTask MaxAwaitWithCancellationAsyncCore(this IAsyncEnumerable source, Func> selector, CancellationToken cancellationToken = default) { if (source == null) throw Error.ArgumentNull(nameof(source)); if (selector == null) throw Error.ArgumentNull(nameof(selector)); return Core(source, selector, cancellationToken); static async ValueTask Core(IAsyncEnumerable _source, Func> _selector, CancellationToken _cancellationToken) { float? value = null; await using (var e = _source.GetConfiguredAsyncEnumerator(_cancellationToken, false)) { // Start off knowing that we've a non-null value (or exit here, knowing we don't) // so we don't have to keep testing for nullity. do { if (!await e.MoveNextAsync()) { return value; } value = await _selector(e.Current, _cancellationToken).ConfigureAwait(false); } while (!value.HasValue); // Keep hold of the wrapped value, and do comparisons on that, rather than // using the lifted operation each time. var valueVal = value.GetValueOrDefault(); // NaN is ordered less than all other values. We need to do explicit checks // to ensure this, but once we've found a value that is not NaN we need no // longer worry about it, so first loop until such a value is found (or not, // as the case may be). while (float.IsNaN(valueVal)) { if (!await e.MoveNextAsync()) { return value; } var cur = await _selector(e.Current, _cancellationToken).ConfigureAwait(false); if (cur.HasValue) { valueVal = (value = cur).GetValueOrDefault(); } } while (await e.MoveNextAsync()) { var cur = await _selector(e.Current, _cancellationToken).ConfigureAwait(false); var x = cur.GetValueOrDefault(); // Do not replace & with &&. The branch prediction cost outweighs the extra operation // unless nulls either never happen or always happen. if (cur.HasValue & x > valueVal) { valueVal = x; value = cur; } } } return value; } } #endif public static ValueTask MaxAsync(this IAsyncEnumerable source, CancellationToken cancellationToken = default) { if (source == null) throw Error.ArgumentNull(nameof(source)); return Core(source, cancellationToken); static async ValueTask Core(IAsyncEnumerable _source, CancellationToken _cancellationToken) { double value; await using (var e = _source.GetConfiguredAsyncEnumerator(_cancellationToken, false)) { if (!await e.MoveNextAsync()) { throw Error.NoElements(); } value = e.Current; // NaN is ordered less than all other values. We need to do explicit checks // to ensure this, but once we've found a value that is not NaN we need no // longer worry about it, so first loop until such a value is found (or not, // as the case may be). while (double.IsNaN(value)) { if (!await e.MoveNextAsync()) { return value; } value = e.Current; } while (await e.MoveNextAsync()) { var x = e.Current; if (x > value) { value = x; } } } return value; } } public static ValueTask MaxAsync(this IAsyncEnumerable source, Func selector, CancellationToken cancellationToken = default) { if (source == null) throw Error.ArgumentNull(nameof(source)); if (selector == null) throw Error.ArgumentNull(nameof(selector)); return Core(source, selector, cancellationToken); static async ValueTask Core(IAsyncEnumerable _source, Func _selector, CancellationToken _cancellationToken) { double value; await using (var e = _source.GetConfiguredAsyncEnumerator(_cancellationToken, false)) { if (!await e.MoveNextAsync()) { throw Error.NoElements(); } value = _selector(e.Current); // NaN is ordered less than all other values. We need to do explicit checks // to ensure this, but once we've found a value that is not NaN we need no // longer worry about it, so first loop until such a value is found (or not, // as the case may be). while (double.IsNaN(value)) { if (!await e.MoveNextAsync()) { return value; } value = _selector(e.Current); } while (await e.MoveNextAsync()) { var x = _selector(e.Current); if (x > value) { value = x; } } } return value; } } internal static ValueTask MaxAwaitAsyncCore(this IAsyncEnumerable source, Func> selector, CancellationToken cancellationToken = default) { if (source == null) throw Error.ArgumentNull(nameof(source)); if (selector == null) throw Error.ArgumentNull(nameof(selector)); return Core(source, selector, cancellationToken); static async ValueTask Core(IAsyncEnumerable _source, Func> _selector, CancellationToken _cancellationToken) { double value; await using (var e = _source.GetConfiguredAsyncEnumerator(_cancellationToken, false)) { if (!await e.MoveNextAsync()) { throw Error.NoElements(); } value = await _selector(e.Current).ConfigureAwait(false); // NaN is ordered less than all other values. We need to do explicit checks // to ensure this, but once we've found a value that is not NaN we need no // longer worry about it, so first loop until such a value is found (or not, // as the case may be). while (double.IsNaN(value)) { if (!await e.MoveNextAsync()) { return value; } value = await _selector(e.Current).ConfigureAwait(false); } while (await e.MoveNextAsync()) { var x = await _selector(e.Current).ConfigureAwait(false); if (x > value) { value = x; } } } return value; } } #if !NO_DEEP_CANCELLATION internal static ValueTask MaxAwaitWithCancellationAsyncCore(this IAsyncEnumerable source, Func> selector, CancellationToken cancellationToken = default) { if (source == null) throw Error.ArgumentNull(nameof(source)); if (selector == null) throw Error.ArgumentNull(nameof(selector)); return Core(source, selector, cancellationToken); static async ValueTask Core(IAsyncEnumerable _source, Func> _selector, CancellationToken _cancellationToken) { double value; await using (var e = _source.GetConfiguredAsyncEnumerator(_cancellationToken, false)) { if (!await e.MoveNextAsync()) { throw Error.NoElements(); } value = await _selector(e.Current, _cancellationToken).ConfigureAwait(false); // NaN is ordered less than all other values. We need to do explicit checks // to ensure this, but once we've found a value that is not NaN we need no // longer worry about it, so first loop until such a value is found (or not, // as the case may be). while (double.IsNaN(value)) { if (!await e.MoveNextAsync()) { return value; } value = await _selector(e.Current, _cancellationToken).ConfigureAwait(false); } while (await e.MoveNextAsync()) { var x = await _selector(e.Current, _cancellationToken).ConfigureAwait(false); if (x > value) { value = x; } } } return value; } } #endif public static ValueTask MaxAsync(this IAsyncEnumerable source, CancellationToken cancellationToken = default) { if (source == null) throw Error.ArgumentNull(nameof(source)); return Core(source, cancellationToken); static async ValueTask Core(IAsyncEnumerable _source, CancellationToken _cancellationToken) { double? value = null; await using (var e = _source.GetConfiguredAsyncEnumerator(_cancellationToken, false)) { // Start off knowing that we've a non-null value (or exit here, knowing we don't) // so we don't have to keep testing for nullity. do { if (!await e.MoveNextAsync()) { return value; } value = e.Current; } while (!value.HasValue); // Keep hold of the wrapped value, and do comparisons on that, rather than // using the lifted operation each time. var valueVal = value.GetValueOrDefault(); // NaN is ordered less than all other values. We need to do explicit checks // to ensure this, but once we've found a value that is not NaN we need no // longer worry about it, so first loop until such a value is found (or not, // as the case may be). while (double.IsNaN(valueVal)) { if (!await e.MoveNextAsync()) { return value; } var cur = e.Current; if (cur.HasValue) { valueVal = (value = cur).GetValueOrDefault(); } } while (await e.MoveNextAsync()) { var cur = e.Current; var x = cur.GetValueOrDefault(); // Do not replace & with &&. The branch prediction cost outweighs the extra operation // unless nulls either never happen or always happen. if (cur.HasValue & x > valueVal) { valueVal = x; value = cur; } } } return value; } } public static ValueTask MaxAsync(this IAsyncEnumerable source, Func selector, CancellationToken cancellationToken = default) { if (source == null) throw Error.ArgumentNull(nameof(source)); if (selector == null) throw Error.ArgumentNull(nameof(selector)); return Core(source, selector, cancellationToken); static async ValueTask Core(IAsyncEnumerable _source, Func _selector, CancellationToken _cancellationToken) { double? value = null; await using (var e = _source.GetConfiguredAsyncEnumerator(_cancellationToken, false)) { // Start off knowing that we've a non-null value (or exit here, knowing we don't) // so we don't have to keep testing for nullity. do { if (!await e.MoveNextAsync()) { return value; } value = _selector(e.Current); } while (!value.HasValue); // Keep hold of the wrapped value, and do comparisons on that, rather than // using the lifted operation each time. var valueVal = value.GetValueOrDefault(); // NaN is ordered less than all other values. We need to do explicit checks // to ensure this, but once we've found a value that is not NaN we need no // longer worry about it, so first loop until such a value is found (or not, // as the case may be). while (double.IsNaN(valueVal)) { if (!await e.MoveNextAsync()) { return value; } var cur = _selector(e.Current); if (cur.HasValue) { valueVal = (value = cur).GetValueOrDefault(); } } while (await e.MoveNextAsync()) { var cur = _selector(e.Current); var x = cur.GetValueOrDefault(); // Do not replace & with &&. The branch prediction cost outweighs the extra operation // unless nulls either never happen or always happen. if (cur.HasValue & x > valueVal) { valueVal = x; value = cur; } } } return value; } } internal static ValueTask MaxAwaitAsyncCore(this IAsyncEnumerable source, Func> selector, CancellationToken cancellationToken = default) { if (source == null) throw Error.ArgumentNull(nameof(source)); if (selector == null) throw Error.ArgumentNull(nameof(selector)); return Core(source, selector, cancellationToken); static async ValueTask Core(IAsyncEnumerable _source, Func> _selector, CancellationToken _cancellationToken) { double? value = null; await using (var e = _source.GetConfiguredAsyncEnumerator(_cancellationToken, false)) { // Start off knowing that we've a non-null value (or exit here, knowing we don't) // so we don't have to keep testing for nullity. do { if (!await e.MoveNextAsync()) { return value; } value = await _selector(e.Current).ConfigureAwait(false); } while (!value.HasValue); // Keep hold of the wrapped value, and do comparisons on that, rather than // using the lifted operation each time. var valueVal = value.GetValueOrDefault(); // NaN is ordered less than all other values. We need to do explicit checks // to ensure this, but once we've found a value that is not NaN we need no // longer worry about it, so first loop until such a value is found (or not, // as the case may be). while (double.IsNaN(valueVal)) { if (!await e.MoveNextAsync()) { return value; } var cur = await _selector(e.Current).ConfigureAwait(false); if (cur.HasValue) { valueVal = (value = cur).GetValueOrDefault(); } } while (await e.MoveNextAsync()) { var cur = await _selector(e.Current).ConfigureAwait(false); var x = cur.GetValueOrDefault(); // Do not replace & with &&. The branch prediction cost outweighs the extra operation // unless nulls either never happen or always happen. if (cur.HasValue & x > valueVal) { valueVal = x; value = cur; } } } return value; } } #if !NO_DEEP_CANCELLATION internal static ValueTask MaxAwaitWithCancellationAsyncCore(this IAsyncEnumerable source, Func> selector, CancellationToken cancellationToken = default) { if (source == null) throw Error.ArgumentNull(nameof(source)); if (selector == null) throw Error.ArgumentNull(nameof(selector)); return Core(source, selector, cancellationToken); static async ValueTask Core(IAsyncEnumerable _source, Func> _selector, CancellationToken _cancellationToken) { double? value = null; await using (var e = _source.GetConfiguredAsyncEnumerator(_cancellationToken, false)) { // Start off knowing that we've a non-null value (or exit here, knowing we don't) // so we don't have to keep testing for nullity. do { if (!await e.MoveNextAsync()) { return value; } value = await _selector(e.Current, _cancellationToken).ConfigureAwait(false); } while (!value.HasValue); // Keep hold of the wrapped value, and do comparisons on that, rather than // using the lifted operation each time. var valueVal = value.GetValueOrDefault(); // NaN is ordered less than all other values. We need to do explicit checks // to ensure this, but once we've found a value that is not NaN we need no // longer worry about it, so first loop until such a value is found (or not, // as the case may be). while (double.IsNaN(valueVal)) { if (!await e.MoveNextAsync()) { return value; } var cur = await _selector(e.Current, _cancellationToken).ConfigureAwait(false); if (cur.HasValue) { valueVal = (value = cur).GetValueOrDefault(); } } while (await e.MoveNextAsync()) { var cur = await _selector(e.Current, _cancellationToken).ConfigureAwait(false); var x = cur.GetValueOrDefault(); // Do not replace & with &&. The branch prediction cost outweighs the extra operation // unless nulls either never happen or always happen. if (cur.HasValue & x > valueVal) { valueVal = x; value = cur; } } } return value; } } #endif public static ValueTask MaxAsync(this IAsyncEnumerable source, CancellationToken cancellationToken = default) { if (source == null) throw Error.ArgumentNull(nameof(source)); return Core(source, cancellationToken); static async ValueTask Core(IAsyncEnumerable _source, CancellationToken _cancellationToken) { decimal value; await using (var e = _source.GetConfiguredAsyncEnumerator(_cancellationToken, false)) { if (!await e.MoveNextAsync()) { throw Error.NoElements(); } value = e.Current; while (await e.MoveNextAsync()) { var x = e.Current; if (x > value) { value = x; } } } return value; } } public static ValueTask MaxAsync(this IAsyncEnumerable source, Func selector, CancellationToken cancellationToken = default) { if (source == null) throw Error.ArgumentNull(nameof(source)); if (selector == null) throw Error.ArgumentNull(nameof(selector)); return Core(source, selector, cancellationToken); static async ValueTask Core(IAsyncEnumerable _source, Func _selector, CancellationToken _cancellationToken) { decimal value; await using (var e = _source.GetConfiguredAsyncEnumerator(_cancellationToken, false)) { if (!await e.MoveNextAsync()) { throw Error.NoElements(); } value = _selector(e.Current); while (await e.MoveNextAsync()) { var x = _selector(e.Current); if (x > value) { value = x; } } } return value; } } internal static ValueTask MaxAwaitAsyncCore(this IAsyncEnumerable source, Func> selector, CancellationToken cancellationToken = default) { if (source == null) throw Error.ArgumentNull(nameof(source)); if (selector == null) throw Error.ArgumentNull(nameof(selector)); return Core(source, selector, cancellationToken); static async ValueTask Core(IAsyncEnumerable _source, Func> _selector, CancellationToken _cancellationToken) { decimal value; await using (var e = _source.GetConfiguredAsyncEnumerator(_cancellationToken, false)) { if (!await e.MoveNextAsync()) { throw Error.NoElements(); } value = await _selector(e.Current).ConfigureAwait(false); while (await e.MoveNextAsync()) { var x = await _selector(e.Current).ConfigureAwait(false); if (x > value) { value = x; } } } return value; } } #if !NO_DEEP_CANCELLATION internal static ValueTask MaxAwaitWithCancellationAsyncCore(this IAsyncEnumerable source, Func> selector, CancellationToken cancellationToken = default) { if (source == null) throw Error.ArgumentNull(nameof(source)); if (selector == null) throw Error.ArgumentNull(nameof(selector)); return Core(source, selector, cancellationToken); static async ValueTask Core(IAsyncEnumerable _source, Func> _selector, CancellationToken _cancellationToken) { decimal value; await using (var e = _source.GetConfiguredAsyncEnumerator(_cancellationToken, false)) { if (!await e.MoveNextAsync()) { throw Error.NoElements(); } value = await _selector(e.Current, _cancellationToken).ConfigureAwait(false); while (await e.MoveNextAsync()) { var x = await _selector(e.Current, _cancellationToken).ConfigureAwait(false); if (x > value) { value = x; } } } return value; } } #endif public static ValueTask MaxAsync(this IAsyncEnumerable source, CancellationToken cancellationToken = default) { if (source == null) throw Error.ArgumentNull(nameof(source)); return Core(source, cancellationToken); static async ValueTask Core(IAsyncEnumerable _source, CancellationToken _cancellationToken) { decimal? value = null; await using (var e = _source.GetConfiguredAsyncEnumerator(_cancellationToken, false)) { // Start off knowing that we've a non-null value (or exit here, knowing we don't) // so we don't have to keep testing for nullity. do { if (!await e.MoveNextAsync()) { return value; } value = e.Current; } while (!value.HasValue); // Keep hold of the wrapped value, and do comparisons on that, rather than // using the lifted operation each time. var valueVal = value.GetValueOrDefault(); while (await e.MoveNextAsync()) { var cur = e.Current; var x = cur.GetValueOrDefault(); if (cur.HasValue && x > valueVal) { valueVal = x; value = cur; } } } return value; } } public static ValueTask MaxAsync(this IAsyncEnumerable source, Func selector, CancellationToken cancellationToken = default) { if (source == null) throw Error.ArgumentNull(nameof(source)); if (selector == null) throw Error.ArgumentNull(nameof(selector)); return Core(source, selector, cancellationToken); static async ValueTask Core(IAsyncEnumerable _source, Func _selector, CancellationToken _cancellationToken) { decimal? value = null; await using (var e = _source.GetConfiguredAsyncEnumerator(_cancellationToken, false)) { // Start off knowing that we've a non-null value (or exit here, knowing we don't) // so we don't have to keep testing for nullity. do { if (!await e.MoveNextAsync()) { return value; } value = _selector(e.Current); } while (!value.HasValue); // Keep hold of the wrapped value, and do comparisons on that, rather than // using the lifted operation each time. var valueVal = value.GetValueOrDefault(); while (await e.MoveNextAsync()) { var cur = _selector(e.Current); var x = cur.GetValueOrDefault(); if (cur.HasValue && x > valueVal) { valueVal = x; value = cur; } } } return value; } } internal static ValueTask MaxAwaitAsyncCore(this IAsyncEnumerable source, Func> selector, CancellationToken cancellationToken = default) { if (source == null) throw Error.ArgumentNull(nameof(source)); if (selector == null) throw Error.ArgumentNull(nameof(selector)); return Core(source, selector, cancellationToken); static async ValueTask Core(IAsyncEnumerable _source, Func> _selector, CancellationToken _cancellationToken) { decimal? value = null; await using (var e = _source.GetConfiguredAsyncEnumerator(_cancellationToken, false)) { // Start off knowing that we've a non-null value (or exit here, knowing we don't) // so we don't have to keep testing for nullity. do { if (!await e.MoveNextAsync()) { return value; } value = await _selector(e.Current).ConfigureAwait(false); } while (!value.HasValue); // Keep hold of the wrapped value, and do comparisons on that, rather than // using the lifted operation each time. var valueVal = value.GetValueOrDefault(); while (await e.MoveNextAsync()) { var cur = await _selector(e.Current).ConfigureAwait(false); var x = cur.GetValueOrDefault(); if (cur.HasValue && x > valueVal) { valueVal = x; value = cur; } } } return value; } } #if !NO_DEEP_CANCELLATION internal static ValueTask MaxAwaitWithCancellationAsyncCore(this IAsyncEnumerable source, Func> selector, CancellationToken cancellationToken = default) { if (source == null) throw Error.ArgumentNull(nameof(source)); if (selector == null) throw Error.ArgumentNull(nameof(selector)); return Core(source, selector, cancellationToken); static async ValueTask Core(IAsyncEnumerable _source, Func> _selector, CancellationToken _cancellationToken) { decimal? value = null; await using (var e = _source.GetConfiguredAsyncEnumerator(_cancellationToken, false)) { // Start off knowing that we've a non-null value (or exit here, knowing we don't) // so we don't have to keep testing for nullity. do { if (!await e.MoveNextAsync()) { return value; } value = await _selector(e.Current, _cancellationToken).ConfigureAwait(false); } while (!value.HasValue); // Keep hold of the wrapped value, and do comparisons on that, rather than // using the lifted operation each time. var valueVal = value.GetValueOrDefault(); while (await e.MoveNextAsync()) { var cur = await _selector(e.Current, _cancellationToken).ConfigureAwait(false); var x = cur.GetValueOrDefault(); if (cur.HasValue && x > valueVal) { valueVal = x; value = cur; } } } return value; } } #endif public static ValueTask MinAsync(this IAsyncEnumerable source, CancellationToken cancellationToken = default) { if (source == null) throw Error.ArgumentNull(nameof(source)); return Core(source, cancellationToken); static async ValueTask Core(IAsyncEnumerable _source, CancellationToken _cancellationToken) { int value; await using (var e = _source.GetConfiguredAsyncEnumerator(_cancellationToken, false)) { if (!await e.MoveNextAsync()) { throw Error.NoElements(); } value = e.Current; while (await e.MoveNextAsync()) { var x = e.Current; if (x < value) { value = x; } } } return value; } } public static ValueTask MinAsync(this IAsyncEnumerable source, Func selector, CancellationToken cancellationToken = default) { if (source == null) throw Error.ArgumentNull(nameof(source)); if (selector == null) throw Error.ArgumentNull(nameof(selector)); return Core(source, selector, cancellationToken); static async ValueTask Core(IAsyncEnumerable _source, Func _selector, CancellationToken _cancellationToken) { int value; await using (var e = _source.GetConfiguredAsyncEnumerator(_cancellationToken, false)) { if (!await e.MoveNextAsync()) { throw Error.NoElements(); } value = _selector(e.Current); while (await e.MoveNextAsync()) { var x = _selector(e.Current); if (x < value) { value = x; } } } return value; } } internal static ValueTask MinAwaitAsyncCore(this IAsyncEnumerable source, Func> selector, CancellationToken cancellationToken = default) { if (source == null) throw Error.ArgumentNull(nameof(source)); if (selector == null) throw Error.ArgumentNull(nameof(selector)); return Core(source, selector, cancellationToken); static async ValueTask Core(IAsyncEnumerable _source, Func> _selector, CancellationToken _cancellationToken) { int value; await using (var e = _source.GetConfiguredAsyncEnumerator(_cancellationToken, false)) { if (!await e.MoveNextAsync()) { throw Error.NoElements(); } value = await _selector(e.Current).ConfigureAwait(false); while (await e.MoveNextAsync()) { var x = await _selector(e.Current).ConfigureAwait(false); if (x < value) { value = x; } } } return value; } } #if !NO_DEEP_CANCELLATION internal static ValueTask MinAwaitWithCancellationAsyncCore(this IAsyncEnumerable source, Func> selector, CancellationToken cancellationToken = default) { if (source == null) throw Error.ArgumentNull(nameof(source)); if (selector == null) throw Error.ArgumentNull(nameof(selector)); return Core(source, selector, cancellationToken); static async ValueTask Core(IAsyncEnumerable _source, Func> _selector, CancellationToken _cancellationToken) { int value; await using (var e = _source.GetConfiguredAsyncEnumerator(_cancellationToken, false)) { if (!await e.MoveNextAsync()) { throw Error.NoElements(); } value = await _selector(e.Current, _cancellationToken).ConfigureAwait(false); while (await e.MoveNextAsync()) { var x = await _selector(e.Current, _cancellationToken).ConfigureAwait(false); if (x < value) { value = x; } } } return value; } } #endif public static ValueTask MinAsync(this IAsyncEnumerable source, CancellationToken cancellationToken = default) { if (source == null) throw Error.ArgumentNull(nameof(source)); return Core(source, cancellationToken); static async ValueTask Core(IAsyncEnumerable _source, CancellationToken _cancellationToken) { int? value = null; await using (var e = _source.GetConfiguredAsyncEnumerator(_cancellationToken, false)) { // Start off knowing that we've a non-null value (or exit here, knowing we don't) // so we don't have to keep testing for nullity. do { if (!await e.MoveNextAsync()) { return value; } value = e.Current; } while (!value.HasValue); // Keep hold of the wrapped value, and do comparisons on that, rather than // using the lifted operation each time. var valueVal = value.GetValueOrDefault(); while (await e.MoveNextAsync()) { var cur = e.Current; var x = cur.GetValueOrDefault(); // Do not replace & with &&. The branch prediction cost outweighs the extra operation // unless nulls either never happen or always happen. if (cur.HasValue & x < valueVal) { valueVal = x; value = cur; } } } return value; } } public static ValueTask MinAsync(this IAsyncEnumerable source, Func selector, CancellationToken cancellationToken = default) { if (source == null) throw Error.ArgumentNull(nameof(source)); if (selector == null) throw Error.ArgumentNull(nameof(selector)); return Core(source, selector, cancellationToken); static async ValueTask Core(IAsyncEnumerable _source, Func _selector, CancellationToken _cancellationToken) { int? value = null; await using (var e = _source.GetConfiguredAsyncEnumerator(_cancellationToken, false)) { // Start off knowing that we've a non-null value (or exit here, knowing we don't) // so we don't have to keep testing for nullity. do { if (!await e.MoveNextAsync()) { return value; } value = _selector(e.Current); } while (!value.HasValue); // Keep hold of the wrapped value, and do comparisons on that, rather than // using the lifted operation each time. var valueVal = value.GetValueOrDefault(); while (await e.MoveNextAsync()) { var cur = _selector(e.Current); var x = cur.GetValueOrDefault(); // Do not replace & with &&. The branch prediction cost outweighs the extra operation // unless nulls either never happen or always happen. if (cur.HasValue & x < valueVal) { valueVal = x; value = cur; } } } return value; } } internal static ValueTask MinAwaitAsyncCore(this IAsyncEnumerable source, Func> selector, CancellationToken cancellationToken = default) { if (source == null) throw Error.ArgumentNull(nameof(source)); if (selector == null) throw Error.ArgumentNull(nameof(selector)); return Core(source, selector, cancellationToken); static async ValueTask Core(IAsyncEnumerable _source, Func> _selector, CancellationToken _cancellationToken) { int? value = null; await using (var e = _source.GetConfiguredAsyncEnumerator(_cancellationToken, false)) { // Start off knowing that we've a non-null value (or exit here, knowing we don't) // so we don't have to keep testing for nullity. do { if (!await e.MoveNextAsync()) { return value; } value = await _selector(e.Current).ConfigureAwait(false); } while (!value.HasValue); // Keep hold of the wrapped value, and do comparisons on that, rather than // using the lifted operation each time. var valueVal = value.GetValueOrDefault(); while (await e.MoveNextAsync()) { var cur = await _selector(e.Current).ConfigureAwait(false); var x = cur.GetValueOrDefault(); // Do not replace & with &&. The branch prediction cost outweighs the extra operation // unless nulls either never happen or always happen. if (cur.HasValue & x < valueVal) { valueVal = x; value = cur; } } } return value; } } #if !NO_DEEP_CANCELLATION internal static ValueTask MinAwaitWithCancellationAsyncCore(this IAsyncEnumerable source, Func> selector, CancellationToken cancellationToken = default) { if (source == null) throw Error.ArgumentNull(nameof(source)); if (selector == null) throw Error.ArgumentNull(nameof(selector)); return Core(source, selector, cancellationToken); static async ValueTask Core(IAsyncEnumerable _source, Func> _selector, CancellationToken _cancellationToken) { int? value = null; await using (var e = _source.GetConfiguredAsyncEnumerator(_cancellationToken, false)) { // Start off knowing that we've a non-null value (or exit here, knowing we don't) // so we don't have to keep testing for nullity. do { if (!await e.MoveNextAsync()) { return value; } value = await _selector(e.Current, _cancellationToken).ConfigureAwait(false); } while (!value.HasValue); // Keep hold of the wrapped value, and do comparisons on that, rather than // using the lifted operation each time. var valueVal = value.GetValueOrDefault(); while (await e.MoveNextAsync()) { var cur = await _selector(e.Current, _cancellationToken).ConfigureAwait(false); var x = cur.GetValueOrDefault(); // Do not replace & with &&. The branch prediction cost outweighs the extra operation // unless nulls either never happen or always happen. if (cur.HasValue & x < valueVal) { valueVal = x; value = cur; } } } return value; } } #endif public static ValueTask MinAsync(this IAsyncEnumerable source, CancellationToken cancellationToken = default) { if (source == null) throw Error.ArgumentNull(nameof(source)); return Core(source, cancellationToken); static async ValueTask Core(IAsyncEnumerable _source, CancellationToken _cancellationToken) { long value; await using (var e = _source.GetConfiguredAsyncEnumerator(_cancellationToken, false)) { if (!await e.MoveNextAsync()) { throw Error.NoElements(); } value = e.Current; while (await e.MoveNextAsync()) { var x = e.Current; if (x < value) { value = x; } } } return value; } } public static ValueTask MinAsync(this IAsyncEnumerable source, Func selector, CancellationToken cancellationToken = default) { if (source == null) throw Error.ArgumentNull(nameof(source)); if (selector == null) throw Error.ArgumentNull(nameof(selector)); return Core(source, selector, cancellationToken); static async ValueTask Core(IAsyncEnumerable _source, Func _selector, CancellationToken _cancellationToken) { long value; await using (var e = _source.GetConfiguredAsyncEnumerator(_cancellationToken, false)) { if (!await e.MoveNextAsync()) { throw Error.NoElements(); } value = _selector(e.Current); while (await e.MoveNextAsync()) { var x = _selector(e.Current); if (x < value) { value = x; } } } return value; } } internal static ValueTask MinAwaitAsyncCore(this IAsyncEnumerable source, Func> selector, CancellationToken cancellationToken = default) { if (source == null) throw Error.ArgumentNull(nameof(source)); if (selector == null) throw Error.ArgumentNull(nameof(selector)); return Core(source, selector, cancellationToken); static async ValueTask Core(IAsyncEnumerable _source, Func> _selector, CancellationToken _cancellationToken) { long value; await using (var e = _source.GetConfiguredAsyncEnumerator(_cancellationToken, false)) { if (!await e.MoveNextAsync()) { throw Error.NoElements(); } value = await _selector(e.Current).ConfigureAwait(false); while (await e.MoveNextAsync()) { var x = await _selector(e.Current).ConfigureAwait(false); if (x < value) { value = x; } } } return value; } } #if !NO_DEEP_CANCELLATION internal static ValueTask MinAwaitWithCancellationAsyncCore(this IAsyncEnumerable source, Func> selector, CancellationToken cancellationToken = default) { if (source == null) throw Error.ArgumentNull(nameof(source)); if (selector == null) throw Error.ArgumentNull(nameof(selector)); return Core(source, selector, cancellationToken); static async ValueTask Core(IAsyncEnumerable _source, Func> _selector, CancellationToken _cancellationToken) { long value; await using (var e = _source.GetConfiguredAsyncEnumerator(_cancellationToken, false)) { if (!await e.MoveNextAsync()) { throw Error.NoElements(); } value = await _selector(e.Current, _cancellationToken).ConfigureAwait(false); while (await e.MoveNextAsync()) { var x = await _selector(e.Current, _cancellationToken).ConfigureAwait(false); if (x < value) { value = x; } } } return value; } } #endif public static ValueTask MinAsync(this IAsyncEnumerable source, CancellationToken cancellationToken = default) { if (source == null) throw Error.ArgumentNull(nameof(source)); return Core(source, cancellationToken); static async ValueTask Core(IAsyncEnumerable _source, CancellationToken _cancellationToken) { long? value = null; await using (var e = _source.GetConfiguredAsyncEnumerator(_cancellationToken, false)) { // Start off knowing that we've a non-null value (or exit here, knowing we don't) // so we don't have to keep testing for nullity. do { if (!await e.MoveNextAsync()) { return value; } value = e.Current; } while (!value.HasValue); // Keep hold of the wrapped value, and do comparisons on that, rather than // using the lifted operation each time. var valueVal = value.GetValueOrDefault(); while (await e.MoveNextAsync()) { var cur = e.Current; var x = cur.GetValueOrDefault(); // Do not replace & with &&. The branch prediction cost outweighs the extra operation // unless nulls either never happen or always happen. if (cur.HasValue & x < valueVal) { valueVal = x; value = cur; } } } return value; } } public static ValueTask MinAsync(this IAsyncEnumerable source, Func selector, CancellationToken cancellationToken = default) { if (source == null) throw Error.ArgumentNull(nameof(source)); if (selector == null) throw Error.ArgumentNull(nameof(selector)); return Core(source, selector, cancellationToken); static async ValueTask Core(IAsyncEnumerable _source, Func _selector, CancellationToken _cancellationToken) { long? value = null; await using (var e = _source.GetConfiguredAsyncEnumerator(_cancellationToken, false)) { // Start off knowing that we've a non-null value (or exit here, knowing we don't) // so we don't have to keep testing for nullity. do { if (!await e.MoveNextAsync()) { return value; } value = _selector(e.Current); } while (!value.HasValue); // Keep hold of the wrapped value, and do comparisons on that, rather than // using the lifted operation each time. var valueVal = value.GetValueOrDefault(); while (await e.MoveNextAsync()) { var cur = _selector(e.Current); var x = cur.GetValueOrDefault(); // Do not replace & with &&. The branch prediction cost outweighs the extra operation // unless nulls either never happen or always happen. if (cur.HasValue & x < valueVal) { valueVal = x; value = cur; } } } return value; } } internal static ValueTask MinAwaitAsyncCore(this IAsyncEnumerable source, Func> selector, CancellationToken cancellationToken = default) { if (source == null) throw Error.ArgumentNull(nameof(source)); if (selector == null) throw Error.ArgumentNull(nameof(selector)); return Core(source, selector, cancellationToken); static async ValueTask Core(IAsyncEnumerable _source, Func> _selector, CancellationToken _cancellationToken) { long? value = null; await using (var e = _source.GetConfiguredAsyncEnumerator(_cancellationToken, false)) { // Start off knowing that we've a non-null value (or exit here, knowing we don't) // so we don't have to keep testing for nullity. do { if (!await e.MoveNextAsync()) { return value; } value = await _selector(e.Current).ConfigureAwait(false); } while (!value.HasValue); // Keep hold of the wrapped value, and do comparisons on that, rather than // using the lifted operation each time. var valueVal = value.GetValueOrDefault(); while (await e.MoveNextAsync()) { var cur = await _selector(e.Current).ConfigureAwait(false); var x = cur.GetValueOrDefault(); // Do not replace & with &&. The branch prediction cost outweighs the extra operation // unless nulls either never happen or always happen. if (cur.HasValue & x < valueVal) { valueVal = x; value = cur; } } } return value; } } #if !NO_DEEP_CANCELLATION internal static ValueTask MinAwaitWithCancellationAsyncCore(this IAsyncEnumerable source, Func> selector, CancellationToken cancellationToken = default) { if (source == null) throw Error.ArgumentNull(nameof(source)); if (selector == null) throw Error.ArgumentNull(nameof(selector)); return Core(source, selector, cancellationToken); static async ValueTask Core(IAsyncEnumerable _source, Func> _selector, CancellationToken _cancellationToken) { long? value = null; await using (var e = _source.GetConfiguredAsyncEnumerator(_cancellationToken, false)) { // Start off knowing that we've a non-null value (or exit here, knowing we don't) // so we don't have to keep testing for nullity. do { if (!await e.MoveNextAsync()) { return value; } value = await _selector(e.Current, _cancellationToken).ConfigureAwait(false); } while (!value.HasValue); // Keep hold of the wrapped value, and do comparisons on that, rather than // using the lifted operation each time. var valueVal = value.GetValueOrDefault(); while (await e.MoveNextAsync()) { var cur = await _selector(e.Current, _cancellationToken).ConfigureAwait(false); var x = cur.GetValueOrDefault(); // Do not replace & with &&. The branch prediction cost outweighs the extra operation // unless nulls either never happen or always happen. if (cur.HasValue & x < valueVal) { valueVal = x; value = cur; } } } return value; } } #endif public static ValueTask MinAsync(this IAsyncEnumerable source, CancellationToken cancellationToken = default) { if (source == null) throw Error.ArgumentNull(nameof(source)); return Core(source, cancellationToken); static async ValueTask Core(IAsyncEnumerable _source, CancellationToken _cancellationToken) { float value; await using (var e = _source.GetConfiguredAsyncEnumerator(_cancellationToken, false)) { if (!await e.MoveNextAsync()) { throw Error.NoElements(); } value = e.Current; while (await e.MoveNextAsync()) { var x = e.Current; if (x < value) { value = x; } else { // Normally NaN < anything is false, as is anything < NaN // However, this leads to some irksome outcomes in Min and Max. // If we use those semantics then Min(NaN, 5.0) is NaN, but // Min(5.0, NaN) is 5.0! To fix this, we impose a total // ordering where NaN is smaller than every value, including // negative infinity. // Not testing for NaN therefore isn't an option, but since we // can't find a smaller value, we can short-circuit. if (float.IsNaN(x)) { return x; } } } } return value; } } public static ValueTask MinAsync(this IAsyncEnumerable source, Func selector, CancellationToken cancellationToken = default) { if (source == null) throw Error.ArgumentNull(nameof(source)); if (selector == null) throw Error.ArgumentNull(nameof(selector)); return Core(source, selector, cancellationToken); static async ValueTask Core(IAsyncEnumerable _source, Func _selector, CancellationToken _cancellationToken) { float value; await using (var e = _source.GetConfiguredAsyncEnumerator(_cancellationToken, false)) { if (!await e.MoveNextAsync()) { throw Error.NoElements(); } value = _selector(e.Current); while (await e.MoveNextAsync()) { var x = _selector(e.Current); if (x < value) { value = x; } else { // Normally NaN < anything is false, as is anything < NaN // However, this leads to some irksome outcomes in Min and Max. // If we use those semantics then Min(NaN, 5.0) is NaN, but // Min(5.0, NaN) is 5.0! To fix this, we impose a total // ordering where NaN is smaller than every value, including // negative infinity. // Not testing for NaN therefore isn't an option, but since we // can't find a smaller value, we can short-circuit. if (float.IsNaN(x)) { return x; } } } } return value; } } internal static ValueTask MinAwaitAsyncCore(this IAsyncEnumerable source, Func> selector, CancellationToken cancellationToken = default) { if (source == null) throw Error.ArgumentNull(nameof(source)); if (selector == null) throw Error.ArgumentNull(nameof(selector)); return Core(source, selector, cancellationToken); static async ValueTask Core(IAsyncEnumerable _source, Func> _selector, CancellationToken _cancellationToken) { float value; await using (var e = _source.GetConfiguredAsyncEnumerator(_cancellationToken, false)) { if (!await e.MoveNextAsync()) { throw Error.NoElements(); } value = await _selector(e.Current).ConfigureAwait(false); while (await e.MoveNextAsync()) { var x = await _selector(e.Current).ConfigureAwait(false); if (x < value) { value = x; } else { // Normally NaN < anything is false, as is anything < NaN // However, this leads to some irksome outcomes in Min and Max. // If we use those semantics then Min(NaN, 5.0) is NaN, but // Min(5.0, NaN) is 5.0! To fix this, we impose a total // ordering where NaN is smaller than every value, including // negative infinity. // Not testing for NaN therefore isn't an option, but since we // can't find a smaller value, we can short-circuit. if (float.IsNaN(x)) { return x; } } } } return value; } } #if !NO_DEEP_CANCELLATION internal static ValueTask MinAwaitWithCancellationAsyncCore(this IAsyncEnumerable source, Func> selector, CancellationToken cancellationToken = default) { if (source == null) throw Error.ArgumentNull(nameof(source)); if (selector == null) throw Error.ArgumentNull(nameof(selector)); return Core(source, selector, cancellationToken); static async ValueTask Core(IAsyncEnumerable _source, Func> _selector, CancellationToken _cancellationToken) { float value; await using (var e = _source.GetConfiguredAsyncEnumerator(_cancellationToken, false)) { if (!await e.MoveNextAsync()) { throw Error.NoElements(); } value = await _selector(e.Current, _cancellationToken).ConfigureAwait(false); while (await e.MoveNextAsync()) { var x = await _selector(e.Current, _cancellationToken).ConfigureAwait(false); if (x < value) { value = x; } else { // Normally NaN < anything is false, as is anything < NaN // However, this leads to some irksome outcomes in Min and Max. // If we use those semantics then Min(NaN, 5.0) is NaN, but // Min(5.0, NaN) is 5.0! To fix this, we impose a total // ordering where NaN is smaller than every value, including // negative infinity. // Not testing for NaN therefore isn't an option, but since we // can't find a smaller value, we can short-circuit. if (float.IsNaN(x)) { return x; } } } } return value; } } #endif public static ValueTask MinAsync(this IAsyncEnumerable source, CancellationToken cancellationToken = default) { if (source == null) throw Error.ArgumentNull(nameof(source)); return Core(source, cancellationToken); static async ValueTask Core(IAsyncEnumerable _source, CancellationToken _cancellationToken) { float? value = null; await using (var e = _source.GetConfiguredAsyncEnumerator(_cancellationToken, false)) { // Start off knowing that we've a non-null value (or exit here, knowing we don't) // so we don't have to keep testing for nullity. do { if (!await e.MoveNextAsync()) { return value; } value = e.Current; } while (!value.HasValue); // Keep hold of the wrapped value, and do comparisons on that, rather than // using the lifted operation each time. var valueVal = value.GetValueOrDefault(); while (await e.MoveNextAsync()) { var cur = e.Current; if (cur.HasValue) { var x = cur.GetValueOrDefault(); if (x < valueVal) { valueVal = x; value = cur; } else { // Normally NaN < anything is false, as is anything < NaN // However, this leads to some irksome outcomes in Min and Max. // If we use those semantics then Min(NaN, 5.0) is NaN, but // Min(5.0, NaN) is 5.0! To fix this, we impose a total // ordering where NaN is smaller than every value, including // negative infinity. // Not testing for NaN therefore isn't an option, but since we // can't find a smaller value, we can short-circuit. if (float.IsNaN(x)) { return cur; } } } } } return value; } } public static ValueTask MinAsync(this IAsyncEnumerable source, Func selector, CancellationToken cancellationToken = default) { if (source == null) throw Error.ArgumentNull(nameof(source)); if (selector == null) throw Error.ArgumentNull(nameof(selector)); return Core(source, selector, cancellationToken); static async ValueTask Core(IAsyncEnumerable _source, Func _selector, CancellationToken _cancellationToken) { float? value = null; await using (var e = _source.GetConfiguredAsyncEnumerator(_cancellationToken, false)) { // Start off knowing that we've a non-null value (or exit here, knowing we don't) // so we don't have to keep testing for nullity. do { if (!await e.MoveNextAsync()) { return value; } value = _selector(e.Current); } while (!value.HasValue); // Keep hold of the wrapped value, and do comparisons on that, rather than // using the lifted operation each time. var valueVal = value.GetValueOrDefault(); while (await e.MoveNextAsync()) { var cur = _selector(e.Current); if (cur.HasValue) { var x = cur.GetValueOrDefault(); if (x < valueVal) { valueVal = x; value = cur; } else { // Normally NaN < anything is false, as is anything < NaN // However, this leads to some irksome outcomes in Min and Max. // If we use those semantics then Min(NaN, 5.0) is NaN, but // Min(5.0, NaN) is 5.0! To fix this, we impose a total // ordering where NaN is smaller than every value, including // negative infinity. // Not testing for NaN therefore isn't an option, but since we // can't find a smaller value, we can short-circuit. if (float.IsNaN(x)) { return cur; } } } } } return value; } } internal static ValueTask MinAwaitAsyncCore(this IAsyncEnumerable source, Func> selector, CancellationToken cancellationToken = default) { if (source == null) throw Error.ArgumentNull(nameof(source)); if (selector == null) throw Error.ArgumentNull(nameof(selector)); return Core(source, selector, cancellationToken); static async ValueTask Core(IAsyncEnumerable _source, Func> _selector, CancellationToken _cancellationToken) { float? value = null; await using (var e = _source.GetConfiguredAsyncEnumerator(_cancellationToken, false)) { // Start off knowing that we've a non-null value (or exit here, knowing we don't) // so we don't have to keep testing for nullity. do { if (!await e.MoveNextAsync()) { return value; } value = await _selector(e.Current).ConfigureAwait(false); } while (!value.HasValue); // Keep hold of the wrapped value, and do comparisons on that, rather than // using the lifted operation each time. var valueVal = value.GetValueOrDefault(); while (await e.MoveNextAsync()) { var cur = await _selector(e.Current).ConfigureAwait(false); if (cur.HasValue) { var x = cur.GetValueOrDefault(); if (x < valueVal) { valueVal = x; value = cur; } else { // Normally NaN < anything is false, as is anything < NaN // However, this leads to some irksome outcomes in Min and Max. // If we use those semantics then Min(NaN, 5.0) is NaN, but // Min(5.0, NaN) is 5.0! To fix this, we impose a total // ordering where NaN is smaller than every value, including // negative infinity. // Not testing for NaN therefore isn't an option, but since we // can't find a smaller value, we can short-circuit. if (float.IsNaN(x)) { return cur; } } } } } return value; } } #if !NO_DEEP_CANCELLATION internal static ValueTask MinAwaitWithCancellationAsyncCore(this IAsyncEnumerable source, Func> selector, CancellationToken cancellationToken = default) { if (source == null) throw Error.ArgumentNull(nameof(source)); if (selector == null) throw Error.ArgumentNull(nameof(selector)); return Core(source, selector, cancellationToken); static async ValueTask Core(IAsyncEnumerable _source, Func> _selector, CancellationToken _cancellationToken) { float? value = null; await using (var e = _source.GetConfiguredAsyncEnumerator(_cancellationToken, false)) { // Start off knowing that we've a non-null value (or exit here, knowing we don't) // so we don't have to keep testing for nullity. do { if (!await e.MoveNextAsync()) { return value; } value = await _selector(e.Current, _cancellationToken).ConfigureAwait(false); } while (!value.HasValue); // Keep hold of the wrapped value, and do comparisons on that, rather than // using the lifted operation each time. var valueVal = value.GetValueOrDefault(); while (await e.MoveNextAsync()) { var cur = await _selector(e.Current, _cancellationToken).ConfigureAwait(false); if (cur.HasValue) { var x = cur.GetValueOrDefault(); if (x < valueVal) { valueVal = x; value = cur; } else { // Normally NaN < anything is false, as is anything < NaN // However, this leads to some irksome outcomes in Min and Max. // If we use those semantics then Min(NaN, 5.0) is NaN, but // Min(5.0, NaN) is 5.0! To fix this, we impose a total // ordering where NaN is smaller than every value, including // negative infinity. // Not testing for NaN therefore isn't an option, but since we // can't find a smaller value, we can short-circuit. if (float.IsNaN(x)) { return cur; } } } } } return value; } } #endif public static ValueTask MinAsync(this IAsyncEnumerable source, CancellationToken cancellationToken = default) { if (source == null) throw Error.ArgumentNull(nameof(source)); return Core(source, cancellationToken); static async ValueTask Core(IAsyncEnumerable _source, CancellationToken _cancellationToken) { double value; await using (var e = _source.GetConfiguredAsyncEnumerator(_cancellationToken, false)) { if (!await e.MoveNextAsync()) { throw Error.NoElements(); } value = e.Current; while (await e.MoveNextAsync()) { var x = e.Current; if (x < value) { value = x; } else { // Normally NaN < anything is false, as is anything < NaN // However, this leads to some irksome outcomes in Min and Max. // If we use those semantics then Min(NaN, 5.0) is NaN, but // Min(5.0, NaN) is 5.0! To fix this, we impose a total // ordering where NaN is smaller than every value, including // negative infinity. // Not testing for NaN therefore isn't an option, but since we // can't find a smaller value, we can short-circuit. if (double.IsNaN(x)) { return x; } } } } return value; } } public static ValueTask MinAsync(this IAsyncEnumerable source, Func selector, CancellationToken cancellationToken = default) { if (source == null) throw Error.ArgumentNull(nameof(source)); if (selector == null) throw Error.ArgumentNull(nameof(selector)); return Core(source, selector, cancellationToken); static async ValueTask Core(IAsyncEnumerable _source, Func _selector, CancellationToken _cancellationToken) { double value; await using (var e = _source.GetConfiguredAsyncEnumerator(_cancellationToken, false)) { if (!await e.MoveNextAsync()) { throw Error.NoElements(); } value = _selector(e.Current); while (await e.MoveNextAsync()) { var x = _selector(e.Current); if (x < value) { value = x; } else { // Normally NaN < anything is false, as is anything < NaN // However, this leads to some irksome outcomes in Min and Max. // If we use those semantics then Min(NaN, 5.0) is NaN, but // Min(5.0, NaN) is 5.0! To fix this, we impose a total // ordering where NaN is smaller than every value, including // negative infinity. // Not testing for NaN therefore isn't an option, but since we // can't find a smaller value, we can short-circuit. if (double.IsNaN(x)) { return x; } } } } return value; } } internal static ValueTask MinAwaitAsyncCore(this IAsyncEnumerable source, Func> selector, CancellationToken cancellationToken = default) { if (source == null) throw Error.ArgumentNull(nameof(source)); if (selector == null) throw Error.ArgumentNull(nameof(selector)); return Core(source, selector, cancellationToken); static async ValueTask Core(IAsyncEnumerable _source, Func> _selector, CancellationToken _cancellationToken) { double value; await using (var e = _source.GetConfiguredAsyncEnumerator(_cancellationToken, false)) { if (!await e.MoveNextAsync()) { throw Error.NoElements(); } value = await _selector(e.Current).ConfigureAwait(false); while (await e.MoveNextAsync()) { var x = await _selector(e.Current).ConfigureAwait(false); if (x < value) { value = x; } else { // Normally NaN < anything is false, as is anything < NaN // However, this leads to some irksome outcomes in Min and Max. // If we use those semantics then Min(NaN, 5.0) is NaN, but // Min(5.0, NaN) is 5.0! To fix this, we impose a total // ordering where NaN is smaller than every value, including // negative infinity. // Not testing for NaN therefore isn't an option, but since we // can't find a smaller value, we can short-circuit. if (double.IsNaN(x)) { return x; } } } } return value; } } #if !NO_DEEP_CANCELLATION internal static ValueTask MinAwaitWithCancellationAsyncCore(this IAsyncEnumerable source, Func> selector, CancellationToken cancellationToken = default) { if (source == null) throw Error.ArgumentNull(nameof(source)); if (selector == null) throw Error.ArgumentNull(nameof(selector)); return Core(source, selector, cancellationToken); static async ValueTask Core(IAsyncEnumerable _source, Func> _selector, CancellationToken _cancellationToken) { double value; await using (var e = _source.GetConfiguredAsyncEnumerator(_cancellationToken, false)) { if (!await e.MoveNextAsync()) { throw Error.NoElements(); } value = await _selector(e.Current, _cancellationToken).ConfigureAwait(false); while (await e.MoveNextAsync()) { var x = await _selector(e.Current, _cancellationToken).ConfigureAwait(false); if (x < value) { value = x; } else { // Normally NaN < anything is false, as is anything < NaN // However, this leads to some irksome outcomes in Min and Max. // If we use those semantics then Min(NaN, 5.0) is NaN, but // Min(5.0, NaN) is 5.0! To fix this, we impose a total // ordering where NaN is smaller than every value, including // negative infinity. // Not testing for NaN therefore isn't an option, but since we // can't find a smaller value, we can short-circuit. if (double.IsNaN(x)) { return x; } } } } return value; } } #endif public static ValueTask MinAsync(this IAsyncEnumerable source, CancellationToken cancellationToken = default) { if (source == null) throw Error.ArgumentNull(nameof(source)); return Core(source, cancellationToken); static async ValueTask Core(IAsyncEnumerable _source, CancellationToken _cancellationToken) { double? value = null; await using (var e = _source.GetConfiguredAsyncEnumerator(_cancellationToken, false)) { // Start off knowing that we've a non-null value (or exit here, knowing we don't) // so we don't have to keep testing for nullity. do { if (!await e.MoveNextAsync()) { return value; } value = e.Current; } while (!value.HasValue); // Keep hold of the wrapped value, and do comparisons on that, rather than // using the lifted operation each time. var valueVal = value.GetValueOrDefault(); while (await e.MoveNextAsync()) { var cur = e.Current; if (cur.HasValue) { var x = cur.GetValueOrDefault(); if (x < valueVal) { valueVal = x; value = cur; } else { // Normally NaN < anything is false, as is anything < NaN // However, this leads to some irksome outcomes in Min and Max. // If we use those semantics then Min(NaN, 5.0) is NaN, but // Min(5.0, NaN) is 5.0! To fix this, we impose a total // ordering where NaN is smaller than every value, including // negative infinity. // Not testing for NaN therefore isn't an option, but since we // can't find a smaller value, we can short-circuit. if (double.IsNaN(x)) { return cur; } } } } } return value; } } public static ValueTask MinAsync(this IAsyncEnumerable source, Func selector, CancellationToken cancellationToken = default) { if (source == null) throw Error.ArgumentNull(nameof(source)); if (selector == null) throw Error.ArgumentNull(nameof(selector)); return Core(source, selector, cancellationToken); static async ValueTask Core(IAsyncEnumerable _source, Func _selector, CancellationToken _cancellationToken) { double? value = null; await using (var e = _source.GetConfiguredAsyncEnumerator(_cancellationToken, false)) { // Start off knowing that we've a non-null value (or exit here, knowing we don't) // so we don't have to keep testing for nullity. do { if (!await e.MoveNextAsync()) { return value; } value = _selector(e.Current); } while (!value.HasValue); // Keep hold of the wrapped value, and do comparisons on that, rather than // using the lifted operation each time. var valueVal = value.GetValueOrDefault(); while (await e.MoveNextAsync()) { var cur = _selector(e.Current); if (cur.HasValue) { var x = cur.GetValueOrDefault(); if (x < valueVal) { valueVal = x; value = cur; } else { // Normally NaN < anything is false, as is anything < NaN // However, this leads to some irksome outcomes in Min and Max. // If we use those semantics then Min(NaN, 5.0) is NaN, but // Min(5.0, NaN) is 5.0! To fix this, we impose a total // ordering where NaN is smaller than every value, including // negative infinity. // Not testing for NaN therefore isn't an option, but since we // can't find a smaller value, we can short-circuit. if (double.IsNaN(x)) { return cur; } } } } } return value; } } internal static ValueTask MinAwaitAsyncCore(this IAsyncEnumerable source, Func> selector, CancellationToken cancellationToken = default) { if (source == null) throw Error.ArgumentNull(nameof(source)); if (selector == null) throw Error.ArgumentNull(nameof(selector)); return Core(source, selector, cancellationToken); static async ValueTask Core(IAsyncEnumerable _source, Func> _selector, CancellationToken _cancellationToken) { double? value = null; await using (var e = _source.GetConfiguredAsyncEnumerator(_cancellationToken, false)) { // Start off knowing that we've a non-null value (or exit here, knowing we don't) // so we don't have to keep testing for nullity. do { if (!await e.MoveNextAsync()) { return value; } value = await _selector(e.Current).ConfigureAwait(false); } while (!value.HasValue); // Keep hold of the wrapped value, and do comparisons on that, rather than // using the lifted operation each time. var valueVal = value.GetValueOrDefault(); while (await e.MoveNextAsync()) { var cur = await _selector(e.Current).ConfigureAwait(false); if (cur.HasValue) { var x = cur.GetValueOrDefault(); if (x < valueVal) { valueVal = x; value = cur; } else { // Normally NaN < anything is false, as is anything < NaN // However, this leads to some irksome outcomes in Min and Max. // If we use those semantics then Min(NaN, 5.0) is NaN, but // Min(5.0, NaN) is 5.0! To fix this, we impose a total // ordering where NaN is smaller than every value, including // negative infinity. // Not testing for NaN therefore isn't an option, but since we // can't find a smaller value, we can short-circuit. if (double.IsNaN(x)) { return cur; } } } } } return value; } } #if !NO_DEEP_CANCELLATION internal static ValueTask MinAwaitWithCancellationAsyncCore(this IAsyncEnumerable source, Func> selector, CancellationToken cancellationToken = default) { if (source == null) throw Error.ArgumentNull(nameof(source)); if (selector == null) throw Error.ArgumentNull(nameof(selector)); return Core(source, selector, cancellationToken); static async ValueTask Core(IAsyncEnumerable _source, Func> _selector, CancellationToken _cancellationToken) { double? value = null; await using (var e = _source.GetConfiguredAsyncEnumerator(_cancellationToken, false)) { // Start off knowing that we've a non-null value (or exit here, knowing we don't) // so we don't have to keep testing for nullity. do { if (!await e.MoveNextAsync()) { return value; } value = await _selector(e.Current, _cancellationToken).ConfigureAwait(false); } while (!value.HasValue); // Keep hold of the wrapped value, and do comparisons on that, rather than // using the lifted operation each time. var valueVal = value.GetValueOrDefault(); while (await e.MoveNextAsync()) { var cur = await _selector(e.Current, _cancellationToken).ConfigureAwait(false); if (cur.HasValue) { var x = cur.GetValueOrDefault(); if (x < valueVal) { valueVal = x; value = cur; } else { // Normally NaN < anything is false, as is anything < NaN // However, this leads to some irksome outcomes in Min and Max. // If we use those semantics then Min(NaN, 5.0) is NaN, but // Min(5.0, NaN) is 5.0! To fix this, we impose a total // ordering where NaN is smaller than every value, including // negative infinity. // Not testing for NaN therefore isn't an option, but since we // can't find a smaller value, we can short-circuit. if (double.IsNaN(x)) { return cur; } } } } } return value; } } #endif public static ValueTask MinAsync(this IAsyncEnumerable source, CancellationToken cancellationToken = default) { if (source == null) throw Error.ArgumentNull(nameof(source)); return Core(source, cancellationToken); static async ValueTask Core(IAsyncEnumerable _source, CancellationToken _cancellationToken) { decimal value; await using (var e = _source.GetConfiguredAsyncEnumerator(_cancellationToken, false)) { if (!await e.MoveNextAsync()) { throw Error.NoElements(); } value = e.Current; while (await e.MoveNextAsync()) { var x = e.Current; if (x < value) { value = x; } } } return value; } } public static ValueTask MinAsync(this IAsyncEnumerable source, Func selector, CancellationToken cancellationToken = default) { if (source == null) throw Error.ArgumentNull(nameof(source)); if (selector == null) throw Error.ArgumentNull(nameof(selector)); return Core(source, selector, cancellationToken); static async ValueTask Core(IAsyncEnumerable _source, Func _selector, CancellationToken _cancellationToken) { decimal value; await using (var e = _source.GetConfiguredAsyncEnumerator(_cancellationToken, false)) { if (!await e.MoveNextAsync()) { throw Error.NoElements(); } value = _selector(e.Current); while (await e.MoveNextAsync()) { var x = _selector(e.Current); if (x < value) { value = x; } } } return value; } } internal static ValueTask MinAwaitAsyncCore(this IAsyncEnumerable source, Func> selector, CancellationToken cancellationToken = default) { if (source == null) throw Error.ArgumentNull(nameof(source)); if (selector == null) throw Error.ArgumentNull(nameof(selector)); return Core(source, selector, cancellationToken); static async ValueTask Core(IAsyncEnumerable _source, Func> _selector, CancellationToken _cancellationToken) { decimal value; await using (var e = _source.GetConfiguredAsyncEnumerator(_cancellationToken, false)) { if (!await e.MoveNextAsync()) { throw Error.NoElements(); } value = await _selector(e.Current).ConfigureAwait(false); while (await e.MoveNextAsync()) { var x = await _selector(e.Current).ConfigureAwait(false); if (x < value) { value = x; } } } return value; } } #if !NO_DEEP_CANCELLATION internal static ValueTask MinAwaitWithCancellationAsyncCore(this IAsyncEnumerable source, Func> selector, CancellationToken cancellationToken = default) { if (source == null) throw Error.ArgumentNull(nameof(source)); if (selector == null) throw Error.ArgumentNull(nameof(selector)); return Core(source, selector, cancellationToken); static async ValueTask Core(IAsyncEnumerable _source, Func> _selector, CancellationToken _cancellationToken) { decimal value; await using (var e = _source.GetConfiguredAsyncEnumerator(_cancellationToken, false)) { if (!await e.MoveNextAsync()) { throw Error.NoElements(); } value = await _selector(e.Current, _cancellationToken).ConfigureAwait(false); while (await e.MoveNextAsync()) { var x = await _selector(e.Current, _cancellationToken).ConfigureAwait(false); if (x < value) { value = x; } } } return value; } } #endif public static ValueTask MinAsync(this IAsyncEnumerable source, CancellationToken cancellationToken = default) { if (source == null) throw Error.ArgumentNull(nameof(source)); return Core(source, cancellationToken); static async ValueTask Core(IAsyncEnumerable _source, CancellationToken _cancellationToken) { decimal? value = null; await using (var e = _source.GetConfiguredAsyncEnumerator(_cancellationToken, false)) { // Start off knowing that we've a non-null value (or exit here, knowing we don't) // so we don't have to keep testing for nullity. do { if (!await e.MoveNextAsync()) { return value; } value = e.Current; } while (!value.HasValue); // Keep hold of the wrapped value, and do comparisons on that, rather than // using the lifted operation each time. var valueVal = value.GetValueOrDefault(); while (await e.MoveNextAsync()) { var cur = e.Current; var x = cur.GetValueOrDefault(); if (cur.HasValue && x < valueVal) { valueVal = x; value = cur; } } } return value; } } public static ValueTask MinAsync(this IAsyncEnumerable source, Func selector, CancellationToken cancellationToken = default) { if (source == null) throw Error.ArgumentNull(nameof(source)); if (selector == null) throw Error.ArgumentNull(nameof(selector)); return Core(source, selector, cancellationToken); static async ValueTask Core(IAsyncEnumerable _source, Func _selector, CancellationToken _cancellationToken) { decimal? value = null; await using (var e = _source.GetConfiguredAsyncEnumerator(_cancellationToken, false)) { // Start off knowing that we've a non-null value (or exit here, knowing we don't) // so we don't have to keep testing for nullity. do { if (!await e.MoveNextAsync()) { return value; } value = _selector(e.Current); } while (!value.HasValue); // Keep hold of the wrapped value, and do comparisons on that, rather than // using the lifted operation each time. var valueVal = value.GetValueOrDefault(); while (await e.MoveNextAsync()) { var cur = _selector(e.Current); var x = cur.GetValueOrDefault(); if (cur.HasValue && x < valueVal) { valueVal = x; value = cur; } } } return value; } } internal static ValueTask MinAwaitAsyncCore(this IAsyncEnumerable source, Func> selector, CancellationToken cancellationToken = default) { if (source == null) throw Error.ArgumentNull(nameof(source)); if (selector == null) throw Error.ArgumentNull(nameof(selector)); return Core(source, selector, cancellationToken); static async ValueTask Core(IAsyncEnumerable _source, Func> _selector, CancellationToken _cancellationToken) { decimal? value = null; await using (var e = _source.GetConfiguredAsyncEnumerator(_cancellationToken, false)) { // Start off knowing that we've a non-null value (or exit here, knowing we don't) // so we don't have to keep testing for nullity. do { if (!await e.MoveNextAsync()) { return value; } value = await _selector(e.Current).ConfigureAwait(false); } while (!value.HasValue); // Keep hold of the wrapped value, and do comparisons on that, rather than // using the lifted operation each time. var valueVal = value.GetValueOrDefault(); while (await e.MoveNextAsync()) { var cur = await _selector(e.Current).ConfigureAwait(false); var x = cur.GetValueOrDefault(); if (cur.HasValue && x < valueVal) { valueVal = x; value = cur; } } } return value; } } #if !NO_DEEP_CANCELLATION internal static ValueTask MinAwaitWithCancellationAsyncCore(this IAsyncEnumerable source, Func> selector, CancellationToken cancellationToken = default) { if (source == null) throw Error.ArgumentNull(nameof(source)); if (selector == null) throw Error.ArgumentNull(nameof(selector)); return Core(source, selector, cancellationToken); static async ValueTask Core(IAsyncEnumerable _source, Func> _selector, CancellationToken _cancellationToken) { decimal? value = null; await using (var e = _source.GetConfiguredAsyncEnumerator(_cancellationToken, false)) { // Start off knowing that we've a non-null value (or exit here, knowing we don't) // so we don't have to keep testing for nullity. do { if (!await e.MoveNextAsync()) { return value; } value = await _selector(e.Current, _cancellationToken).ConfigureAwait(false); } while (!value.HasValue); // Keep hold of the wrapped value, and do comparisons on that, rather than // using the lifted operation each time. var valueVal = value.GetValueOrDefault(); while (await e.MoveNextAsync()) { var cur = await _selector(e.Current, _cancellationToken).ConfigureAwait(false); var x = cur.GetValueOrDefault(); if (cur.HasValue && x < valueVal) { valueVal = x; value = cur; } } } return value; } } #endif } }