<#@ template debug="false" hostspecific="false" language="C#" #> <#@ assembly name="System.Core" #> <#@ import namespace="System.Linq" #> <#@ import namespace="System.Text" #> <#@ import namespace="System.Collections.Generic" #> <#@ output extension=".cs" #> // Licensed to the .NET Foundation under one or more agreements. // The .NET Foundation licenses this file to you under the MIT license. // See the LICENSE file in the project root for more information. using System.Collections.Generic; using System.Threading; using System.Threading.Tasks; namespace System.Linq { public static partial class AsyncEnumerable { <# foreach (var m in new[] { "Max", "Min" }) { var comparison = m == "Max" ? ">" : "<"; var extremum = m == "Max" ? "maximum" : "minimum"; foreach (var t in new[] { "int", "int?", "long", "long?", "float", "float?", "double", "double?", "decimal", "decimal?" }) { var isFloatingPoint = t.StartsWith("float") || t.StartsWith("double"); var isInteger = t.StartsWith("int") || t.StartsWith("long"); var isNullable = t.EndsWith("?"); var shortCircuit = t.StartsWith("decimal"); var typeStr = t; if (isNullable) { typeStr = "Nullable{" + t.Substring(0, 1).ToUpper() + t.Substring(1, t.Length - 2) + "}"; } #> /// /// Returns the <#=extremum#> value in an async-enumerable sequence of values. /// /// A sequence of values to determine the <#=extremum#> value of. /// The optional cancellation token to be used for cancelling the sequence at any time. /// A ValueTask containing a single element with the <#=extremum#> value in the source sequence. /// is null. public static ValueTask<<#=t#>> <#=m#>Async(this IAsyncEnumerable<<#=t#>> source, CancellationToken cancellationToken = default) { if (source == null) throw Error.ArgumentNull(nameof(source)); return Core(source, cancellationToken); static async ValueTask<<#=t#>> Core(IAsyncEnumerable<<#=t#>> source, CancellationToken cancellationToken) { <# if (!isNullable) { #> <#=t#> value; await using (var e = source.GetConfiguredAsyncEnumerator(cancellationToken, false)) { if (!await e.MoveNextAsync()) { throw Error.NoElements(); } value = e.Current; <# if (isFloatingPoint && m == "Max") { #> // NaN is ordered less than all other values. We need to do explicit checks // to ensure this, but once we've found a value that is not NaN we need no // longer worry about it, so first loop until such a value is found (or not, // as the case may be). while (<#=t#>.IsNaN(value)) { if (!await e.MoveNextAsync()) { return value; } value = e.Current; } <# } #> while (await e.MoveNextAsync()) { var x = e.Current; if (x <#=comparison#> value) { value = x; } <# if (isFloatingPoint && m == "Min") { #> else { // Normally NaN < anything is false, as is anything < NaN // However, this leads to some irksome outcomes in Min and Max. // If we use those semantics then Min(NaN, 5.0) is NaN, but // Min(5.0, NaN) is 5.0! To fix this, we impose a total // ordering where NaN is smaller than every value, including // negative infinity. // Not testing for NaN therefore isn't an option, but since we // can't find a smaller value, we can short-circuit. if (<#=t#>.IsNaN(x)) { return x; } } <# } #> } } return value; <# } else { #> <#=t#> value = null; await using (var e = source.GetConfiguredAsyncEnumerator(cancellationToken, false)) { // Start off knowing that we've a non-null value (or exit here, knowing we don't) // so we don't have to keep testing for nullity. do { if (!await e.MoveNextAsync()) { return value; } value = e.Current; } while (!value.HasValue); // Keep hold of the wrapped value, and do comparisons on that, rather than // using the lifted operation each time. var valueVal = value.GetValueOrDefault(); <# if (isInteger && m == "Max") { #> if (valueVal >= 0) { // We can fast-path this case where we know HasValue will // never affect the outcome, without constantly checking // if we're in such a state. Similar fast-paths could // be done for other cases, but as all-positive or mostly- // positive integer values are quite common in real-world // uses, it's only been done for int? and long?. while (await e.MoveNextAsync()) { var cur = e.Current; var x = cur.GetValueOrDefault(); if (x <#=comparison#> valueVal) { valueVal = x; value = cur; } } } else { while (await e.MoveNextAsync()) { var cur = e.Current; var x = cur.GetValueOrDefault(); // Do not replace & with &&. The branch prediction cost outweighs the extra operation // unless nulls either never happen or always happen. if (cur.HasValue & x <#=comparison#> valueVal) { valueVal = x; value = cur; } } } <# } else if (isFloatingPoint && m == "Min") { #> while (await e.MoveNextAsync()) { var cur = e.Current; if (cur.HasValue) { var x = cur.GetValueOrDefault(); if (x <#=comparison#> valueVal) { valueVal = x; value = cur; } else { // Normally NaN < anything is false, as is anything < NaN // However, this leads to some irksome outcomes in Min and Max. // If we use those semantics then Min(NaN, 5.0) is NaN, but // Min(5.0, NaN) is 5.0! To fix this, we impose a total // ordering where NaN is smaller than every value, including // negative infinity. // Not testing for NaN therefore isn't an option, but since we // can't find a smaller value, we can short-circuit. if (<#=t.TrimEnd('?')#>.IsNaN(x)) { return cur; } } } } <# } else { if (isFloatingPoint && m == "Max") { #> // NaN is ordered less than all other values. We need to do explicit checks // to ensure this, but once we've found a value that is not NaN we need no // longer worry about it, so first loop until such a value is found (or not, // as the case may be). while (<#=t.TrimEnd('?')#>.IsNaN(valueVal)) { if (!await e.MoveNextAsync()) { return value; } var cur = e.Current; if (cur.HasValue) { valueVal = (value = cur).GetValueOrDefault(); } } <# } #> while (await e.MoveNextAsync()) { var cur = e.Current; var x = cur.GetValueOrDefault(); <# if (shortCircuit) { #> if (cur.HasValue && x <#=comparison#> valueVal) <# } else { #> // Do not replace & with &&. The branch prediction cost outweighs the extra operation // unless nulls either never happen or always happen. if (cur.HasValue & x <#=comparison#> valueVal) <# } #> { valueVal = x; value = cur; } } <# } #> } return value; <# } #> } } <# foreach (var overload in new[] { new { selector = "Func", invoke = "selector(e.Current)" }, new { selector = "Func>", invoke = "await selector(e.Current).ConfigureAwait(false)" }, new { selector = "Func>", invoke = "await selector(e.Current, cancellationToken).ConfigureAwait(false)" }, }) { var isAsync = overload.invoke.StartsWith("await"); var isDeepCancellation = overload.selector.Contains("CancellationToken"); var suffix = isAsync ? "Await" : ""; var visibility = isAsync ? "internal" : "public"; var core = isAsync ? "Core" : ""; if (isDeepCancellation) { suffix += "WithCancellation"; #> #if !NO_DEEP_CANCELLATION <# } #> <#=visibility#> static ValueTask<<#=t#>> <#=m#><#=suffix#>Async<#=core#>(this IAsyncEnumerable source, <#=overload.selector#> selector, CancellationToken cancellationToken = default) { if (source == null) throw Error.ArgumentNull(nameof(source)); if (selector == null) throw Error.ArgumentNull(nameof(selector)); return Core(source, selector, cancellationToken); static async ValueTask<<#=t#>> Core(IAsyncEnumerable source, <#=overload.selector#> selector, CancellationToken cancellationToken) { <# if (!isNullable) { #> <#=t#> value; await using (var e = source.GetConfiguredAsyncEnumerator(cancellationToken, false)) { if (!await e.MoveNextAsync()) { throw Error.NoElements(); } value = <#=overload.invoke#>; <# if (isFloatingPoint && m == "Max") { #> // NaN is ordered less than all other values. We need to do explicit checks // to ensure this, but once we've found a value that is not NaN we need no // longer worry about it, so first loop until such a value is found (or not, // as the case may be). while (<#=t#>.IsNaN(value)) { if (!await e.MoveNextAsync()) { return value; } value = <#=overload.invoke#>; } <# } #> while (await e.MoveNextAsync()) { var x = <#=overload.invoke#>; if (x <#=comparison#> value) { value = x; } <# if (isFloatingPoint && m == "Min") { #> else { // Normally NaN < anything is false, as is anything < NaN // However, this leads to some irksome outcomes in Min and Max. // If we use those semantics then Min(NaN, 5.0) is NaN, but // Min(5.0, NaN) is 5.0! To fix this, we impose a total // ordering where NaN is smaller than every value, including // negative infinity. // Not testing for NaN therefore isn't an option, but since we // can't find a smaller value, we can short-circuit. if (<#=t#>.IsNaN(x)) { return x; } } <# } #> } } return value; <# } else { #> <#=t#> value = null; await using (var e = source.GetConfiguredAsyncEnumerator(cancellationToken, false)) { // Start off knowing that we've a non-null value (or exit here, knowing we don't) // so we don't have to keep testing for nullity. do { if (!await e.MoveNextAsync()) { return value; } value = <#=overload.invoke#>; } while (!value.HasValue); // Keep hold of the wrapped value, and do comparisons on that, rather than // using the lifted operation each time. var valueVal = value.GetValueOrDefault(); <# if (isInteger && m == "Max") { #> if (valueVal >= 0) { // We can fast-path this case where we know HasValue will // never affect the outcome, without constantly checking // if we're in such a state. Similar fast-paths could // be done for other cases, but as all-positive or mostly- // positive integer values are quite common in real-world // uses, it's only been done for int? and long?. while (await e.MoveNextAsync()) { var cur = <#=overload.invoke#>; var x = cur.GetValueOrDefault(); if (x <#=comparison#> valueVal) { valueVal = x; value = cur; } } } else { while (await e.MoveNextAsync()) { var cur = <#=overload.invoke#>; var x = cur.GetValueOrDefault(); // Do not replace & with &&. The branch prediction cost outweighs the extra operation // unless nulls either never happen or always happen. if (cur.HasValue & x <#=comparison#> valueVal) { valueVal = x; value = cur; } } } <# } else if (isFloatingPoint && m == "Min") { #> while (await e.MoveNextAsync()) { var cur = <#=overload.invoke#>; if (cur.HasValue) { var x = cur.GetValueOrDefault(); if (x <#=comparison#> valueVal) { valueVal = x; value = cur; } else { // Normally NaN < anything is false, as is anything < NaN // However, this leads to some irksome outcomes in Min and Max. // If we use those semantics then Min(NaN, 5.0) is NaN, but // Min(5.0, NaN) is 5.0! To fix this, we impose a total // ordering where NaN is smaller than every value, including // negative infinity. // Not testing for NaN therefore isn't an option, but since we // can't find a smaller value, we can short-circuit. if (<#=t.TrimEnd('?')#>.IsNaN(x)) { return cur; } } } } <# } else { if (isFloatingPoint && m == "Max") { #> // NaN is ordered less than all other values. We need to do explicit checks // to ensure this, but once we've found a value that is not NaN we need no // longer worry about it, so first loop until such a value is found (or not, // as the case may be). while (<#=t.TrimEnd('?')#>.IsNaN(valueVal)) { if (!await e.MoveNextAsync()) { return value; } var cur = <#=overload.invoke#>; if (cur.HasValue) { valueVal = (value = cur).GetValueOrDefault(); } } <# } #> while (await e.MoveNextAsync()) { var cur = <#=overload.invoke#>; var x = cur.GetValueOrDefault(); <# if (shortCircuit) { #> if (cur.HasValue && x <#=comparison#> valueVal) <# } else { #> // Do not replace & with &&. The branch prediction cost outweighs the extra operation // unless nulls either never happen or always happen. if (cur.HasValue & x <#=comparison#> valueVal) <# } #> { valueVal = x; value = cur; } } <# } #> } return value; <# } #> } } <# if (isDeepCancellation) { #> #endif <# } } #> <# } } #> } }