| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245 | // Licensed to the .NET Foundation under one or more agreements.// The .NET Foundation licenses this file to you under the Apache 2.0 License.// See the LICENSE file in the project root for more information. #if !NO_THREADusing System.Collections.Generic;using System.Reactive.Disposables;using System.Threading;namespace System.Reactive.Concurrency{    //    // WARNING: This code is kept *identically* in two places. One copy is kept in System.Reactive.Core for non-PLIB platforms.    //          Another copy is kept in System.Reactive.PlatformServices to enlighten the default lowest common denominator    //          behavior of Rx for PLIB when used on a more capable platform.    //    internal class /*Default*/ConcurrencyAbstractionLayerImpl : IConcurrencyAbstractionLayer    {        public IDisposable StartTimer(Action<object> action, object state, TimeSpan dueTime) => new Timer(action, state, Normalize(dueTime));        public IDisposable StartPeriodicTimer(Action action, TimeSpan period)        {            if (period < TimeSpan.Zero)                throw new ArgumentOutOfRangeException(nameof(period));            //            // The contract for periodic scheduling in Rx is that specifying TimeSpan.Zero as the period causes the scheduler to             // call back periodically as fast as possible, sequentially.            //            if (period == TimeSpan.Zero)            {                return new FastPeriodicTimer(action);            }            else            {                return new PeriodicTimer(action, period);            }        }        public IDisposable QueueUserWorkItem(Action<object> action, object state)        {            System.Threading.ThreadPool.QueueUserWorkItem(_ => action(_), state);            return Disposable.Empty;        }        public void Sleep(TimeSpan timeout) => System.Threading.Thread.Sleep(Normalize(timeout));        public IStopwatch StartStopwatch() => new StopwatchImpl();        public bool SupportsLongRunning => true;        public void StartThread(Action<object> action, object state)        {            new Thread(() =>            {                action(state);            }) { IsBackground = true }.Start();        }        private static TimeSpan Normalize(TimeSpan dueTime) => dueTime < TimeSpan.Zero ? TimeSpan.Zero : dueTime;        //        // Some historical context. In the early days of Rx, we discovered an issue with        // the rooting of timers, causing them to get GC'ed even when the IDisposable of        // a scheduled activity was kept alive. The original code simply created a timer        // as follows:        //        //   var t = default(Timer);        //   t = new Timer(_ =>        //   {        //       t = null;        //       Debug.WriteLine("Hello!");        //   }, null, 5000, Timeout.Infinite);        //        // IIRC the reference to "t" captured by the closure wasn't sufficient on .NET CF        // to keep the timer rooted, causing problems on Windows Phone 7. As a result, we        // added rooting code using a dictionary (SD 7280), which we carried forward all        // the way to Rx v2.0 RTM.        //        // However, the desktop CLR's implementation of System.Threading.Timer exhibits        // other characteristics where a timer can root itself when the timer is still        // reachable through the state or callback parameters. To illustrate this, run        // the following piece of code:        //        //   static void Main()        //   {        //       Bar();        //           //       while (true)        //       {        //           GC.Collect();        //           GC.WaitForPendingFinalizers();        //           Thread.Sleep(100);        //       }        //   }        //           //   static void Bar()        //   {        //       var t = default(Timer);        //       t = new Timer(_ =>        //       {        //           t = null; // Comment out this line to see the timer stop        //           Console.WriteLine("Hello!");        //       }, null, 5000, Timeout.Infinite);        //   }        //        // When the closure over "t" is removed, the timer will stop automatically upon        // garbage collection. However, when retaining the reference, this problem does        // not exist. The code below exploits this behavior, avoiding unnecessary costs        // to root timers in a thread-safe manner.        //        // Below is a fragment of SOS output, proving the proper rooting:        //        //   !gcroot 02492440        //    HandleTable:        //        005a13fc (pinned handle)        //        -> 03491010 System.Object[]        //        -> 024924dc System.Threading.TimerQueue        //        -> 02492450 System.Threading.TimerQueueTimer        //        -> 02492420 System.Threading.TimerCallback        //        -> 02492414 TimerRootingExperiment.Program+<>c__DisplayClass1        //        -> 02492440 System.Threading.Timer        //        // With the USE_TIMER_SELF_ROOT symbol, we shake off this additional rooting code        // for newer platforms where this no longer needed. We checked this on .NET Core        // as well as .NET 4.0, and only #define this symbol for those platforms.        //        // NB: 4/13/2017 - All target platforms for the 4.x release have the self-rooting        //                 behavior described here, so we removed the USE_TIMER_SELF_ROOT        //                 symbol.        //        private sealed class Timer : IDisposable        {            private Action<object> _action;            private volatile System.Threading.Timer _timer;            public Timer(Action<object> action, object state, TimeSpan dueTime)            {                _action = action;                // Don't want the spin wait in Tick to get stuck if this thread gets aborted.                try { }                finally                {                    //                    // Rooting of the timer happens through the this.Tick delegate's target object,                    // which is the current instance and has a field to store the Timer instance.                    //                    _timer = new System.Threading.Timer(this.Tick, state, dueTime, TimeSpan.FromMilliseconds(System.Threading.Timeout.Infinite));                }            }            private void Tick(object state)            {                try                {                    _action(state);                }                finally                {                    SpinWait.SpinUntil(IsTimerAssigned);                    Dispose();                }            }            private bool IsTimerAssigned() => _timer != null;            public void Dispose()            {                var timer = _timer;                if (timer != TimerStubs.Never)                {                    _action = Stubs<object>.Ignore;                    _timer = TimerStubs.Never;                    timer.Dispose();                }            }        }        private sealed class PeriodicTimer : IDisposable        {            private Action _action;            private volatile System.Threading.Timer _timer;            public PeriodicTimer(Action action, TimeSpan period)            {                _action = action;                //                // Rooting of the timer happens through the this.Tick delegate's target object,                // which is the current instance and has a field to store the Timer instance.                //                _timer = new System.Threading.Timer(this.Tick, null, period, period);            }            private void Tick(object state) => _action();            public void Dispose()            {                var timer = _timer;                if (timer != null)                {                    _action = Stubs.Nop;                    _timer = null;                    timer.Dispose();                }            }        }        private sealed class FastPeriodicTimer : IDisposable        {            private readonly Action _action;            private volatile bool disposed;            public FastPeriodicTimer(Action action)            {                _action = action;                                new System.Threading.Thread(Loop)                {                    Name = "Rx-FastPeriodicTimer",                    IsBackground = true                }                .Start();            }                        private void Loop()            {                while (!disposed)                {                    _action();                }            }            public void Dispose()            {                disposed = true;            }        }    }}#endif
 |