123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297 |
- // Licensed to the .NET Foundation under one or more agreements.
- // The .NET Foundation licenses this file to you under the Apache 2.0 License.
- // See the LICENSE file in the project root for more information.
- using System.Reactive.Concurrency;
- using System.Reactive.Disposables;
- using System.Threading;
- namespace System.Reactive.Linq.ObservableImpl
- {
- internal static class Timer
- {
- internal abstract class Single : Producer<long, Single._>
- {
- private readonly IScheduler _scheduler;
- public Single(IScheduler scheduler)
- {
- _scheduler = scheduler;
- }
- internal sealed class Relative : Single
- {
- private readonly TimeSpan _dueTime;
- public Relative(TimeSpan dueTime, IScheduler scheduler)
- : base(scheduler)
- {
- _dueTime = dueTime;
- }
- protected override _ CreateSink(IObserver<long> observer, IDisposable cancel) => new _(observer, cancel);
- protected override IDisposable Run(_ sink) => sink.Run(this, _dueTime);
- }
- internal sealed class Absolute : Single
- {
- private readonly DateTimeOffset _dueTime;
- public Absolute(DateTimeOffset dueTime, IScheduler scheduler)
- : base(scheduler)
- {
- _dueTime = dueTime;
- }
- protected override _ CreateSink(IObserver<long> observer, IDisposable cancel) => new _(observer, cancel);
- protected override IDisposable Run(_ sink) => sink.Run(this, _dueTime);
- }
- internal sealed class _ : Sink<long>
- {
- public _(IObserver<long> observer, IDisposable cancel)
- : base(observer, cancel)
- {
- }
- public IDisposable Run(Single parent, DateTimeOffset dueTime)
- {
- return parent._scheduler.Schedule(dueTime, Invoke);
- }
- public IDisposable Run(Single parent, TimeSpan dueTime)
- {
- return parent._scheduler.Schedule(dueTime, Invoke);
- }
- private void Invoke()
- {
- base._observer.OnNext(0);
- base._observer.OnCompleted();
- base.Dispose();
- }
- }
- }
- internal abstract class Periodic : Producer<long, Periodic._>
- {
- private readonly TimeSpan _period;
- private readonly IScheduler _scheduler;
- public Periodic(TimeSpan period, IScheduler scheduler)
- {
- _period = period;
- _scheduler = scheduler;
- }
- internal sealed class Relative : Periodic
- {
- private readonly TimeSpan _dueTime;
- public Relative(TimeSpan dueTime, TimeSpan period, IScheduler scheduler)
- : base(period, scheduler)
- {
- _dueTime = dueTime;
- }
- protected override _ CreateSink(IObserver<long> observer, IDisposable cancel) => new _(_period, observer, cancel);
- protected override IDisposable Run(_ sink) => sink.Run(this, _dueTime);
- }
- internal sealed class Absolute : Periodic
- {
- private readonly DateTimeOffset _dueTime;
- public Absolute(DateTimeOffset dueTime, TimeSpan period, IScheduler scheduler)
- : base(period, scheduler)
- {
- _dueTime = dueTime;
- }
- protected override _ CreateSink(IObserver<long> observer, IDisposable cancel) => new _(_period, observer, cancel);
- protected override IDisposable Run(_ sink) => sink.Run(this, _dueTime);
- }
- internal sealed class _ : Sink<long>
- {
- private readonly TimeSpan _period;
- public _(TimeSpan period, IObserver<long> observer, IDisposable cancel)
- : base(observer, cancel)
- {
- _period = period;
- }
- public IDisposable Run(Periodic parent, DateTimeOffset dueTime)
- {
- return parent._scheduler.Schedule(default(object), dueTime, InvokeStart);
- }
- public IDisposable Run(Periodic parent, TimeSpan dueTime)
- {
- //
- // Optimize for the case of Observable.Interval.
- //
- if (dueTime == _period)
- {
- return parent._scheduler.SchedulePeriodic(0L, _period, (Func<long, long>)Tick);
- }
- return parent._scheduler.Schedule(default(object), dueTime, InvokeStart);
- }
- //
- // BREAKING CHANGE v2 > v1.x - No more correction for time drift based on absolute time. This
- // didn't work for large period values anyway; the fractional
- // error exceeded corrections. Also complicated dealing with system
- // clock change conditions and caused numerous bugs.
- //
- // - For more precise scheduling, use a custom scheduler that measures TimeSpan values in a
- // better way, e.g. spinning to make up for the last part of the period. Whether or not the
- // values of the TimeSpan period match NT time or wall clock time is up to the scheduler.
- //
- // - For more accurate scheduling wrt the system clock, use Generate with DateTimeOffset time
- // selectors. When the system clock changes, intervals will not be the same as diffs between
- // consecutive absolute time values. The precision will be low (1s range by default).
- //
- private long Tick(long count)
- {
- base._observer.OnNext(count);
- return unchecked(count + 1);
- }
- private int _pendingTickCount;
- private IDisposable _periodic;
- private IDisposable InvokeStart(IScheduler self, object state)
- {
- //
- // Notice the first call to OnNext will introduce skew if it takes significantly long when
- // using the following naive implementation:
- //
- // Code: base._observer.OnNext(0L);
- // return self.SchedulePeriodicEmulated(1L, _period, (Func<long, long>)Tick);
- //
- // What we're saying here is that Observable.Timer(dueTime, period) is pretty much the same
- // as writing Observable.Timer(dueTime).Concat(Observable.Interval(period)).
- //
- // Expected: dueTime
- // |
- // 0--period--1--period--2--period--3--period--4--...
- // |
- // +-OnNext(0L)-|
- //
- // Actual: dueTime
- // |
- // 0------------#--period--1--period--2--period--3--period--4--...
- // |
- // +-OnNext(0L)-|
- //
- // Different solutions for this behavior have different problems:
- //
- // 1. Scheduling the periodic job first and using an AsyncLock to serialize the OnNext calls
- // has the drawback that InvokeStart may never return. This happens when every callback
- // doesn't meet the period's deadline, hence the periodic job keeps queueing stuff up. In
- // this case, InvokeStart stays the owner of the AsyncLock and the call to Wait will never
- // return, thus not allowing any interleaving of work on this scheduler's logical thread.
- //
- // 2. Scheduling the periodic job first and using a (blocking) synchronization primitive to
- // signal completion of the OnNext(0L) call to the Tick call requires quite a bit of state
- // and careful handling of the case when OnNext(0L) throws. What's worse is the blocking
- // behavior inside Tick.
- //
- // In order to avoid blocking behavior, we need a scheme much like SchedulePeriodic emulation
- // where work to dispatch OnNext(n + 1) is delegated to a catch up loop in case OnNext(n) was
- // still running. Because SchedulePeriodic emulation exhibits such behavior in all cases, we
- // only need to deal with the overlap of OnNext(0L) with future periodic OnNext(n) dispatch
- // jobs. In the worst case where every callback takes longer than the deadline implied by the
- // period, the periodic job will just queue up work that's dispatched by the tail-recursive
- // catch up loop. In the best case, all work will be dispatched on the periodic scheduler.
- //
- //
- // We start with one tick pending because we're about to start doing OnNext(0L).
- //
- _pendingTickCount = 1;
- var d = new SingleAssignmentDisposable();
- _periodic = d;
- d.Disposable = self.SchedulePeriodic(1L, _period, (Func<long, long>)Tock);
- try
- {
- base._observer.OnNext(0L);
- }
- catch (Exception e)
- {
- d.Dispose();
- e.Throw();
- }
- //
- // If the periodic scheduling job already ran before we finished dispatching the OnNext(0L)
- // call, we'll find pendingTickCount to be > 1. In this case, we need to catch up by dispatching
- // subsequent calls to OnNext as fast as possible, but without running a loop in order to ensure
- // fair play with the scheduler. So, we run a tail-recursive loop in CatchUp instead.
- //
- if (Interlocked.Decrement(ref _pendingTickCount) > 0)
- {
- var c = new SingleAssignmentDisposable();
- c.Disposable = self.Schedule(1L, CatchUp);
- return StableCompositeDisposable.Create(d, c);
- }
- return d;
- }
- private long Tock(long count)
- {
- //
- // Notice the handler for (emulated) periodic scheduling is non-reentrant.
- //
- // When there's no overlap with the OnNext(0L) call, the following code will cycle through
- // pendingTickCount 0 -> 1 -> 0 for the remainder of the timer's execution.
- //
- // If there's overlap with the OnNext(0L) call, pendingTickCount will increase to record
- // the number of catch up OnNext calls required, which will be dispatched by the recursive
- // scheduling loop in CatchUp (which quits when it reaches 0 pending ticks).
- //
- if (Interlocked.Increment(ref _pendingTickCount) == 1)
- {
- base._observer.OnNext(count);
- Interlocked.Decrement(ref _pendingTickCount);
- }
- return unchecked(count + 1);
- }
- private void CatchUp(long count, Action<long> recurse)
- {
- try
- {
- base._observer.OnNext(count);
- }
- catch (Exception e)
- {
- _periodic.Dispose();
- e.Throw();
- }
- //
- // We can simply bail out if we decreased the tick count to 0. In that case, the Tock
- // method will take over when it sees the 0 -> 1 transition.
- //
- if (Interlocked.Decrement(ref _pendingTickCount) > 0)
- {
- recurse(unchecked(count + 1));
- }
- }
- }
- }
- }
- }
|