123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566 |
- <#@ template debug="false" hostspecific="false" language="C#" #>
- <#@ assembly name="System.Core" #>
- <#@ import namespace="System.Linq" #>
- <#@ import namespace="System.Text" #>
- <#@ import namespace="System.Collections.Generic" #>
- <#@ output extension=".cs" #>
- // Licensed to the .NET Foundation under one or more agreements.
- // The .NET Foundation licenses this file to you under the MIT license.
- // See the LICENSE file in the project root for more information.
- using System.Collections.Generic;
- using System.Threading;
- using System.Threading.Tasks;
- namespace System.Linq
- {
- public static partial class AsyncEnumerable
- {
- <#
- foreach (var m in new[] { "Max", "Min" })
- {
- var comparison = m == "Max" ? ">" : "<";
- foreach (var t in new[] { "int", "int?", "long", "long?", "float", "float?", "double", "double?", "decimal", "decimal?" })
- {
- var isFloatingPoint = t.StartsWith("float") || t.StartsWith("double");
- var isInteger = t.StartsWith("int") || t.StartsWith("long");
- var isNullable = t.EndsWith("?");
- var shortCircuit = t.StartsWith("decimal");
- #>
- public static ValueTask<<#=t#>> <#=m#>Async(this IAsyncEnumerable<<#=t#>> source, CancellationToken cancellationToken = default)
- {
- if (source == null)
- throw Error.ArgumentNull(nameof(source));
- return Core(source, cancellationToken);
- static async ValueTask<<#=t#>> Core(IAsyncEnumerable<<#=t#>> _source, CancellationToken _cancellationToken)
- {
- <#
- if (!isNullable)
- {
- #>
- <#=t#> value;
- await using (var e = _source.GetConfiguredAsyncEnumerator(_cancellationToken, false))
- {
- if (!await e.MoveNextAsync())
- {
- throw Error.NoElements();
- }
- value = e.Current;
- <#
- if (isFloatingPoint && m == "Max")
- {
- #>
- // NaN is ordered less than all other values. We need to do explicit checks
- // to ensure this, but once we've found a value that is not NaN we need no
- // longer worry about it, so first loop until such a value is found (or not,
- // as the case may be).
- while (<#=t#>.IsNaN(value))
- {
- if (!await e.MoveNextAsync())
- {
- return value;
- }
- value = e.Current;
- }
- <#
- }
- #>
- while (await e.MoveNextAsync())
- {
- var x = e.Current;
- if (x <#=comparison#> value)
- {
- value = x;
- }
- <#
- if (isFloatingPoint && m == "Min")
- {
- #>
- else
- {
- // Normally NaN < anything is false, as is anything < NaN
- // However, this leads to some irksome outcomes in Min and Max.
- // If we use those semantics then Min(NaN, 5.0) is NaN, but
- // Min(5.0, NaN) is 5.0! To fix this, we impose a total
- // ordering where NaN is smaller than every value, including
- // negative infinity.
- // Not testing for NaN therefore isn't an option, but since we
- // can't find a smaller value, we can short-circuit.
- if (<#=t#>.IsNaN(x))
- {
- return x;
- }
- }
- <#
- }
- #>
- }
- }
- return value;
- <#
- }
- else
- {
- #>
- <#=t#> value = null;
- await using (var e = _source.GetConfiguredAsyncEnumerator(_cancellationToken, false))
- {
- // Start off knowing that we've a non-null value (or exit here, knowing we don't)
- // so we don't have to keep testing for nullity.
- do
- {
- if (!await e.MoveNextAsync())
- {
- return value;
- }
- value = e.Current;
- }
- while (!value.HasValue);
- // Keep hold of the wrapped value, and do comparisons on that, rather than
- // using the lifted operation each time.
- var valueVal = value.GetValueOrDefault();
- <#
- if (isInteger && m == "Max")
- {
- #>
- if (valueVal >= 0)
- {
- // We can fast-path this case where we know HasValue will
- // never affect the outcome, without constantly checking
- // if we're in such a state. Similar fast-paths could
- // be done for other cases, but as all-positive or mostly-
- // positive integer values are quite common in real-world
- // uses, it's only been done for int? and long?.
- while (await e.MoveNextAsync())
- {
- var cur = e.Current;
- var x = cur.GetValueOrDefault();
- if (x <#=comparison#> valueVal)
- {
- valueVal = x;
- value = cur;
- }
- }
- }
- else
- {
- while (await e.MoveNextAsync())
- {
- var cur = e.Current;
- var x = cur.GetValueOrDefault();
- // Do not replace & with &&. The branch prediction cost outweighs the extra operation
- // unless nulls either never happen or always happen.
- if (cur.HasValue & x <#=comparison#> valueVal)
- {
- valueVal = x;
- value = cur;
- }
- }
- }
- <#
- }
- else if (isFloatingPoint && m == "Min")
- {
- #>
- while (await e.MoveNextAsync())
- {
- var cur = e.Current;
- if (cur.HasValue)
- {
- var x = cur.GetValueOrDefault();
- if (x <#=comparison#> valueVal)
- {
- valueVal = x;
- value = cur;
- }
- else
- {
- // Normally NaN < anything is false, as is anything < NaN
- // However, this leads to some irksome outcomes in Min and Max.
- // If we use those semantics then Min(NaN, 5.0) is NaN, but
- // Min(5.0, NaN) is 5.0! To fix this, we impose a total
- // ordering where NaN is smaller than every value, including
- // negative infinity.
- // Not testing for NaN therefore isn't an option, but since we
- // can't find a smaller value, we can short-circuit.
- if (<#=t.TrimEnd('?')#>.IsNaN(x))
- {
- return cur;
- }
- }
- }
- }
- <#
- }
- else
- {
- if (isFloatingPoint && m == "Max")
- {
- #>
- // NaN is ordered less than all other values. We need to do explicit checks
- // to ensure this, but once we've found a value that is not NaN we need no
- // longer worry about it, so first loop until such a value is found (or not,
- // as the case may be).
- while (<#=t.TrimEnd('?')#>.IsNaN(valueVal))
- {
- if (!await e.MoveNextAsync())
- {
- return value;
- }
- var cur = e.Current;
- if (cur.HasValue)
- {
- valueVal = (value = cur).GetValueOrDefault();
- }
- }
- <#
- }
- #>
- while (await e.MoveNextAsync())
- {
- var cur = e.Current;
- var x = cur.GetValueOrDefault();
- <#
- if (shortCircuit)
- {
- #>
- if (cur.HasValue && x <#=comparison#> valueVal)
- <#
- }
- else
- {
- #>
- // Do not replace & with &&. The branch prediction cost outweighs the extra operation
- // unless nulls either never happen or always happen.
- if (cur.HasValue & x <#=comparison#> valueVal)
- <#
- }
- #>
- {
- valueVal = x;
- value = cur;
- }
- }
- <#
- }
- #>
- }
- return value;
- <#
- }
- #>
- }
- }
- <#
- foreach (var overload in new[] {
- new { selector = "Func<TSource, " + t + ">", invoke = "_selector(e.Current)" },
- new { selector = "Func<TSource, ValueTask<" + t + ">>", invoke = "await _selector(e.Current).ConfigureAwait(false)" },
- new { selector = "Func<TSource, CancellationToken, ValueTask<" + t + ">>", invoke = "await _selector(e.Current, _cancellationToken).ConfigureAwait(false)" },
- })
- {
- var isAsync = overload.invoke.StartsWith("await");
- var isDeepCancellation = overload.selector.Contains("CancellationToken");
- var suffix = isAsync ? "Await" : "";
- var visibility = isAsync ? "internal" : "public";
- var core = isAsync ? "Core" : "";
- if (isDeepCancellation)
- {
- suffix += "WithCancellation";
- #>
- #if !NO_DEEP_CANCELLATION
- <#
- }
- #>
- <#=visibility#> static ValueTask<<#=t#>> <#=m#><#=suffix#>Async<#=core#><TSource>(this IAsyncEnumerable<TSource> source, <#=overload.selector#> selector, CancellationToken cancellationToken = default)
- {
- if (source == null)
- throw Error.ArgumentNull(nameof(source));
- if (selector == null)
- throw Error.ArgumentNull(nameof(selector));
- return Core(source, selector, cancellationToken);
- static async ValueTask<<#=t#>> Core(IAsyncEnumerable<TSource> _source, <#=overload.selector#> _selector, CancellationToken _cancellationToken)
- {
- <#
- if (!isNullable)
- {
- #>
- <#=t#> value;
- await using (var e = _source.GetConfiguredAsyncEnumerator(_cancellationToken, false))
- {
- if (!await e.MoveNextAsync())
- {
- throw Error.NoElements();
- }
- value = <#=overload.invoke#>;
- <#
- if (isFloatingPoint && m == "Max")
- {
- #>
- // NaN is ordered less than all other values. We need to do explicit checks
- // to ensure this, but once we've found a value that is not NaN we need no
- // longer worry about it, so first loop until such a value is found (or not,
- // as the case may be).
- while (<#=t#>.IsNaN(value))
- {
- if (!await e.MoveNextAsync())
- {
- return value;
- }
- value = <#=overload.invoke#>;
- }
- <#
- }
- #>
- while (await e.MoveNextAsync())
- {
- var x = <#=overload.invoke#>;
- if (x <#=comparison#> value)
- {
- value = x;
- }
- <#
- if (isFloatingPoint && m == "Min")
- {
- #>
- else
- {
- // Normally NaN < anything is false, as is anything < NaN
- // However, this leads to some irksome outcomes in Min and Max.
- // If we use those semantics then Min(NaN, 5.0) is NaN, but
- // Min(5.0, NaN) is 5.0! To fix this, we impose a total
- // ordering where NaN is smaller than every value, including
- // negative infinity.
- // Not testing for NaN therefore isn't an option, but since we
- // can't find a smaller value, we can short-circuit.
- if (<#=t#>.IsNaN(x))
- {
- return x;
- }
- }
- <#
- }
- #>
- }
- }
- return value;
- <#
- }
- else
- {
- #>
- <#=t#> value = null;
- await using (var e = _source.GetConfiguredAsyncEnumerator(_cancellationToken, false))
- {
- // Start off knowing that we've a non-null value (or exit here, knowing we don't)
- // so we don't have to keep testing for nullity.
- do
- {
- if (!await e.MoveNextAsync())
- {
- return value;
- }
- value = <#=overload.invoke#>;
- }
- while (!value.HasValue);
- // Keep hold of the wrapped value, and do comparisons on that, rather than
- // using the lifted operation each time.
- var valueVal = value.GetValueOrDefault();
- <#
- if (isInteger && m == "Max")
- {
- #>
- if (valueVal >= 0)
- {
- // We can fast-path this case where we know HasValue will
- // never affect the outcome, without constantly checking
- // if we're in such a state. Similar fast-paths could
- // be done for other cases, but as all-positive or mostly-
- // positive integer values are quite common in real-world
- // uses, it's only been done for int? and long?.
- while (await e.MoveNextAsync())
- {
- var cur = <#=overload.invoke#>;
- var x = cur.GetValueOrDefault();
- if (x <#=comparison#> valueVal)
- {
- valueVal = x;
- value = cur;
- }
- }
- }
- else
- {
- while (await e.MoveNextAsync())
- {
- var cur = <#=overload.invoke#>;
- var x = cur.GetValueOrDefault();
- // Do not replace & with &&. The branch prediction cost outweighs the extra operation
- // unless nulls either never happen or always happen.
- if (cur.HasValue & x <#=comparison#> valueVal)
- {
- valueVal = x;
- value = cur;
- }
- }
- }
- <#
- }
- else if (isFloatingPoint && m == "Min")
- {
- #>
- while (await e.MoveNextAsync())
- {
- var cur = <#=overload.invoke#>;
- if (cur.HasValue)
- {
- var x = cur.GetValueOrDefault();
- if (x <#=comparison#> valueVal)
- {
- valueVal = x;
- value = cur;
- }
- else
- {
- // Normally NaN < anything is false, as is anything < NaN
- // However, this leads to some irksome outcomes in Min and Max.
- // If we use those semantics then Min(NaN, 5.0) is NaN, but
- // Min(5.0, NaN) is 5.0! To fix this, we impose a total
- // ordering where NaN is smaller than every value, including
- // negative infinity.
- // Not testing for NaN therefore isn't an option, but since we
- // can't find a smaller value, we can short-circuit.
- if (<#=t.TrimEnd('?')#>.IsNaN(x))
- {
- return cur;
- }
- }
- }
- }
- <#
- }
- else
- {
- if (isFloatingPoint && m == "Max")
- {
- #>
- // NaN is ordered less than all other values. We need to do explicit checks
- // to ensure this, but once we've found a value that is not NaN we need no
- // longer worry about it, so first loop until such a value is found (or not,
- // as the case may be).
- while (<#=t.TrimEnd('?')#>.IsNaN(valueVal))
- {
- if (!await e.MoveNextAsync())
- {
- return value;
- }
- var cur = <#=overload.invoke#>;
- if (cur.HasValue)
- {
- valueVal = (value = cur).GetValueOrDefault();
- }
- }
- <#
- }
- #>
- while (await e.MoveNextAsync())
- {
- var cur = <#=overload.invoke#>;
- var x = cur.GetValueOrDefault();
- <#
- if (shortCircuit)
- {
- #>
- if (cur.HasValue && x <#=comparison#> valueVal)
- <#
- }
- else
- {
- #>
- // Do not replace & with &&. The branch prediction cost outweighs the extra operation
- // unless nulls either never happen or always happen.
- if (cur.HasValue & x <#=comparison#> valueVal)
- <#
- }
- #>
- {
- valueVal = x;
- value = cur;
- }
- }
- <#
- }
- #>
- }
- return value;
- <#
- }
- #>
- }
- }
- <#
- if (isDeepCancellation)
- {
- #>
- #endif
- <#
- }
- }
- #>
- <#
- }
- }
- #>
- }
- }
|