123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577 |
- // Copyright (c) Microsoft Open Technologies, Inc. All rights reserved. See License.txt in the project root for license information.
- /*
- * WARNING: Auto-generated file (7/18/2012 4:59:53 PM)
- *
- * Stripped down code based on ndp\clr\src\BCL\System\Collections\Concurrent\ConcurrentDictionary.cs
- */
- #if NO_CDS_COLLECTIONS
- using System.Collections.Generic;
- using System.Collections.ObjectModel;
- using System.Diagnostics.CodeAnalysis;
- using System.Reflection;
- using System.Threading;
- namespace System.Collections.Concurrent
- {
- internal class ConcurrentDictionary<TKey, TValue>
- {
- /* >>> Code copied from the Array class */
- // We impose limits on maximum array lenght in each dimension to allow efficient
- // implementation of advanced range check elimination in future.
- // Keep in sync with vm\gcscan.cpp and HashHelpers.MaxPrimeArrayLength.
- internal const int MaxArrayLength = 0X7FEFFFFF;
- /* <<< Code copied from the Array class */
- private class Tables
- {
- internal readonly Node[] m_buckets; // A singly-linked list for each bucket.
- internal readonly object[] m_locks; // A set of locks, each guarding a section of the table.
- internal volatile int[] m_countPerLock; // The number of elements guarded by each lock.
- internal Tables(Node[] buckets, object[] locks, int[] countPerLock)
- {
- m_buckets = buckets;
- m_locks = locks;
- m_countPerLock = countPerLock;
- }
- }
- private volatile Tables m_tables; // Internal tables of the dictionary
- private readonly IEqualityComparer<TKey> m_comparer; // Key equality comparer
- private readonly bool m_growLockArray; // Whether to dynamically increase the size of the striped lock
- private int m_budget; // The maximum number of elements per lock before a resize operation is triggered
- // The default concurrency level is DEFAULT_CONCURRENCY_MULTIPLIER * #CPUs. The higher the
- // DEFAULT_CONCURRENCY_MULTIPLIER, the more concurrent writes can take place without interference
- // and blocking, but also the more expensive operations that require all locks become (e.g. table
- // resizing, ToArray, Count, etc). According to brief benchmarks that we ran, 4 seems like a good
- // compromise.
- private const int DEFAULT_CONCURRENCY_MULTIPLIER = 4;
- // The default capacity, i.e. the initial # of buckets. When choosing this value, we are making
- // a trade-off between the size of a very small dictionary, and the number of resizes when
- // constructing a large dictionary. Also, the capacity should not be divisible by a small prime.
- private const int DEFAULT_CAPACITY = 31;
- // The maximum size of the striped lock that will not be exceeded when locks are automatically
- // added as the dictionary grows. However, the user is allowed to exceed this limit by passing
- // a concurrency level larger than MAX_LOCK_NUMBER into the constructor.
- private const int MAX_LOCK_NUMBER = 1024;
- // Whether TValue is a type that can be written atomically (i.e., with no danger of torn reads)
- private static readonly bool s_isValueWriteAtomic = IsValueWriteAtomic();
- private static bool IsValueWriteAtomic()
- {
- Type valueType = typeof(TValue);
- //
- // Section 12.6.6 of ECMA CLI explains which types can be read and written atomically without
- // the risk of tearing.
- //
- // See http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-335.pdf
- //
- bool isAtomic =
- (valueType.GetTypeInfo().IsClass)
- || valueType == typeof(Boolean)
- || valueType == typeof(Char)
- || valueType == typeof(Byte)
- || valueType == typeof(SByte)
- || valueType == typeof(Int16)
- || valueType == typeof(UInt16)
- || valueType == typeof(Int32)
- || valueType == typeof(UInt32)
- || valueType == typeof(Single);
- if (!isAtomic && IntPtr.Size == 8)
- {
- isAtomic |= valueType == typeof(Double) || valueType == typeof(Int64);
- }
- return isAtomic;
- }
- public ConcurrentDictionary(IEqualityComparer<TKey> comparer) : this(DefaultConcurrencyLevel, DEFAULT_CAPACITY, true, comparer) { }
- public ConcurrentDictionary(int capacity, IEqualityComparer<TKey> comparer) : this(DefaultConcurrencyLevel, capacity, true, comparer) { }
- internal ConcurrentDictionary(int concurrencyLevel, int capacity, bool growLockArray, IEqualityComparer<TKey> comparer)
- {
- if (concurrencyLevel < 1)
- {
- throw new ArgumentOutOfRangeException("concurrencyLevel");
- }
- if (capacity < 0)
- {
- throw new ArgumentOutOfRangeException("capacity");
- }
- if (comparer == null) throw new ArgumentNullException("comparer");
- // The capacity should be at least as large as the concurrency level. Otherwise, we would have locks that don't guard
- // any buckets.
- if (capacity < concurrencyLevel)
- {
- capacity = concurrencyLevel;
- }
- object[] locks = new object[concurrencyLevel];
- for (int i = 0; i < locks.Length; i++)
- {
- locks[i] = new object();
- }
- int[] countPerLock = new int[locks.Length];
- Node[] buckets = new Node[capacity];
- m_tables = new Tables(buckets, locks, countPerLock);
- m_comparer = comparer;
- m_growLockArray = growLockArray;
- m_budget = buckets.Length / locks.Length;
- }
- public bool TryAdd(TKey key, TValue value)
- {
- if (key == null) throw new ArgumentNullException("key");
- TValue dummy;
- return TryAddInternal(key, value, false, true, out dummy);
- }
- public bool TryRemove(TKey key, out TValue value)
- {
- if (key == null) throw new ArgumentNullException("key");
- return TryRemoveInternal(key, out value, false, default(TValue));
- }
- [SuppressMessage("Microsoft.Concurrency", "CA8001", Justification = "Reviewed for thread safety")]
- private bool TryRemoveInternal(TKey key, out TValue value, bool matchValue, TValue oldValue)
- {
- while (true)
- {
- Tables tables = m_tables;
- int bucketNo, lockNo;
- GetBucketAndLockNo(m_comparer.GetHashCode(key), out bucketNo, out lockNo, tables.m_buckets.Length, tables.m_locks.Length);
- lock (tables.m_locks[lockNo])
- {
- // If the table just got resized, we may not be holding the right lock, and must retry.
- // This should be a rare occurence.
- if (tables != m_tables)
- {
- continue;
- }
- Node prev = null;
- for (Node curr = tables.m_buckets[bucketNo]; curr != null; curr = curr.m_next)
- {
- if (m_comparer.Equals(curr.m_key, key))
- {
- if (matchValue)
- {
- bool valuesMatch = EqualityComparer<TValue>.Default.Equals(oldValue, curr.m_value);
- if (!valuesMatch)
- {
- value = default(TValue);
- return false;
- }
- }
- if (prev == null)
- {
- Volatile.Write<Node>(ref tables.m_buckets[bucketNo], curr.m_next);
- }
- else
- {
- prev.m_next = curr.m_next;
- }
- value = curr.m_value;
- tables.m_countPerLock[lockNo]--;
- return true;
- }
- prev = curr;
- }
- }
- value = default(TValue);
- return false;
- }
- }
- [SuppressMessage("Microsoft.Concurrency", "CA8001", Justification = "Reviewed for thread safety")]
- public bool TryGetValue(TKey key, out TValue value)
- {
- if (key == null) throw new ArgumentNullException("key");
- int bucketNo, lockNoUnused;
- // We must capture the m_buckets field in a local variable. It is set to a new table on each table resize.
- Tables tables = m_tables;
- GetBucketAndLockNo(m_comparer.GetHashCode(key), out bucketNo, out lockNoUnused, tables.m_buckets.Length, tables.m_locks.Length);
- // We can get away w/out a lock here.
- // The Volatile.Read ensures that the load of the fields of 'n' doesn't move before the load from buckets[i].
- Node n = Volatile.Read<Node>(ref tables.m_buckets[bucketNo]);
- while (n != null)
- {
- if (m_comparer.Equals(n.m_key, key))
- {
- value = n.m_value;
- return true;
- }
- n = n.m_next;
- }
- value = default(TValue);
- return false;
- }
- [SuppressMessage("Microsoft.Concurrency", "CA8001", Justification = "Reviewed for thread safety")]
- private bool TryAddInternal(TKey key, TValue value, bool updateIfExists, bool acquireLock, out TValue resultingValue)
- {
- int hashcode = m_comparer.GetHashCode(key);
- while (true)
- {
- int bucketNo, lockNo;
- Tables tables = m_tables;
- GetBucketAndLockNo(hashcode, out bucketNo, out lockNo, tables.m_buckets.Length, tables.m_locks.Length);
- bool resizeDesired = false;
- bool lockTaken = false;
- try
- {
- if (acquireLock)
- Monitor.Enter(tables.m_locks[lockNo], ref lockTaken);
- // If the table just got resized, we may not be holding the right lock, and must retry.
- // This should be a rare occurence.
- if (tables != m_tables)
- {
- continue;
- }
- // Try to find this key in the bucket
- Node prev = null;
- for (Node node = tables.m_buckets[bucketNo]; node != null; node = node.m_next)
- {
- if (m_comparer.Equals(node.m_key, key))
- {
- // The key was found in the dictionary. If updates are allowed, update the value for that key.
- // We need to create a new node for the update, in order to support TValue types that cannot
- // be written atomically, since lock-free reads may be happening concurrently.
- if (updateIfExists)
- {
- if (s_isValueWriteAtomic)
- {
- node.m_value = value;
- }
- else
- {
- Node newNode = new Node(node.m_key, value, hashcode, node.m_next);
- if (prev == null)
- {
- tables.m_buckets[bucketNo] = newNode;
- }
- else
- {
- prev.m_next = newNode;
- }
- }
- resultingValue = value;
- }
- else
- {
- resultingValue = node.m_value;
- }
- return false;
- }
- prev = node;
- }
- // The key was not found in the bucket. Insert the key-value pair.
- Volatile.Write<Node>(ref tables.m_buckets[bucketNo], new Node(key, value, hashcode, tables.m_buckets[bucketNo]));
- checked
- {
- tables.m_countPerLock[lockNo]++;
- }
- //
- // If the number of elements guarded by this lock has exceeded the budget, resize the bucket table.
- // It is also possible that GrowTable will increase the budget but won't resize the bucket table.
- // That happens if the bucket table is found to be poorly utilized due to a bad hash function.
- //
- if (tables.m_countPerLock[lockNo] > m_budget)
- {
- resizeDesired = true;
- }
- }
- finally
- {
- if (lockTaken)
- Monitor.Exit(tables.m_locks[lockNo]);
- }
- //
- // The fact that we got here means that we just performed an insertion. If necessary, we will grow the table.
- //
- // Concurrency notes:
- // - Notice that we are not holding any locks at when calling GrowTable. This is necessary to prevent deadlocks.
- // - As a result, it is possible that GrowTable will be called unnecessarily. But, GrowTable will obtain lock 0
- // and then verify that the table we passed to it as the argument is still the current table.
- //
- if (resizeDesired)
- {
- GrowTable(tables);
- }
- resultingValue = value;
- return true;
- }
- }
- public ICollection<TValue> Values
- {
- get { return GetValues(); }
- }
- private void GrowTable(Tables tables)
- {
- int locksAcquired = 0;
- try
- {
- // The thread that first obtains m_locks[0] will be the one doing the resize operation
- AcquireLocks(0, 1, ref locksAcquired);
- // Make sure nobody resized the table while we were waiting for lock 0:
- if (tables != m_tables)
- {
- // We assume that since the table reference is different, it was already resized (or the budget
- // was adjusted). If we ever decide to do table shrinking, or replace the table for other reasons,
- // we will have to revisit this logic.
- return;
- }
- // Compute the (approx.) total size. Use an Int64 accumulation variable to avoid an overflow.
- long approxCount = 0;
- for (int i = 0; i < tables.m_countPerLock.Length; i++)
- {
- approxCount += tables.m_countPerLock[i];
- }
- //
- // If the bucket array is too empty, double the budget instead of resizing the table
- //
- if (approxCount < tables.m_buckets.Length / 4)
- {
- m_budget = 2 * m_budget;
- if (m_budget < 0)
- {
- m_budget = int.MaxValue;
- }
- return;
- }
- // Compute the new table size. We find the smallest integer larger than twice the previous table size, and not divisible by
- // 2,3,5 or 7. We can consider a different table-sizing policy in the future.
- int newLength = 0;
- bool maximizeTableSize = false;
- try
- {
- checked
- {
- // Double the size of the buckets table and add one, so that we have an odd integer.
- newLength = tables.m_buckets.Length * 2 + 1;
- // Now, we only need to check odd integers, and find the first that is not divisible
- // by 3, 5 or 7.
- while (newLength % 3 == 0 || newLength % 5 == 0 || newLength % 7 == 0)
- {
- newLength += 2;
- }
- if (newLength > MaxArrayLength)
- {
- maximizeTableSize = true;
- }
- }
- }
- catch (OverflowException)
- {
- maximizeTableSize = true;
- }
- if (maximizeTableSize)
- {
- newLength = MaxArrayLength;
- // We want to make sure that GrowTable will not be called again, since table is at the maximum size.
- // To achieve that, we set the budget to int.MaxValue.
- //
- // (There is one special case that would allow GrowTable() to be called in the future:
- // calling Clear() on the ConcurrentDictionary will shrink the table and lower the budget.)
- m_budget = int.MaxValue;
- }
- // Now acquire all other locks for the table
- AcquireLocks(1, tables.m_locks.Length, ref locksAcquired);
- object[] newLocks = tables.m_locks;
- // Add more locks
- if (m_growLockArray && tables.m_locks.Length < MAX_LOCK_NUMBER)
- {
- newLocks = new object[tables.m_locks.Length * 2];
- Array.Copy(tables.m_locks, newLocks, tables.m_locks.Length);
- for (int i = tables.m_locks.Length; i < newLocks.Length; i++)
- {
- newLocks[i] = new object();
- }
- }
- Node[] newBuckets = new Node[newLength];
- int[] newCountPerLock = new int[newLocks.Length];
- // Copy all data into a new table, creating new nodes for all elements
- for (int i = 0; i < tables.m_buckets.Length; i++)
- {
- Node current = tables.m_buckets[i];
- while (current != null)
- {
- Node next = current.m_next;
- int newBucketNo, newLockNo;
- GetBucketAndLockNo(current.m_hashcode, out newBucketNo, out newLockNo, newBuckets.Length, newLocks.Length);
- newBuckets[newBucketNo] = new Node(current.m_key, current.m_value, current.m_hashcode, newBuckets[newBucketNo]);
- checked
- {
- newCountPerLock[newLockNo]++;
- }
- current = next;
- }
- }
- // Adjust the budget
- m_budget = Math.Max(1, newBuckets.Length / newLocks.Length);
- // Replace tables with the new versions
- m_tables = new Tables(newBuckets, newLocks, newCountPerLock);
- }
- finally
- {
- // Release all locks that we took earlier
- ReleaseLocks(0, locksAcquired);
- }
- }
- private void GetBucketAndLockNo(
- int hashcode, out int bucketNo, out int lockNo, int bucketCount, int lockCount)
- {
- bucketNo = (hashcode & 0x7fffffff) % bucketCount;
- lockNo = bucketNo % lockCount;
- }
- private static int DefaultConcurrencyLevel
- {
- get { return DEFAULT_CONCURRENCY_MULTIPLIER * Environment.ProcessorCount; }
- }
- private void AcquireAllLocks(ref int locksAcquired)
- {
- // First, acquire lock 0
- AcquireLocks(0, 1, ref locksAcquired);
- // Now that we have lock 0, the m_locks array will not change (i.e., grow),
- // and so we can safely read m_locks.Length.
- AcquireLocks(1, m_tables.m_locks.Length, ref locksAcquired);
- }
- private void AcquireLocks(int fromInclusive, int toExclusive, ref int locksAcquired)
- {
- object[] locks = m_tables.m_locks;
- for (int i = fromInclusive; i < toExclusive; i++)
- {
- bool lockTaken = false;
- try
- {
- Monitor.Enter(locks[i], ref lockTaken);
- }
- finally
- {
- if (lockTaken)
- {
- locksAcquired++;
- }
- }
- }
- }
- [SuppressMessage("Microsoft.Concurrency", "CA8001", Justification = "Reviewed for thread safety")]
- private void ReleaseLocks(int fromInclusive, int toExclusive)
- {
- for (int i = fromInclusive; i < toExclusive; i++)
- {
- Monitor.Exit(m_tables.m_locks[i]);
- }
- }
- [SuppressMessage("Microsoft.Concurrency", "CA8001", Justification = "ConcurrencyCop just doesn't know about these locks")]
- private ReadOnlyCollection<TValue> GetValues()
- {
- int locksAcquired = 0;
- try
- {
- AcquireAllLocks(ref locksAcquired);
- List<TValue> values = new List<TValue>();
- for (int i = 0; i < m_tables.m_buckets.Length; i++)
- {
- Node current = m_tables.m_buckets[i];
- while (current != null)
- {
- values.Add(current.m_value);
- current = current.m_next;
- }
- }
- return new ReadOnlyCollection<TValue>(values);
- }
- finally
- {
- ReleaseLocks(0, locksAcquired);
- }
- }
- private class Node
- {
- internal TKey m_key;
- internal TValue m_value;
- internal volatile Node m_next;
- internal int m_hashcode;
- internal Node(TKey key, TValue value, int hashcode, Node next)
- {
- m_key = key;
- m_value = value;
- m_next = next;
- m_hashcode = hashcode;
- }
- }
- }
- }
- #endif
|