5/8/2019 9:30 AM

BY Microsoft

Microsoft
Build

May 6-8, 2019

© Microsoft Corporation. All rights reserved. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

5/8/2019 9:30 AM

B® Microsoft

Built for Speed:
SQL Server Database Application
Design for Performance

Pam Lahoud, Sr. Program Manager
Pedro Lopes, Sr. Program Manager

© Microsoft Corporation. All rights reserved. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION. 2

5/8/2019 9:30 AM

Meet the speakers!

@SQLGoddess

@SQLPedro

© Microsoft Corporation. All rights reserved. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

5/8/2019 9:29 AM

Performance tuning - it's not just for DBAs!

What you can do as a developer to help generate efficient SQL Server code

« Application Design Patterns
+ To ORM or not to ORM
« Are you cloud-ready?
Technical debt
DB Compatibility Certification
« Writing Efficient T-SQL
Cardinality
+ SARGability
+ Common T-SQL Anti-Patterns

. Application Design Patterns
. To ORM or not to ORM —Pam
. Are you cloud-ready? - Pam
. Death by paper cut — the perils of the chatty application - Pam
. DB Compatibility Certification - Pedro
. Writing Efficient T-SQL
. Cardinality - Pedro
. SARGability - Pedro
. Common T-SQL Anti-Patterns Pam/Pedro — decide division later

© Microsoft Corporation. All rights reserved. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION. 4

5/8/2019 9:30 AM

Application Design Patterns

© Microsoft Corporation. All rights reserved. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION. 5

5/8/2019 9:29 AM

To ORM or not to ORM

Deve|oper Database Administrator

Manageability Expertise Performance [Performance | Performance

Don't have a Some \[e} abl'lty to
Application Want to dedicated application ORMs make
logic belongs leverage database logic in the generate performance-
in the client “code first" developer or database spaghetti T- improving T-
layer design database improves SQL code SQL code
expertise performance changes

https://aka.ms/EFPerf

Object-relational mapping allows developers to quickly and easily design applications that rely on
relational databases without having to have intimate knowledge of database and query design. It allows
developers to create platform-agnostic code that can easily be ported to multiple systems, or in the case of
an ISV (independent software vendor), allow end users a choice of platform. It also enables developers to
choose a code-first design approach, which negates the need for spending a large amount of time
designing a database schema.

All of these benefits help developers adhere to an Agile development methodology, but while this may
improve the ease and speed of code development, as the database grows and the application scales,
database performance can become an issue.

© Microsoft Corporation. All rights reserved. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION. 6

5/8/2019 9:29 AM

To ORM or not to ORM

Deve|oper Database Administrator

Manageability Performance

Code first — tune later! “

Application Vo , ELG
logic belongs leverage database logic in the generate performance-
in the client “code first" developer or database spaghetti T- improving T-
layer design database improves SQL code SQL code
expertise performance changes

https://aka.ms/EFPerf

Object-relational mapping allows developers to quickly and easily design applications that rely on
relational databases without having to have intimate knowledge of database and query design. It allows
developers to create platform-agnostic code that can easily be ported to multiple systems, or in the case of
an ISV (independent software vendor), allow end users a choice of platform. It also enables developers to
choose a code-first design approach, which negates the need for spending a large amount of time
designing a database schema.

All of these benefits help developers adhere to an Agile development methodology, but while this may
improve the ease and speed of code development, as the database grows and the application scales,
database performance can become an issue.

© Microsoft Corporation. All rights reserved. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION. 7

5/8/2019 9:29 AM

Are you cloud-
ready?
What can you do today to make

moving to the cloud tomorrow
easier?

© Microsoft Corporation. All rights reserved. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION. 8

5/8/2019 9:30 AM

Pay down technical debt

Or don't accrue it in the first place

« Caching

P roxim |ty * Use of Stored Procedures

» Avoid looping logic and cursors outside of the database

consi d e rat IonNs * Return only the data you need at the time you need it

* “Throwing hardware at the problem" is no longer a one-time cost

Cost Of GOOdS « Tune queries to reduce CPU and 1/0
» Remove unnecessary tables/indexes/data
Sold (COGS)

* Implement an archiving strategy

« Is your application contained in a single database, or is there sprawl?
» What does your security model look like?

CO nta Inme nt « Are there any features being used that would add extra cost or make
cloud-migration challenging?

© Microsoft Corporation. All rights reserved. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION. 9

Microsoft Data Amp 5/8/2019 9:29 AM

Upgrade & modernize your SQL Server database on-premises and in
the cloud with compatible certification

Stop worrying about certifying to Azure, on-premises, or named SQL Server versions.
Compatibility-based certification allows you to certify with focus on continuous application lifecycle

Upgrade to the latest SQL Server Database Engine (R T .
without changing your critical applications Compatlblllty certification benefits

Simplified Applications tested and certified on a given
@ application SQL Server version are also implicitly tested
‘] certification and certified on that SQL Server version

native database compatibility level

Reduce Separate application and platform layer
&~ i de cycles for less disrupti
upgrade risks upgrade cycles for less disruption
(,, > Frictionless migration (,,) Upgrade to latest Upgrade your SQL Server Database Engine
with no code changes T SQL Database or move instances to the cloud with no
— Engine version code changes

© Microsoft Corporation. All rights reserved. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION. 1 O

Microsoft Data Amp 5/8/2019 9:29 AM

Database Compatibility Level protection with Microsoft

Microsoft provides an ecosystem of tools and services to test whether Database Compatibility Level certification
is right for you and protect you as you upgrade

Q o

Maintain Query plan

backwards compatibility shape protection

Applications running on a newer SQL Microsoft gates query plan changes
Server Database Engine while using an behind Database Compatibility Level to
ollder database compatibility level can upgrade without issue once validation
still leverage server-level testing is completed

enhancements without application

changes Hardware target and source tests should

o . be run separately
Database Compatibility Level settings

affect behaviors for a specified

database, not the entire server

Learn more here: http://aka.ms/dbcompat

Changes needed pre-upgrade

Changing your database compatibility level changes the database feature set. Any discontinued
functionality, code or features in a given SQL Server version may not be protected. Using tools like DMA
can help assess your ability to leverage the enhanced security and scalability of the new database engine
in SQL Server and Azure SQL Database without any required application changes.

© Microsoft Corporation. All rights reserved. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION. 1 1

5/8/2019 9:30 AM

150

140

130

120

110

100

90

Supported Compatibility Level Values

80

Product

Designation per
product

Explore your Database
Compatibility Level
supported values

Upgrade from any earlier version of SQL Server and
the database retains its existing compatibility level
if it is at least minimum allowed for that instance of
SQL Server

For example, SQL Server 2008 databases have
supported compatibility up to SQL Server 2019 and
Azure SQL Database

© Microsoft Corporation. All rights reserved. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION. 1 2

5/8/2019 9:29 AM

Writing Efficient T-SQL

Time check — should be at 20 minutes.

© Microsoft Corporation. All rights reserved. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION. 1 3

Why did SQL Server pick this plan?

Cardinality Indexes

d

SARGability

Statistics
‘ Cost-based ‘

optimization

SQL Server uses a cost-based optimizer which means that all the decisions that are made when generating
a query plan are based on their estimated cost. The goal of the optimizer is to return the results of your
query in the cheapest (i.e. the fastest) way. The optimizer is quite sophisticated and does a very good job
of executing queries quickly and efficiently, provided that it has the right tools and information to do its
job. There are many aspects to cost-based optimization, but essentially the optimizer uses the available

statistics and other information about your data such as constraints to estimate the cardinality of the query.

Based on this cardinality estimate, the optimizer will choose methods to access the data such as seeks,
scans and lookups using the indexes that are in place, provided that the predicates in the query are
SARGable. In the first part of our session, we are going to focus on cardinality and SARGability, since these
are often impacted by the code that is written against the database.

14

What is Cardinality?

An estimatc ar ws returned by
each operal SaGab? | “ost estimate.

- Base static .s met~Ad-t-
Assu iong r,,ade if ot available

or N0 athe o
B baced TR cient plans

optimization

Cardinality is basically a fancy word for the number of rows returned by a query. In the case of query
optimization, SQL Server needs to understand the cardinality of each piece of the query — each table
accessed, each predicate in the WHERE clause, each join condition — in order to choose the correct data
access method. Take the following query for example:

SELECT *
FROM Users
WHERE [sActive = 1

Let's say we have a non-clustered index on IsActive. Does it make sense for SQL Server to use this index to
return the rows for this query? In order to answer that question, SQL Server needs to have an idea of how
many rows have a value of 1 for IsActive in the Users table. If the entire table has IsActive = 1, it would
make more sense for SQL Server to scan the whole table rather than use the non-clustered index. SQL
Server uses statistics to estimate the number of rows returned, and this in turn allows SQL Server to choose
the access method that best suits the query. Of course, data will change over time, so this is one of the
reasons why it is very important to make sure your statistics are maintained on a regular basis.

Healthy statistics are essential for good query optimization, but the way you write the query can also have
an impact on how SQL Server estimates cardinality. This is what we will focus on in this session.

15

What is SARGability?

The extent to which a predicate can be used as a
Search ARGument for an index seek
* Non-SARGable expressions cannot seek, they

must scan a table or an index
* Non-SARGable expressions can significantly slow

down queries
SARGability
Cost-based ‘.

optimization

SARGability is a word that implies whether or not SQL Server will be able to use an index to locate rows that
meet a predicate in a WHERE clause. In an index seek, the filter condition is used to limit the data that
needs to be searched in order to locate the matching rows. In a scan, all the data that is part of the table
or index needs to be searched for the rows that match the filter criteria.

Think of a cook book with a recipe name index in the back. If you are looking for a recipe for chocolate
chip cookies, you can use the index in the back of the book to look up chocolate chip cookies and will find
the page number for the recipe. You then turn to that page and you are done. Your filter condition
“WHERE RecipeName = ‘Chocolate Chip Cookies™ is SARGable. But what if you wanted to find all the
recipes that have the word ‘Chip’ somewhere in the recipe name? You would not be able to use the recipe
name index to find those recipes directly, so you would have to scan through all the names in the index to
find the ones that have ‘Chip’ in the name. Once you had those recipe names, you'd have to keep track of
all the page numbers and then flip through the book to each page number on your list to look at the
recipes. That's a lot of work, it would probably be easier to flip through all the pages of the book looking
for the recipes with ‘Chip’ in the name. That's a table scan, and that’s usually what happens when you have
a non-SARGable predicate in your WHERE clause.

16

Common T-SQL Anti-patterns

Certain types of expressions can limit SQL Server’s ability to correctly
estimate cardinality and/or use an index to evaluate a predicate

LIKE with a
Leading
Wildcard

Implicit Functions in
Conversions the Predicate

OR in the Table-valued
WHERE Clause Functions

There are several code practices which can lead to issues with both cardinality estimates and SARGability.
This list is not comprehensive, but these are some of the most common issues that we encounter with SQL
Server applications in the field.

17

Implicit Conversions

ProductID is defined as VARCHAR(8)

SELECT *
FROM Product Rules of data
WHERE ProductID = 7

type precedence

e

Implicit conversions are essentially functions in the WHERE clause, but because they happen automatically
in the background, they are more difficult to detect. In the example on the slide, if 7 had been sent as a

string instead of an integer, there would be no issue with the query and the predicate would be SARGable.

Unfortunately, because of the rules of data type precedence, SQL Server needs to convert the varchar(8)
ProductID to an integer in order to make this comparison, it will not convert the 7 to a varchar(8).

Another common cause of implicit conversions is in string types being sent from .NET. String values
coming from .NET will be Unicode by default. If the strings in the database are defined as varchar rather
than nvarchar, this will lead to implicit conversions. Again, because of the rules of data type precedence,
varchar needs to be converted to nvarchar which will make all string comparisons in the application non-
SARGable and also cause SQL Server to make assumptions about cardinality.

If you are using Entity Framework, it is critical to ensure all your data types are properly mapped in the
mapping file. String types that are not mapped properly will be assumed to be nvarchar(4000).

18

Functions in the Predicate

SELECT *
FROM Person.Person
WHERE SUBSTRING(FirstName, 1, 1) = 'B';

SELECT *
FROM Sales.SalesOrderHeader
WHERE YEAR(OrderDate) = 2008;

Functions in the WHERE clause (when executed against a column in a table, not a literal value) will always
be non-SARGable because SQL Server needs to evaluate the function for every row in the table/index
before it can compare the results of this function to the value in the predicate. This results in a scan, but
also will impact the cardinality estimate. SQL Server has statistics for actual values in the table, not for the
results of the function, so it will have to make an assumption. This can lead to problems later in the query
plan with other predicates or joins that are not directly related to the function.

Consider this problem when designing your initial data model. Using a case-sensitive collation for example
might necessitate using the UPPER function for string comparisons. Using some kind of non-date data
type for storing dates may also lead to functions to translate the value into a date. Another common issue
is using a date/time field but wanting to compare only the date portion. Rather than using a function that
cuts off the time portion of the date/time field, use ranges instead as these will be SARGable. Often with
functions the predicate can be re-written as a range scan which is SARGable.

If the predicate cannot be re-written, consider using a computed column to pre-evaluate the function.
Creating an index on the computed column will make any predicate that uses the function SARGable and
allow SQL Server to calculate statistics for the results of the function, improving cardinality estimates.

19

Functions in the Predicate

SELECT *
FROM Person.Person

WHERE FirstName LIKE 'B%';

Rewritten as
SARGable

*
SELECT expressions

FROM Sales.SalesOrderHeader
WHERE OrderDate BETWEEN '1/1/2008'
AND '12/31/2008';

Functions in the WHERE clause (when executed against a column in a table, not a literal value) will always
be non-SARGable because SQL Server needs to evaluate the function for every row in the table/index
before it can compare the results of this function to the value in the predicate. This results in a scan, but
also will impact the cardinality estimate. SQL Server has statistics for actual values in the table, not for the
results of the function, so it will have to make an assumption. This can lead to problems later in the query
plan with other predicates or joins that are not directly related to the function.

Consider this problem when designing your initial data model. Using a case-sensitive collation for example
might necessitate using the UPPER function for string comparisons. Using some kind of non-date data
type for storing dates may also lead to functions to translate the value into a date. Another common issue
is using a date/time field but wanting to compare only the date portion. Rather than using a function that
cuts off the time portion of the date/time field, use ranges instead as these will be SARGable. Often with
functions the predicate can be re-written as a range scan which is SARGable.

If the predicate cannot be re-written, consider using a computed column to pre-evaluate the function.
Creating an index on the computed column will make any predicate that uses the function SARGable and
allow SQL Server to calculate statistics for the results of the function, improving cardinality estimates.

20

LIKE with a leading wildcard

Non-SARGable

SELECT *
FROM Person.Person
WHERE FirstName LIKE '%B%'; No leading
wildcard = range
Sscan
SARGable
SELECT *

FROM Person.Person
WHERE FirstName LIKE 'B%';

LIKE without a leading wildcard can be executed as a range scan, so this is SARGable. With a leading
wildcard, SQL Server needs to scan every value. Computed columns can be used in this case to pre-
evaluate the LIKE condition, but in most cases using a full-text index will work best.

21

OR in the WHERE clause

SELECT CustomerID, OrderDate,
ShipDate, [Status]

FROM Sales.SalesOrderHeader

WHERE SalesPersonID = 277

OR CustomerID = 29523;

An OR in the WHERE clause can also impact cardinality estimates and SARGability if the OR condition
connects predicates on two different fields in the table or in different tables. Often rewriting the query as
two separate queries with a UNION operator (or UNION ALL if there’s no possibility of duplicates) can be
much more efficient.

22

OR in the WHERE clause

SELECT CustomerID, OrderDate,
ShipDate, [Status]

FROM Sales.SalesOrderHeader

WHERE SalesPersonlID = 277 Try a UNION

UNION instead

SELECT CustomerID, OrderDate,
ShipDate, [Status]

FROM Sales.SalesOrderHeader

WHERE CustomerID = 29523;

An OR in the WHERE clause can also impact cardinality estimates and SARGability if the OR condition
connects predicates on two different fields in the table or in different tables. Often rewriting the query as
two separate queries with a UNION operator (or UNION ALL if there’s no possibility of duplicates) can be
much more efficient.

23

5/8/2019 9:30 AM

Composable Logic — The All-Purpose Query

CREATE PROCEDURE usp GetSalesPersonOrders @SalesPerson
INT NULL AS

SELECT SalesOrderID,
p.FirstName AS SalesFirstName,
p.LastName AS SalesLastName
FROM Sales.SalesOrderHeader AS soh
LEFT JOIN Person.Person AS p
ON soh.SalesPersonID = p.BusinessEntityID
WHERE @SalesPerson IS NULL
OR SalesPersonID = @SalesPerson;

© Microsoft Corporation. All rights reserved. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION. 24

5/8/2019 9:30 AM

Composable Logic — The All-Purpose Query

CREATE PROCEDURE usp GetSalesPersonOrders @SalesPerson
INT NULL AS

IF @SalesPerson IS NULL
SELECT SalesOrderID, -
p.FirstName AS SalesFirstName, I?g;\i/ceggg?égi?}ael
p.LastName AS SalesLastName query
FROM Sales.SalesOrderHeader AS soh
LEFT JOIN Person.Person AS p

ON soh.SalesPersonID = p.BusinessEntityID;

ELSE ..

© Microsoft Corporation. All rights reserved. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

25

5/8/2019 9:30 AM

Composable Logic — The All-Purpose Query

DECLARE @sql nvarchar(max);

SET @sql = 'SELECT SalesOrderID, p.FirstName AS
SalesFirstName, p.LastName AS SalesLastName Or use

FROM Sales.SalesOrderHeader AS soh dx;%rm
LEFT JOIN Person.Person AS p

ON soh.SalesPersonID = p.BusinessEntityID';
IF @SalesPerson IS NOT NULL

SET @sql = @sql + 'WHERE SalesPersonID = @pl';

© Microsoft Corporation. All rights reserved. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION. 26

Table-valued Functions

Works like a parameterized view

SELECT EmployeelD,
FirstName,
LastName,
JobTitle,
RecursionLevel
FROM dbo.ufn_FindReports(25);

A table-valued function is a function which returns a table as a result. You can use table-valued functions
to encapsulate query logic (similar to a view) and to simplify queries, but if used in the wrong way, they can
cause inefficient query plans to be created. An inline TVF is a function that has a single SELECT statement
and returns a resultset directly to the caller. Another way to write a TVF would be to have more
complicated logic that inserts values into a table variable and returns that table to the caller as a return
value. Functions like this can cause problems when used in a query because SQL Server cannot accurately
estimate the cardinality. Joining to an atomic TVF like this requires SQL Server to execute the entire
function first, put the results into tempdb and then join them with the rest of the query plan. Not only can
this be expensive, it's also difficult to determine the true cost of the query because the cost of the function
will not be included in the total cost of the overall query and also won't be reflected in the query plan when
you review it. With inline functions, SQL Server can treat them like a view. They can be expanded,
simplified and joined into the overall query tree, and thus their cost will be accurately estimated and
reflected in the query plan. If you choose to use table-valued functions, be sure to use inline functions if
possible.

Inline User-Defined Functions
http://technet.microsoft.com/en-us/library/ms189294(v=sql.105).aspx

27

Table-valued Functions

Can be a multi-statement TVF (MSTVF)

CREATE FUNCTION dbo.ufn_FindReports (@InEmpID INT)
RETURNS @retFindReports TABLE (

EmployeeID int primary key NOT NULL,

FirstName nvarchar(255) NOT NULL,

LastName nvarchar(255) NOT NULL,

JobTitle nvarchar(50) NOT NULL,

RecursionLevel int NOT NULL) AS
BEGIN [multiple statements]

CREATE OR ALTER FUNCTION dbo.ufn_FindReports (@InEmpID INT)
RETURNS @retFindReports TABLE
(
EmployeelD int primary key NOT NULL,
FirstName nvarchar(255) NOT NULL,
LastName nvarchar(255) NOT NULL,
JobTitle nvarchar(50) NOT NULL,
RecursionLevel int NOT NULL
)
--Returns a result set that lists all the employees who report to the
--specific employee directly or indirectly.*/
AS
BEGIN

WITH EMP_cte(EmployeelD, OrganizationNode, FirstName, LastName, JobTitle, RecursionLevel) -- CTE
name and columns

AS (

-- Get the initial list of Employees for Manager n
SELECT e.BusinessEntityID, e.OrganizationNode, p.FirstName, p.LastName, e.JobTitle, O
FROM HumanResources.Employee e

INNER JOIN Person.Person p

ON p.BusinessEntitylD = e.BusinessEntitylD
WHERE e.BusinessEntitylD = @InEmpID
UNION ALL
-- Join recursive member to anchor
SELECT e.BusinessEntitylD, e.OrganizationNode, p.FirstName, p.LastName, eJobTitle, RecursionLevel +

28

FROM HumanResources.Employee e
INNER JOIN EMP_cte
ON e.OrganizationNode.GetAncestor(1) = EMP_cte.OrganizationNode
INNER JOIN Person.Person p
ON p.BusinessEntitylD = e.BusinessEntitylD
)
-- copy the required columns to the result of the function
INSERT @retFindReports
SELECT EmployeelD, FirstName, LastName, JobTitle, RecursionLevel
FROM EMP_cte
RETURN
END;
GO

© Microsoft Corporation. All rights reserved. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

5/8/2019 9:30 AM

28

Table-valued Functions

Can be an inline TVF

CREATE FUNCTION
dbo.ufn_FindReports (@InEmpID int)

RETURNS TABLE AS Aways use ine

RETURN TVFs if possible
[single query]

But SQL Server 2019 and Azure SQL will inline MSTVF automatically

29

Demo

Detecting Anti-Patterns in a Query Plan

See https://github.com/Microsoft/tigertoolbox/tree/master/Sessions/Build-2019 for demo files.

© Microsoft Corporation. All rights reserved. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

5/8/2019 9:29 AM

30

Continue learning
with our new book!

https://aka.ms/LearnTSQLQuerying

Check out other
great data-related
demos here:

https://aka.ms/DataDemos
https://aka.ms/IQPDemos

5/8/2019 9:29 AM

T-SQL
Querying

A guide to developing efficient and elegant T-SQL code

Pedro Lopes and Pam Lahoud

© Microsoft Corporation. All rights reserved. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION. 3 1

#*PASS

Y : :
) maration Free Technical Webinar
Modernizing Your Data Platform: May 9, 11:00 EST

The end of support for SQL Server 2008 is almost here, join leading data experts including Buck
Woody and Bob Ward to walk through the steps to modernization. Hosted by PASS, a global
community of data professionals and presented by Microsoft and Intel®, sessions include:

* Azure Data Estate Modernization

* Microsoft SQL Server 2019 Big Data Clusters Architecture
* Intelligent Query Processing in SQL Server 2019

* Modernizing with Intel Technologies

+ Experience SQL Server 2019 on Linux and Containers

Register Now
https://www.pass.org/Modernization.aspx

B® Microsoft (intel) X< PASS

32

5/8/2019 9:30 AM

Thank you!

@SQLGoddess

TWANKg

@SQLPedro

© Microsoft Corporation. All rights reserved. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

33

m Microsoft

right Microsoft Corporation. All rights reserved

© Microsoft Corporation. All rights reserved. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

5/8/2019 9:29 AM

34

