
5/8/2019 9:30 AM

1

5/8/2019 9:30 AM

2

5/8/2019 9:30 AM

3

• Application Design Patterns

• To ORM or not to ORM –Pam

• Are you cloud-ready? - Pam

• Death by paper cut – the perils of the chatty application - Pam

• DB Compatibility Certification - Pedro

• Writing Efficient T-SQL

• Cardinality - Pedro

• SARGability - Pedro

• Common T-SQL Anti-Patterns Pam/Pedro – decide division later

5/8/2019 9:29 AM

4

5/8/2019 9:30 AM

5

https://aka.ms/EFPerf

Developer

Manageability

Application

logic belongs

in the client

layer

Agility

Want to

leverage

“code first”

design

Expertise

Don’t have a

dedicated

database

developer or

database

expertise

Database Administrator

Performance

Some

application

logic in the

database

improves

performance

Performance

ORMs

generate

spaghetti T-

SQL code

Performance

No ability to

make

performance-

improving T-

SQL code

changes

Object-relational mapping allows developers to quickly and easily design applications that rely on
relational databases without having to have intimate knowledge of database and query design. It allows
developers to create platform-agnostic code that can easily be ported to multiple systems, or in the case of
an ISV (independent software vendor), allow end users a choice of platform. It also enables developers to
choose a code-first design approach, which negates the need for spending a large amount of time
designing a database schema.

All of these benefits help developers adhere to an Agile development methodology, but while this may
improve the ease and speed of code development, as the database grows and the application scales,
database performance can become an issue.

5/8/2019 9:29 AM

6

https://aka.ms/EFPerf

Developer

Manageability

Application

logic belongs

in the client

layer

Agility

Want to

leverage

“code first”

design

Expertise

Don’t have a

dedicated

database

developer or

database

expertise

Database Administrator

Performance

Some

application

logic in the

database

improves

performance

Performance

ORMs

generate

spaghetti T-

SQL code

Performance

No ability to

make

performance-

improving T-

SQL code

changes

Object-relational mapping allows developers to quickly and easily design applications that rely on
relational databases without having to have intimate knowledge of database and query design. It allows
developers to create platform-agnostic code that can easily be ported to multiple systems, or in the case of
an ISV (independent software vendor), allow end users a choice of platform. It also enables developers to
choose a code-first design approach, which negates the need for spending a large amount of time
designing a database schema.

All of these benefits help developers adhere to an Agile development methodology, but while this may
improve the ease and speed of code development, as the database grows and the application scales,
database performance can become an issue.

5/8/2019 9:29 AM

7

5/8/2019 9:29 AM

8

• Caching

• Use of Stored Procedures

• Avoid looping logic and cursors outside of the database

• Return only the data you need at the time you need it

Proximity

considerations

• “Throwing hardware at the problem” is no longer a one-time cost

• Tune queries to reduce CPU and I/O

• Remove unnecessary tables/indexes/data

• Implement an archiving strategy

Cost of Goods

Sold (COGS)

• Is your application contained in a single database, or is there sprawl?

• What does your security model look like?

• Are there any features being used that would add extra cost or make

cloud-migration challenging?
Containment

5/8/2019 9:30 AM

9

Reduce

upgrade risks

Simplified

application

certification

Upgrade to latest

SQL Database

Engine version

Upgrade your SQL Server Database Engine

or move instances to the cloud with no

code changes

Applications tested and certified on a given

SQL Server version are also implicitly tested

and certified on that SQL Server version

native database compatibility level

Separate application and platform layer

upgrade cycles for less disruption

Compatibility certification benefits
Upgrade to the latest SQL Server Database Engine

without changing your critical applications

Frictionless migration

with no code changes

Upgrade & modernize your SQL Server database on-premises and in
the cloud with compatible certification
Stop worrying about certifying to Azure, on-premises, or named SQL Server versions.

Compatibility-based certification allows you to certify with focus on continuous application lifecycle

Microsoft Data Amp 5/8/2019 9:29 AM

10

Query plan

shape protection

Maintain

backwards compatibility

http://aka.ms/dbcompat

Database Compatibility Level protection with Microsoft
Microsoft provides an ecosystem of tools and services to test whether Database Compatibility Level certification

is right for you and protect you as you upgrade

Changes needed pre-upgrade

Microsoft Data Amp 5/8/2019 9:29 AM

11

80

90

100

110

120

130

140

150

Product

Compatibility Level

Designation per

product

S
u

p
p

o
rt

e
d

 C
o

m
p

a
ti

b
il

it
y
 L

e
v
e
l

V
a
lu

e
s

Upgrade from any earlier version of SQL Server and
the database retains its existing compatibility level
if it is at least minimum allowed for that instance of
SQL Server

For example, SQL Server 2008 databases have
supported compatibility up to SQL Server 2019 and
Azure SQL Database

Explore your Database

Compatibility Level

supported values

Azure

SQL

Database

140

SQL

Server

2019

150

SQL

Server

2017

140

SQL

Server

2016

130

SQL

Server

2014

120

SQL

Server

2012

110

SQL

Server

2008 R2

100

SQL

Server

2005

90

SQL

Server

2000

80

5/8/2019 9:30 AM

12

Time check – should be at 20 minutes.

5/8/2019 9:29 AM

13

Cost-based

optimization

Statistics

Cardinality Indexes

SARGability

SQL Server uses a cost-based optimizer which means that all the decisions that are made when generating
a query plan are based on their estimated cost. The goal of the optimizer is to return the results of your
query in the cheapest (i.e. the fastest) way. The optimizer is quite sophisticated and does a very good job
of executing queries quickly and efficiently, provided that it has the right tools and information to do its
job. There are many aspects to cost-based optimization, but essentially the optimizer uses the available
statistics and other information about your data such as constraints to estimate the cardinality of the query.
Based on this cardinality estimate, the optimizer will choose methods to access the data such as seeks,
scans and lookups using the indexes that are in place, provided that the predicates in the query are
SARGable. In the first part of our session, we are going to focus on cardinality and SARGability, since these
are often impacted by the code that is written against the database.

14

An estimate of the number of rows returned by

each operation – the basis of a cost estimate.

• Based on statistics metadata

• Assumptions made if statistics are not available

or not usable by the optimizer

• Poor estimations can result in inefficient plans
Cost-based

optimization

Statistics

Cardinality Indexes

SARGability

Cardinality is basically a fancy word for the number of rows returned by a query. In the case of query
optimization, SQL Server needs to understand the cardinality of each piece of the query – each table
accessed, each predicate in the WHERE clause, each join condition – in order to choose the correct data
access method. Take the following query for example:

SELECT *

FROM Users

WHERE IsActive = 1

Let’s say we have a non-clustered index on IsActive. Does it make sense for SQL Server to use this index to
return the rows for this query? In order to answer that question, SQL Server needs to have an idea of how
many rows have a value of 1 for IsActive in the Users table. If the entire table has IsActive = 1, it would
make more sense for SQL Server to scan the whole table rather than use the non-clustered index. SQL
Server uses statistics to estimate the number of rows returned, and this in turn allows SQL Server to choose
the access method that best suits the query. Of course, data will change over time, so this is one of the
reasons why it is very important to make sure your statistics are maintained on a regular basis.

Healthy statistics are essential for good query optimization, but the way you write the query can also have
an impact on how SQL Server estimates cardinality. This is what we will focus on in this session.

15

The extent to which a predicate can be used as a

Search ARGument for an index seek

• Non-SARGable expressions cannot seek, they

must scan a table or an index

• Non-SARGable expressions can significantly slow

down queries

Cost-based

optimization

Statistics

Indexes Cardinality

SARGability

SARGability is a word that implies whether or not SQL Server will be able to use an index to locate rows that
meet a predicate in a WHERE clause. In an index seek, the filter condition is used to limit the data that
needs to be searched in order to locate the matching rows. In a scan, all the data that is part of the table
or index needs to be searched for the rows that match the filter criteria.

Think of a cook book with a recipe name index in the back. If you are looking for a recipe for chocolate
chip cookies, you can use the index in the back of the book to look up chocolate chip cookies and will find
the page number for the recipe. You then turn to that page and you are done. Your filter condition
“WHERE RecipeName = ‘Chocolate Chip Cookies’” is SARGable. But what if you wanted to find all the
recipes that have the word ‘Chip’ somewhere in the recipe name? You would not be able to use the recipe
name index to find those recipes directly, so you would have to scan through all the names in the index to
find the ones that have ‘Chip’ in the name. Once you had those recipe names, you’d have to keep track of
all the page numbers and then flip through the book to each page number on your list to look at the
recipes. That’s a lot of work, it would probably be easier to flip through all the pages of the book looking
for the recipes with ‘Chip’ in the name. That’s a table scan, and that’s usually what happens when you have
a non-SARGable predicate in your WHERE clause.

16

Implicit

Conversions

Functions in

the Predicate

LIKE with a

Leading

Wildcard

OR in the

WHERE Clause

Composable

Logic

Table-valued

Functions

There are several code practices which can lead to issues with both cardinality estimates and SARGability.
This list is not comprehensive, but these are some of the most common issues that we encounter with SQL
Server applications in the field.

17

ProductID is defined as VARCHAR(8)

Rules of data

type precedence

Implicit conversions are essentially functions in the WHERE clause, but because they happen automatically
in the background, they are more difficult to detect. In the example on the slide, if 7 had been sent as a
string instead of an integer, there would be no issue with the query and the predicate would be SARGable.
Unfortunately, because of the rules of data type precedence, SQL Server needs to convert the varchar(8)
ProductID to an integer in order to make this comparison, it will not convert the 7 to a varchar(8).

Another common cause of implicit conversions is in string types being sent from .NET. String values
coming from .NET will be Unicode by default. If the strings in the database are defined as varchar rather
than nvarchar, this will lead to implicit conversions. Again, because of the rules of data type precedence,
varchar needs to be converted to nvarchar which will make all string comparisons in the application non-
SARGable and also cause SQL Server to make assumptions about cardinality.

If you are using Entity Framework, it is critical to ensure all your data types are properly mapped in the
mapping file. String types that are not mapped properly will be assumed to be nvarchar(4000).

18

Functions in the WHERE clause (when executed against a column in a table, not a literal value) will always
be non-SARGable because SQL Server needs to evaluate the function for every row in the table/index
before it can compare the results of this function to the value in the predicate. This results in a scan, but
also will impact the cardinality estimate. SQL Server has statistics for actual values in the table, not for the
results of the function, so it will have to make an assumption. This can lead to problems later in the query
plan with other predicates or joins that are not directly related to the function.

Consider this problem when designing your initial data model. Using a case-sensitive collation for example
might necessitate using the UPPER function for string comparisons. Using some kind of non-date data
type for storing dates may also lead to functions to translate the value into a date. Another common issue
is using a date/time field but wanting to compare only the date portion. Rather than using a function that
cuts off the time portion of the date/time field, use ranges instead as these will be SARGable. Often with
functions the predicate can be re-written as a range scan which is SARGable.

If the predicate cannot be re-written, consider using a computed column to pre-evaluate the function.
Creating an index on the computed column will make any predicate that uses the function SARGable and
allow SQL Server to calculate statistics for the results of the function, improving cardinality estimates.

19

Rewritten as

SARGable

expressions

Functions in the WHERE clause (when executed against a column in a table, not a literal value) will always
be non-SARGable because SQL Server needs to evaluate the function for every row in the table/index
before it can compare the results of this function to the value in the predicate. This results in a scan, but
also will impact the cardinality estimate. SQL Server has statistics for actual values in the table, not for the
results of the function, so it will have to make an assumption. This can lead to problems later in the query
plan with other predicates or joins that are not directly related to the function.

Consider this problem when designing your initial data model. Using a case-sensitive collation for example
might necessitate using the UPPER function for string comparisons. Using some kind of non-date data
type for storing dates may also lead to functions to translate the value into a date. Another common issue
is using a date/time field but wanting to compare only the date portion. Rather than using a function that
cuts off the time portion of the date/time field, use ranges instead as these will be SARGable. Often with
functions the predicate can be re-written as a range scan which is SARGable.

If the predicate cannot be re-written, consider using a computed column to pre-evaluate the function.
Creating an index on the computed column will make any predicate that uses the function SARGable and
allow SQL Server to calculate statistics for the results of the function, improving cardinality estimates.

20

Non-SARGable

SARGable

No leading

wildcard = range

scan

LIKE without a leading wildcard can be executed as a range scan, so this is SARGable. With a leading
wildcard, SQL Server needs to scan every value. Computed columns can be used in this case to pre-
evaluate the LIKE condition, but in most cases using a full-text index will work best.

21

An OR in the WHERE clause can also impact cardinality estimates and SARGability if the OR condition
connects predicates on two different fields in the table or in different tables. Often rewriting the query as
two separate queries with a UNION operator (or UNION ALL if there’s no possibility of duplicates) can be
much more efficient.

22

Try a UNION

instead

An OR in the WHERE clause can also impact cardinality estimates and SARGability if the OR condition
connects predicates on two different fields in the table or in different tables. Often rewriting the query as
two separate queries with a UNION operator (or UNION ALL if there’s no possibility of duplicates) can be
much more efficient.

23

5/8/2019 9:30 AM

24

Move conditional

logic outside the

query

5/8/2019 9:30 AM

25

'SELECT SalesOrderID, p.FirstName AS
SalesFirstName, p.LastName AS SalesLastName

FROM Sales.SalesOrderHeader AS soh

LEFT JOIN Person.Person AS p

ON soh.SalesPersonID = p.BusinessEntityID'

Or use

dynamic

SQL

5/8/2019 9:30 AM

26

Works like a parameterized view

A table-valued function is a function which returns a table as a result. You can use table-valued functions
to encapsulate query logic (similar to a view) and to simplify queries, but if used in the wrong way, they can
cause inefficient query plans to be created. An inline TVF is a function that has a single SELECT statement
and returns a resultset directly to the caller. Another way to write a TVF would be to have more
complicated logic that inserts values into a table variable and returns that table to the caller as a return
value. Functions like this can cause problems when used in a query because SQL Server cannot accurately
estimate the cardinality. Joining to an atomic TVF like this requires SQL Server to execute the entire
function first, put the results into tempdb and then join them with the rest of the query plan. Not only can
this be expensive, it’s also difficult to determine the true cost of the query because the cost of the function
will not be included in the total cost of the overall query and also won’t be reflected in the query plan when
you review it. With inline functions, SQL Server can treat them like a view. They can be expanded,
simplified and joined into the overall query tree, and thus their cost will be accurately estimated and
reflected in the query plan. If you choose to use table-valued functions, be sure to use inline functions if
possible.

Inline User-Defined Functions

http://technet.microsoft.com/en-us/library/ms189294(v=sql.105).aspx

27

Can be a multi-statement TVF (MSTVF)

CREATE OR ALTER FUNCTION dbo.ufn_FindReports (@InEmpID INT)

RETURNS @retFindReports TABLE

(

EmployeeID int primary key NOT NULL,

FirstName nvarchar(255) NOT NULL,

LastName nvarchar(255) NOT NULL,

JobTitle nvarchar(50) NOT NULL,

RecursionLevel int NOT NULL

)

--Returns a result set that lists all the employees who report to the

--specific employee directly or indirectly.*/

AS

BEGIN

WITH EMP_cte(EmployeeID, OrganizationNode, FirstName, LastName, JobTitle, RecursionLevel) -- CTE
name and columns

AS (

-- Get the initial list of Employees for Manager n

SELECT e.BusinessEntityID, e.OrganizationNode, p.FirstName, p.LastName, e.JobTitle, 0

FROM HumanResources.Employee e

INNER JOIN Person.Person p

ON p.BusinessEntityID = e.BusinessEntityID

WHERE e.BusinessEntityID = @InEmpID

UNION ALL

-- Join recursive member to anchor

SELECT e.BusinessEntityID, e.OrganizationNode, p.FirstName, p.LastName, e.JobTitle, RecursionLevel +

28

1

FROM HumanResources.Employee e

INNER JOIN EMP_cte

ON e.OrganizationNode.GetAncestor(1) = EMP_cte.OrganizationNode

INNER JOIN Person.Person p

ON p.BusinessEntityID = e.BusinessEntityID

)

-- copy the required columns to the result of the function

INSERT @retFindReports

SELECT EmployeeID, FirstName, LastName, JobTitle, RecursionLevel

FROM EMP_cte

RETURN

END;

GO

5/8/2019 9:30 AM

28

Can be an inline TVF

Always use Inline

TVFs if possible

But SQL Server 2019 and Azure SQL will inline MSTVF automatically

29

See https://github.com/Microsoft/tigertoolbox/tree/master/Sessions/Build-2019 for demo files.

5/8/2019 9:29 AM

30

https://aka.ms/LearnTSQLQuerying

https://aka.ms/DataDemos

https://aka.ms/IQPDemos

5/8/2019 9:29 AM

31

Modernizing Your Data Platform: May 9, 11:00 EST
The end of support for SQL Server 2008 is almost here, join leading data experts including Buck

Woody and Bob Ward to walk through the steps to modernization. Hosted by PASS, a global

community of data professionals and presented by Microsoft and Intel®, sessions include:

• Azure Data Estate Modernization

• Microsoft SQL Server 2019 Big Data Clusters Architecture

• Intelligent Query Processing in SQL Server 2019

• Modernizing with Intel Technologies

• Experience SQL Server 2019 on Linux and Containers

Register Now

https://www.pass.org/Modernization.aspx

Free Technical Webinar

32

5/8/2019 9:30 AM

33

5/8/2019 9:29 AM

34

