2% Microsoft

SQL Server 2022
Database Engine
Deep Dive - Part 1

Pedro Lopes
Principal Architect
@SQLPedro

[-:005400 T0P-005400

| == (@
X LX) ot St INL

(

''''''''''''''''''''''''''''''''''''''

- - - - e - - - = - - - - - —_- - - - - -

J
2

X

BONUS
2000

X

L
1

)

At the end, please rate part 1 of this session

=]

E n
https://sqlb.it/?72014 i_-
[u]

https://sqlb.it/?72014

Agenda

- SQL Server 2022 investment areas

- Improvements
- Storage Engine
- Availability
- Relational Engine
- Security

The next step for SQL Server

I 4 G

SQL Server 2016

Query Store
Polybase
Always Encrypted
Row Level Security
It just runs faster
Std Edition surface area

SQL Server 2017

SQL Server on Linux
Containers
Adaptive Query Processing
Automatic Tuning
Graph database
Machine Learning Services

SO

SQL Server 2019

Data virtualization
Intelligent Query Processing

Accelerated Database
Recovery

Data classification

SQL Server 2022

A hybrid, data and analytics platform built on industry-leading security, performance, and availability

Link feature in Azure SQL Managed Instance

@ Azure-enabled Synapse link for SQL Server
Azure Purview policies

g Industry leading SQL Server Ledger -
database engine Large memory and concurrency scalability
& Multi-write replication
2 Object Storage Data virtualization for any data lake
alnl Integration Object storage backup and restore

: Query store on by default with replica support
g 9 Idnttelngent Query store hints
atabase Intelligent Query Processing NextGen

JSON dat
JSON; T-sat Extending T-SQL 2%

Enhanced T-SQL surface area
Time series support

......

Storage Engine Improvements

1

NEANEAN

tempdb Performance Critical for Scalability %)

- tempdb is one of four system databases

- SQL Server performance and scalability is often centered on tempdb
nealth

- Important to optimize tempdb performance and apply best practices

- Important to track and address tempdb bottlenecks

tempdb Performance Critical for Scalability %)

SQL Server 2016 Improvements

« Setup experience has improved
 Trace Flag 1117 and 1118 are no longer required

SQL Server 2019 Improvements

« Memory-optimized tempdb metadata
« Concurrent PFS updates

tempdb Performance Critical for Scalability %)

SQL Server 2016 Improvements

« Setup experience has improved
 Trace Flag 1117 and 1118 are no longer required

SQL Server 2019 Improvements

« Memory-optimized tempdb metadata
« Concurrent PFS updates

SQL Server 2022 Improvements

 System page latch concurrency enhancements (GAM/SGAM)

Shrink Database with Low Priority

Customers often need to reclaim data space
Common for hosted environments (new database per customer)
Shrink Database operations can cause concurrency issues

Shrink Database WLP addresses this problem by waiting with less
restrictive locking

Similar to ALTER INDEX WAIT_AT LOW PRIORITY

DBCC SHRINKDATABASE (2, 20, NOTRUNCATE)
WITH WAIT_AT_LOW_PRIORITY (ABORT AFTER WAIT = SELF));

XML

XM

Compression

L data type is commonly used to store unstructured data

Data compression only applies to in-row scenarios (row, page)

XM
anc

XM

_ Compression will compress the XML data type in Azure SQL
SQL Server 2022

_ Compression can be specified during CREATE and ALTER of

TABLE and INDEX statements

sp_estimate_data_compression_savings will be expanded to
estimate XML savings

ALTER TABLE Sales.StoreBIGXMLCopy REBUILD PARTITION = ALL
WITH (DATA COMPRESSION = PAGE, XML_COMPRESSION = ON);

XML Compression
Demo

NEANEDANR

Current Buffer Pool Scan Operations

Operations that scan the buffer pool can be slow, especially on
large memory machines, such as:
Creating a new databases

File drop operations 8 @

Backup/restore operations
Always On failover events

DBCC CHECKDB ﬁo

Log restore operations

Internal operations (e.g., checkpoint) @ @ﬁ @

Buffer Pool Parallel Scan

Benefits both small and large databases on large-
memory machines

Customers running mission critical OLTP, and data
warehouse environments will see the most benefit

Improvement adds diagnostics and telemetry for
supportability and insights:
- Long Buffer Pool scans will be visible by the ERRORLOG

- Extended events will capture scan start/complete, errors, FlushCache,
etc.

Buffer Pool Parallel Scan
Demo

NEANEAN

Buffer Pool Parallel Scan Performance Results

Setup:
HP DL580
2TB RAM

BP warmed up
with 1TB of data
(~140M buffers).

*Units are elapsed time in seconds

Scenario Serial Scan Parallel Parallel Improvement

(2 tasks) (16 tasks)
FlushCache 7 3.3 0.5 15x faster with 16 parallel tasks.
ShutdownDB 6.2 3.3 0.5
(Small)
ShutdownDB 180 120 32 6x faster.
(Large)
DBCC Check 30 15 2 15x faster.
(Small) DBCC Check does 4 scans.
DBCC Check 55 30 5.4 10x faster
(Large) DBCC Check does 4 scans.
CreateDB 7 3.4 0.5 Does FlushCache
BackupDB 7 3.4 0.5 Does FlushCache
Restorelog 17 7.8 1.1 Does 2 FlushCache
DropCleanBuffers 100 51 29 4x faster

Other Storage Engine improvements

Accelerated Database Recovery: single thread used for cleanup
operations per database (from per instance only); overall
performance, scalability, and better telemetry for troubleshooting

In Memory OLTP Enhancements: manual cleanup sproc; overall
performance, scalability, and better telemetry for troubleshooting

Resumable ADD CONSTRAINT: powerful feature especially for
large, mission critical environments

Availability Improvements

1

NEANEDANR

Intel QAT backup compression

« Leverages Intel® QuickAssist Technology (Intel® QAT) for improved
packup performance

« Free-up processor cycles by offloading backup compression
« Reduce demands on processor
« Dramatically improves backup speed

--Enable at the server level
ALTER SERVER CONFIGURATION SET
HARWARE_OFFLOAD ON (QAT);

Intel QAT backup compression

« Leverages Intel® QuickAssist Technology (Intel® QAT) for improved
packup performance

« Free-up processor cycles by offloading backup compression
« Reduce demands on processor
« Dramatically improves backup speed

--Backup database with compression level“%%
BACKUP DATABASE testdb %
FROM DISK="'F:\SQLBACKUPS\testdb.bak"
WITH COMPRESSION

(ALGORITHM = 'QAT-DEFLATE');

Intel QAT backup compression

« Leverages Intel® QuickAssist Technology (Intel® QAT) for improved
packup performance

« Free-up processor cycles by offloading backup compression
« Reduce demands on processor
« Dramatically improves backup speed

--Backup database with compression level“%%
BACKUP DATABASE testdb %
FROM DISK="'F:\SQLBACKUPS\testdb.bak"
WITH COMPRESSION

(ALGORITHM = 'MS-XPRESS');

Multi-write replication

Multi-master writes for users across multiple locations

Challenge: | need automatic and logical conflict detection for multi-write replication

* Globally distributed
database replicas for geo- squ server 2022 -;.i-

localized writes
' T1: Update row 1 set A = 23

* Enhanced conflict detection — ‘/\
—& °©
_/

TO: Update row 1 set A = 45

‘
@

for inserts and updates with
Last Writer Wins (LWW)

Capabllltles Replica 1 Replica 2
* Ensures the last update is
. . Final Value?
persisted across all replicas el Yee
. A = 45 without LWW (highest replica wins regardless of timing)
based on the UTC time of A= 23 with LWW (last update wins regardless of replica ID)

the operation.

Other Availability improvements

Cross platform improved support for snapshot backups: T-SQL support
to freeze/thaw 1/O for a database and backup metadata to improve
coordinate snapshot backups (without VDI or VSS)

Parallel redo enhancements: faster database start up = faster failovers and
reduced lag for Always On AGs

Improve DAG throughput: use multiple parallel data connections to speed
up replication across DAG

Contained Always On Availability Groups: AG containing its own system
databases such as MSDB, and can contain user logins, certificates and other
user artifacts which were replicated to multiple AG replicas

Relational Engine Improvements

1

NEANEAN

Query Store ON by default

For new databases only

« SQL never changes database defaults when restoring/attaching to
higher version engine.

« We've added numerous scalability improvements over the years in
Azure and in SQL Server

« Better defaults starting with SQL Server 2019 = Azure

- Handles heavy ad-hoc workloads due to internal memory limits and
throttling

« Custom capture policies available for fine tuning

Query Store for Secondary Replicas

- Get the same support for the secondary replicas as you already do
on the primary

nad

#*

Read Write
workload

Primary Replica (Read/Write)

nad

#*

Read Only
workloads

- Query data will be visible by role type or secondary name

Enable Query Store for Secondary Replicas
Connect to the Primary Replica and enable Query Store:

ALTER DATABASE [Database Name] SET QUERY_STORE = ON

Turn on the query store for the secondary (execute on Primary):

ALTER DATABASE [Database Name]
FOR SECONDARY SET QUERY_STORE = ON (OPERATION MODE = READ WRITE);

Force and Unforce plan

Third optional plan scope argument added to the force and unforce plan
procedures:

EXEC sp query store force plan 46006, 2, 1
EXEC sp query store unforce plan 46006, 2, 1

Plan forcing scope parameter:

- 0 = force on read-write replica (default if omitted)
- 1 = force/unforce on all read-only replicas

- 2 = force/unforce on all replicas

Maintenance

sp_query_store_flush_db will apply only to the replicas on which it was
executed

The following apply per replica set:
- sp_query store_remove plan 2

- Sp_query_store_remove_ query 46006

- Sp_query_store_reset _exec _stats 2

If executed for a secondary role, action will be taken for all machines with that role
If executed from a named secondary, action will be taken for that secondary only

2% Microsoft

SQL Server 2022
Database Engine
Deep Dive - Part 2

Pedro Lopes
Principal Architect
@SQLPedro

[-:005400 T0P-005400

| == (@
X LX) ot St INL

(

''''''''''''''''''''''''''''''''''''''

- - - - e - - - = - - - - - —_- - - - - -

J
2

X

BONUS
2000

X

L
1

)

At the end, please rate part 2 of this session

https://sqlb.it/?72014

https://sqlb.it/?72014

Agenda

- Relational Engine
- Security

Query Store hints

This feature provides a simple method for shaping query plans and
behavior without changing application code

Leverages Query Store (on-by-default in Azure SQL Database) and
greatly simplifies the overall performance tuning experience

Example use cases for Query Store hints

Recompile a query on each execution

Cap the memory grant size for a bulk operation

Limit maximum degree of parallelism for specific queries

Use a Hash join instead of a Nested Loops join

Use compatibility level 120 while keeping everything else 150

Disable optimizer rowgoal for a SELECT TOP n query

How to use Query Store hints - Step 1
Find the Query Store query_id of the query you wish to modify:

SELECT query sql text, g.query id

FROM sys.query store query text qt

INNER JOIN sys.query store query gq ON
gt.query text id = g.query text id

WHERE query sql text like N'%April Minerd%';

query_sql_text query_id
SELECT T_S_SYMB, AVG(T_TRADE_PRICE) AS AVG_TRADE_... 46006

How to use Query Store hints — Step 2

Execute sp_query_store_set_hints with the query_id and query hint
string you wish to apply to the query:

-- Setting a single query hint
EXEC sp _query store set hints 46006, N'OPTION(MAXDOP 1)°;

-- Setting multiple query hints
EXEC sp _query store set hints 46006, N'OPTION(MAXDOP 1, USE

HINT (' 'QUERY_OPTIMIZER COMPATIBILITY LEVEL_120''))"';

To remove a hint:
EXEC sp_query store clear hints 46006;

Intelligent Query Processing

Adaptive Joins

Batch Mode

Interleaved
Execution

The Intelligent Query Processing feature family

Intelligent
Query
Processing

Adaptive Table Variable Approximate

Batch Mode Scalar UDF
Query Deferred Query o
d L for Row Store R Inlining
Processing Compilation Processing
DOP Memory Grant Approximate Approximate
CE Feedback Feedback Feedback Count Distinct Percentile

Batch Mode Row Mode Feef:Iback

Persistence

SQL Server 2017

Parameter
Sensitive Plan
Optimization

Azure SQL DB

SQL Server 2019

Compilation
Replay

SQL Server 2022

Parameter-sensitive Plan
Optimization

2022 public preview in Azure SQL Database

SQL Server 2022 CTP 1.0

1

NEANENAN

[N N/
\/

\
/

Parameter-sensitive plan problem

Parameter-sensitive Plan (PSP), a.k.a. Parameter-sniffing
problem refers to a scenario where a single cached plan for
a parameterized query is not optimal for all possible
Incoming parameter values

If the 15t compilation is not representative of most
executions, you have a perceived "bad plan”

PSP today (example of Real Estate agents portfolio)

New compile on Agent 4

7 {C] it

HNe=sted Loops Index Seek (NonClustered)

22 Sort
=== c t?rE“ 5 {Inner Join) [Froperty] . [NCI Property Agentld]
SELECT gsk: =< Cost: O % Cost: 15 %
0.000=
Cost: 0 % 3 of 0.000s 0.000=
5 139% 3 of 3 of
() 3 (100%) 3 (100%)

B QueryTimeStats
CpuTime

T -
ElapsedTime
Key Lookup (Clustered)
[Froperty] . [FE__ Property TOCSAT3S54..
Cost: 33 %
0.000s
3 of

3 [(100%)

PSP today

Using cached plan for Agent 2

T i i

=== Sort Hested Loops Index S5eek (NonClustered)
=== or
=== . ({Inner Join) <:| [Property] . [NCI Property AgentId]
Cost: 52 % - =
SELECT iin1-5? Cost: 0 % 4 Cost: 15 %
Cost: 0 % 499-53'?.0 . o:01:01 14.224s
3 166522333% 48995370 of 4995370 of
{) 3 {1lee512333%) 3 (lee512333%)

)

Eeyv Lookup (Clustered)

e Cost: 33 %
38.36Bs
4995370 of
. 3 (166512333%)
New compile on Agent 2
(—4 .!rhn
= zd T
=== Farallelism Clustered Index Scan (Clustered)
==) (Gather Streams) Sort [Property].[PK_ Property 7OCSA7354..
SELECT B e—— Cost: 3% &
Cost: 0 & 7.193= 2.247s 0.666=
49985370 of 4995370 of 4995370 of

49585370 (100%
49595370 (100%) () 45955370 (100%)

[Froperty] . [PE__ Froperty TOCSAT354..

B QueryTimeStats
CpuTime
ElapsedTime

B QueryTimeStats
CpuTime
ElapsedTime

88667
214222

46620
105288

PSP workarounds

OPTION Disable
(OPTIMIZE FOR parameter
UNKNOWN) sniffing entirely

OPTION
RECOMPILE (OPTIMIZE
FOR...)

Force a known
plan

NEINETe Dynamic string

KEEPFIXEDPLAN :
procedures execution

PSP Optimization

Enabled using Database Compatibility 160

Automatically enable multiple, active cached plans for a single
parameterized statement

Cached execution plans will accommodate different data sizes
pased on the customer-provided runtime parameter value(s)

Design considerations
- If we generate too many plans, we could create cache bloat, so limit # of plans in cache
- Overhead of PSP optimization must not outweigh benefit

- Compatible with Query Store plan forcing

Predicate selection

During initial compilation we will evaluate the most “at
risk” parameterized predicates (up to three out of all

available)

First version is scoped to equality predicates referencing

statistics-covered columns; 1.e., WHERE AgentId =
@AgentId

Uses the column statistics histogram(s) to identify non
uniform distributions

Boundary value selection (example of Real Estate
agents portfolio)

Parameterized query

Dispatcher plan

e R —

Query variant 'Agents with < 10Kk listings' Query variant 'Agents with > 10k to < 1M listings’ Query variant 'Agents with >= 1M listings'

| | |

Cached plan: seek + lookup + small memory grant Cached plan: scan + medium memory grant Cached plan: scan + large memory grant

Dispatchers and Query Variants

A dispatcher plan contains logic, called a dispatcher
expression, which then maps to query variants based on
predicate cardinality range boundary values

The dispatcher plan is built during initial optimization along
with 1st variant, and determines the available scope for the last
evaluated set of “at risk” predicates

Dispatcher plans are also automatically rebuilt if there are
significant data distribution changes (for example resulting in
different predicates being evaluated)

Query Variants

Each query variant will have its own query execution plan and is

differentiated in Query Store

Query variants will have the same query hash value so
customers can still determine the aggregate resource usage

for queries that differ only by input va

ues

Plans for a query variant in the same ¢

Ispatcher will

Independently recompile as needed, t
the feature

ne same way as Is without

PSP Optimization

Demo

Force and Unforce plan

Same force and unforce plan procedures:

EXEC sp query store force plan 46006, 2, 1
EXEC sp query store unforce plan 46006, 2, 1

Considerations:
- If a variant is forced, dispatcher is not forced

- If a dispatcher is forced, this means only variants from that dispatcher are considered
eligible for use

- Previously forced variants in the same dispatcher are forced again

- Previously forced variants from other dispatchers will become inactive, but retain “forced” status until such time
as their dispatcher is forced again

CE Feedback

2022 public preview in Azure SQL Database

SQL Server 2022 CTP 1.0

1

NEANEDANR

Cardinality Estimation today

Cardinality estimation (CE) is the process by which the Query
Optimizer derives the estimated # of rows for a query plan

CE models are based on assumptions about data distribution and
expected usage. To know more about cardinality estimation, refer to
https://aka.ms/sqlCE

The cardinality estimation process sometimes makes incorrect
assumptions which lead to poor plan quality

One model doesn’t fit all scenarios

https://aka.ms/sqlCE

Introducing CE Feedback

Learn which CE
model
assumptions are
optimal over time
and then apply
the historically
‘correct”
assumption.

CE Feedback will identify model-related assumptions and will
evaluate whether they are accurate for repeating queries

If an assumption looks incorrect, we'll test a new CE model
assumption and verify if it helps

If it helps, we'll replace the current cached plan

Addresses
scenarios not yet
handled by other
IQP features that
can cause
perceived
regressions:

Independence vs. Correlation assumptions

Join Containment assumptions (simple vs base)

Row Goal

CE Feedback Not a new "new CE”

Enabled using Database Compatibility 160

CEF will only apply feedback in the presence of significant model estimation errors
resulting in performance drops (e.g. orders of magnitude off)

Repeating queries with cache-persistent plans

Adjusted through USE HINT query hints + hint support in Query Store.
- Will honor any hard-coded query hints if used

Only verified feedback is persisted.
- If next execution regresses, back off.
- Cancelled query = regression

CE Feedback — Correlation Analysis

Correlation estimates can be fully
independent, partially
independent or fully correlated

O @ @

Partial
correlation

Full

Independence :
correlation

When correlation is used, CEF will
attempt to move the correlation to
the correct direction one step at a
time — based on the underestimate
or overestimate

SELECT AddressID,
AddresslLinel,
AddressLine2

FROM Person.Address

WHERE StateProvincelID = 9
AND City = 'Dallas’;

CE Feedback — Row goal Analysis

Is there a large % of
rows matching the
query predicate?

Row goal can apply If so, scanning a few CE Feedback can
to queries of type pages might be disable the row goal
select TOP n *\ enough to produce scan and enable a
FAST \ IN \ EXISTS the required rows seek

QO calculates the But if the data is not
number of rows to uniformly
be read to find the distributed, SQL
required “TOP n” might scan more
rows pages than

estimated = row
goal was inefficient

SELECT TOP 1 t1.*
FROM Sales.SalesOrderHeader AS t1
INNER JOIN Sales.SalesOrderDetail AS t2 ON tl1.SalesOrderID = t2.SalesOrderID

CE Feedback — Containment Types

Simple containment assumes that join predicates are fully

correlated.

 Estimate join selectivity based on the input relations only — using the already
scaled-up or down estimates of any non-join filter predicates on the joined tables

« Summary: first estimate filters and then join

Base containment assumes no correlation between join predicates

and downstream filters (including downstream joins).

« Estimate join selectivity based on the base table properties before applying the
selectivity of non-join filters

« Summary: first estimate join and then filters

CE Feedback — Containment Analysis

If it's determined that

Containment applies to joins containment is at fault, simply
only, and only if there are non- recommend the opposite
join filters below the join containment model

If incoming join-input estimates
are acceptable, and outgoing
estimates bad, it is likely
containment model related

SELECT *

FROM FactCurrencyRate AS f

INNER JOIN DimDate AS d ON f.DateKey = d.DateKey

WHERE d.MonthNumberOfYear = 7 AND f.CurrencyKey = 3 AND f.AverageRate > 1

CE Feedback

Demo

Auto update stats Wait Low Priority

SQL updates statistics automatically as needed to reflect changes in the
underlying data distribution

This helps the Query Optimizer generate better plans

However, extra time added to some short query executions due to stats update
may be an overhead: that's why we have AUTO_UPDATE_STATISTICS_ASYNC

Stale statistics are then updated on a background thread asynchronously: may
still generate blocking

SQL Server 2022 allows async stats wait for the Sch-M lock to be low priority (DB
scoped config)

Normal async auto update stats

o o
/ Query 1 Query N+1
Holding Sch-S N Sch-S
Waiting
Statistics Holding Waiting
Query 2 o Query N+2
metadata Sch.s < Waiting— Sch.S
object ! ,
: Async i
l stats update " :
! }
Holding : Sch-M Waiting !
o \ﬂ
Query N Query M
Sch-S Sch-S
Normal priority queue

Async auto update stats Wait Low Priority

/ Query 1
Sch-S

Holding

v

Holding | Query 2

Sch-S Waiting a

Statistics
metadata

:
object : Async
! stats update
Holding i Sch-M
0
Query M
Sch-S

Normal priority queue Low priority queue

Other Relational Engine improvements

Allow column drop with existing stats: opt-in to stats that
can get dropped if column is dropped

WINDOW clause: allows specifying window components using
a named window to use in OVER clauses directly (DB compat
160 only)

SELECT SUM(OrderQty) SELECT SUM(OrderQty) OVER

OVER(PARTITION BY SalesOrderID) WinSales AS TotalOrderQty

AS TotalOrderQty - FROM Sales.SalesOrderDetail

FROM Sales.SalesOrderDetail; WINDOW WinSales AS (PARTITION
BY SalesOrderID);

Other Relational Engine improvements

GREATEST and LEAST (local var, columns, expressions)

SELECT GREATEST ('6.62', 3.1415, N'7') ASGreatestVal,;

SELECT LEAST('6.62"', 3.1415, N'7') AS LeastVal;
GO

STRING_SPLIT Ordinal (parameter and new column

added for programmatic handling) —

ordinal

SELECT * FROM STRING SPLIT('B-I-T-S', '-', 1); B

I
T
S

1
2
3
4

Security Improvements

NEANEDANR

SQL Server ledger

Tamper-evidence track record of data over time

Challenge: | want the power of blockchain
in a centralized system like SQL Server

* Use a cryptographically hashed ledger to protect
data from tampering and by malicious actors

* Built into SQL Server with T-SQL

* Establish digital trust in a centralized system using
blockchain technology.

* Attest to other parties that data integrity has not
been compromised

Bank
Regulator

Ledger view

Updatable History table
ledger table

\\ 4
Trusted
storage

Block N

Database ledger

Azure AD Authentication >

7

New authentication option for SQL Server instance

Allows to access Azure AD to authenticate and enables
MFA scenarios

Automated setup using Azure portal and Azure Arc
agent

Setup Azure AD administrator the same way Azure
SQL does

Access Control at scale: using policies by Azure
Purview

Azure AD

Azure Subscription
Policy P

_)

Published Resource Groups

Data Reader

»
»

- : for r|<l &) |<|—‘
Assignment GrpDataScientists ;

Resources ﬁ
Apply the Data Reader policy across Arc

] |
enabled SQL Server, Azure SQL Managed @ @@ @@ @ @@

Instance, Azure SQL Database and Cosmos DB

Other Security Features

Always Encrypted with secure enclaves: new query patterns, including ORDER BY, JOIN and GROUP BY on
encrypted columns using enclaves

Crypto enhancements: import/backup/create certificates from PFX; Database Master Key backup/restore

to/from Azure Blob Storage; crypto improvements related to system-generated certificates and hashing
algorithm usage

New granular permissions and roles: new permissions to help implement the PoLP; Ownership-chaining
covered by new permission

New granular permissions for DDM: GRANT/DENY UNMASK permission at schema, table, and column-
level (same as Azure)

Support for TLS 1.3: moving from negotiated to strict encryption established by the connection string

Microsoft Defender for SQL Server: easier setup experience for SQL Server 2022

Learn more

Learn more about SQL Server 2022

aka.ms/sqlserver2022

Register to apply for the SQL Server 2022 Early Adoption Program and stay informed
D aka.ms/EAPSignup

,\‘ Watch a technical deep-dive on SQL Server 2022
N aka.ms/sqlserver2022mechanics

Don’t miss us on Data Exposed
é aka.ms/dataexposed

https://aka.ms/EAPSignup
https://aka.ms/sqlserver2022
https://aka.ms/sqlserver2022mechanics
https://aka.ms/dataexposed

S® Microsoft

Continue your SQL journey on Microsoft Learn

The next step to expanding your technical skills

: : : o
Sharpen the technical skills you need to advance your career with 58 /O career opportunities improvement

free courses and designated learning paths. 58% of certified professionals report Azure certifications
have helped them improve their career progression opportunities *

Advance your career in cloud data engineering Build in-demand skills Increase your productivity and efficiency

Get started at aka.ms/azuresqglfundamentals

“Nigel Frank Microsoft Azure Salary Survey (June 2020) https://www.nigelfrank.com/microsoft-azure-salary-survey/

http://aka.ms/azuresqlfundamentals
https://www.nigelfrank.com/microsoft-azure-salary-survey/

At the end, please rate this 2-part session

https://sqlb.it/?7207

https://salb.it/?72014

https://sqlb.it/?7207
https://sqlb.it/?72014

