
SQL Server 2022

Database Engine

Deep Dive - Part 1

Pedro Lopes

Principal Architect

@SQLPedro

https://sqlb.it/?72014

https://sqlb.it/?72014

The next step for SQL Server

SQL Server 2016

Query Store

Polybase

Always Encrypted

Row Level Security

It just runs faster

Std Edition surface area

SQL Server 2017

SQL Server on Linux

Containers

Adaptive Query Processing

Automatic Tuning

Graph database

Machine Learning Services

SQL Server 2019

Data virtualization

Intelligent Query Processing

Accelerated Database

Recovery

Data classification

SQL Server 2022
A hybrid, data and analytics platform built on industry-leading security, performance, and availability

Azure-enabled

Link feature in Azure SQL Managed Instance

Synapse link for SQL Server

Azure Purview policies

Industry leading

database engine

Data virtualization for any data lake

Object storage backup and restore

Object Storage

Integration

SQL Server Ledger

Large memory and concurrency scalability

Multi-write replication

Query store on by default with replica support

Query store hints

Intelligent Query Processing NextGen

JSON data

Enhanced T-SQL surface area

Time series support

Intelligent

database

Extending T-SQL

 tempdb is one of four system databases

##

SQL Server 2016 Improvements

• Setup experience has improved

• Trace Flag 1117 and 1118 are no longer required

SQL Server 2019 Improvements

• Memory-optimized tempdb metadata

• Concurrent PFS updates

##

SQL Server 2016 Improvements

• Setup experience has improved

• Trace Flag 1117 and 1118 are no longer required

SQL Server 2019 Improvements

• Memory-optimized tempdb metadata

• Concurrent PFS updates

SQL Server 2022 Improvements

• System page latch concurrency enhancements (GAM/SGAM)

##

DBCC SHRINKDATABASE (2, 20, NOTRUNCATE)
WITH WAIT_AT_LOW_PRIORITY (ABORT_AFTER_WAIT = SELF));

 sp_estimate_data_compression_savings

ALTER TABLE Sales.StoreBIGXMLCopy REBUILD PARTITION = ALL
WITH (DATA_COMPRESSION = PAGE, XML_COMPRESSION = ON);

Setup:

HP DL580

2TB RAM

*Units are elapsed time in seconds

Scenario Serial Scan Parallel
(2 tasks)

Parallel
(16 tasks)

Improvement

FlushCache 7 3.3 0.5 15x faster with 16 parallel tasks.

ShutdownDB
(Small)

6.2 3.3 0.5

ShutdownDB
(Large)

180 120 32 6x faster.

DBCC Check
(Small)

30 15 2 15x faster.
DBCC Check does 4 scans.

DBCC Check
(Large)

55 30 5.4 10x faster
DBCC Check does 4 scans.

CreateDB 7 3.4 0.5 Does FlushCache

BackupDB 7 3.4 0.5 Does FlushCache

RestoreLog 17 7.8 1.1 Does 2 FlushCache

DropCleanBuffers 100 51 29 4x faster

Other Storage Engine improvements

Accelerated Database Recovery: single thread used for cleanup

operations per database (from per instance only); overall

performance, scalability, and better telemetry for troubleshooting

In Memory OLTP Enhancements: manual cleanup sproc; overall

performance, scalability, and better telemetry for troubleshooting

Resumable ADD CONSTRAINT: powerful feature especially for

large, mission critical environments

--Enable at the server level
ALTER SERVER CONFIGURATION SET
HARWARE_OFFLOAD ON (QAT);

--Backup database with compression level
BACKUP DATABASE testdb
FROM DISK='F:\SQLBACKUPS\testdb.bak'
WITH COMPRESSION
(ALGORITHM = 'QAT-DEFLATE');

--Backup database with compression level
BACKUP DATABASE testdb
FROM DISK='F:\SQLBACKUPS\testdb.bak'
WITH COMPRESSION
(ALGORITHM = 'MS-XPRESS');

Multi-write replication
Multi-master writes for users across multiple locations

T1: Update row 1 set A = 23 T0: Update row 1 set A = 45

23

• Globally distributed

database replicas for geo-

localized writes

• Enhanced conflict detection

for inserts and updates with

Last Writer Wins (LWW)

capabilities

• Ensures the last update is

persisted across all replicas

based on the UTC time of

the operation.

SQL Server 2022

I need automatic and logical conflict detection for multi-write replication

Other Availability improvements

Cross platform improved support for snapshot backups: T-SQL support

to freeze/thaw I/O for a database and backup metadata to improve

coordinate snapshot backups (without VDI or VSS)

Parallel redo enhancements: faster database start up = faster failovers and

reduced lag for Always On AGs

Improve DAG throughput: use multiple parallel data connections to speed

up replication across DAG

Contained Always On Availability Groups: AG containing its own system

databases such as MSDB, and can contain user logins, certificates and other

user artifacts which were replicated to multiple AG replicas

For new databases only

• SQL never changes database defaults when restoring/attaching to

higher version engine.

Why now?

• We’ve added numerous scalability improvements over the years in

Azure and in SQL Server

• Better defaults starting with SQL Server 2019 = Azure

• Handles heavy ad-hoc workloads due to internal memory limits and

throttling

• Custom capture policies available for fine tuning

Query Store for Secondary Replicas

 Get the same support for the secondary replicas as you already do

on the primary

 Query data will be visible by role type or secondary name

Secondary Replicas

(Read Only)

Read Write

workload

Primary Replica (Read/Write)

Read Only

workloads

resides on Primary

Query Store

ALTER DATABASE [Database_Name] SET QUERY_STORE = ON

Turn on the query store for the secondary (execute on Primary):

ALTER DATABASE [Database_Name]
FOR SECONDARY SET QUERY_STORE = ON (OPERATION_MODE = READ_WRITE);

sp_query_store_flush_db will apply only to the replicas on which it was

executed

The following apply per replica set:

If executed for a secondary role, action will be taken for all machines with that role

If executed from a named secondary, action will be taken for that secondary only

SQL Server 2022

Database Engine

Deep Dive - Part 2

Pedro Lopes

Principal Architect

@SQLPedro

https://sqlb.it/?72014

https://sqlb.it/?72014

 SQL Server 2022 investment areas

 Improvements

 Storage Engine

 Availability

Workload Query Store

Recompile a query on each execution

Cap the memory grant size for a bulk operation

Limit maximum degree of parallelism for specific queries

Use a Hash join instead of a Nested Loops join

Use compatibility level 120 while keeping everything else 150

Disable optimizer rowgoal for a SELECT TOP n query

SELECT query_sql_text, q.query_id

FROM sys.query_store_query_text qt

INNER JOIN sys.query_store_query q ON

qt.query_text_id = q.query_text_id

WHERE query_sql_text like N'%April Minerd%';

-- Setting a single query hint

EXEC sp_query_store_set_hints 46006, N'OPTION(MAXDOP 1)’;

-- Setting multiple query hints
EXEC sp_query_store_set_hints 46006, N'OPTION(MAXDOP 1, USE

HINT(''QUERY_OPTIMIZER_COMPATIBILITY_LEVEL_120''))';

EXEC

Intelligent

Query

Processing

Adaptive

Query

Processing

Adaptive Joins

Batch Mode

Interleaved

Execution
CE Feedback

DOP

Feedback

Memory Grant

Feedback

Batch Mode Row Mode
Feedback

Persistence

Table Variable

Deferred

Compilation

Batch Mode

for Row Store

Approximate

Query

Processing *

Approximate

Count Distinct

Approximate

Percentile

Scalar UDF

Inlining

Parameter

Sensitive Plan

Optimization

Compilation

Replay

SQL Server 2017 SQL Server 2019 SQL Server 2022

The Intelligent Query Processing feature family

2022 public preview in Azure SQL Database

SQL Server 2022 CTP 1.0

Parameter-sensitive Plan (PSP), a.k.a. Parameter-sniffing

problem refers to a scenario where a single cached plan for

a parameterized query is not optimal for all possible

incoming parameter values

If the 1st compilation is not representative of most

executions, you have a perceived “bad plan”

New compile on Agent 4

Using cached plan for Agent 2

New compile on Agent 2

RECOMPILE

OPTION

(OPTIMIZE

FOR…)

OPTION

(OPTIMIZE FOR

UNKNOWN)

Disable

parameter

sniffing entirely

KEEPFIXEDPLAN
Force a known

plan

Nested

procedures

Dynamic string

execution

Enabled using Database Compatibility 160

Automatically enable multiple, active cached plans for a single

parameterized statement

Cached execution plans will accommodate different data sizes

based on the customer-provided runtime parameter value(s)

Design considerations

During initial compilation we will evaluate the most “at

risk” parameterized predicates (up to three out of all

available)

First version is scoped to equality predicates referencing

statistics-covered columns; i.e., WHERE AgentId =
@AgentId

Uses the column statistics histogram(s) to identify non

uniform distributions

A dispatcher plan contains logic, called a dispatcher

expression, which then maps to query variants based on

predicate cardinality range boundary values

The dispatcher plan is built during initial optimization along

with 1st variant, and determines the available scope for the last

evaluated set of “at risk” predicates

Dispatcher plans are also automatically rebuilt if there are

significant data distribution changes (for example resulting in

different predicates being evaluated)

Query Variants

Each query variant will have its own query execution plan and is

differentiated in Query Store

Query variants will have the same query hash value so

customers can still determine the aggregate resource usage

for queries that differ only by input values

Plans for a query variant in the same dispatcher will

independently recompile as needed, the same way as is without

the feature

2022 public preview in Azure SQL Database

SQL Server 2022 CTP 1.0

Cardinality estimation (CE) is the process by which the Query

Optimizer derives the estimated # of rows for a query plan

CE models are based on assumptions about data distribution and

expected usage. To know more about cardinality estimation, refer to

https://aka.ms/sqlCE

The cardinality estimation process sometimes makes incorrect

assumptions which lead to poor plan quality

https://aka.ms/sqlCE

Learn which CE

model

assumptions are

optimal over time

and then apply

the historically

“correct”

assumption.

CE Feedback will identify model-related assumptions and will

evaluate whether they are accurate for repeating queries

If an assumption looks incorrect, we’ll test a new CE model

assumption and verify if it helps

If it helps, we’ll replace the current cached plan

Addresses

scenarios not yet

handled by other

IQP features that

can cause

perceived

regressions:

Independence vs. Correlation assumptions

Join Containment assumptions (simple vs base)

Row Goal

Not a new “new CE”

Enabled using Database Compatibility 160

CEF will only apply feedback in the presence of significant model estimation errors

resulting in performance drops (e.g. orders of magnitude off)

Repeating queries with cache-persistent plans

Adjusted through USE HINT query hints + hint support in Query Store.

- Will honor any hard-coded query hints if used

Only verified feedback is persisted.

- If next execution regresses, back off.

- Cancelled query = regression

SELECT AddressID,

AddressLine1,

AddressLine2

FROM Person.Address

WHERE StateProvinceID = 9

AND City = 'Dallas';

Independence
Partial

correlation

Full

correlation

Row goal can apply

to queries of type

select TOP n * \

FAST \ IN \ EXISTS

QO calculates the

number of rows to

be read to find the

required “TOP n”

rows

Is there a large % of

rows matching the

query predicate?

If so, scanning a few

pages might be

enough to produce

the required rows

But if the data is not

uniformly

distributed, SQL

might scan more

pages than

estimated = row

goal was inefficient

CE Feedback can

disable the row goal

scan and enable a

seek

SELECT TOP 1 t1.*

FROM Sales.SalesOrderHeader AS t1

INNER JOIN Sales.SalesOrderDetail AS t2 ON t1.SalesOrderID = t2.SalesOrderID

Simple containment assumes that join predicates are fully

correlated.

• Estimate join selectivity based on the input relations only – using the already

scaled-up or down estimates of any non-join filter predicates on the joined tables

• Summary: first estimate filters and then join

Base containment assumes no correlation between join predicates

and downstream filters (including downstream joins).

• Estimate join selectivity based on the base table properties before applying the

selectivity of non-join filters

• Summary: first estimate join and then filters

Containment applies to joins

only, and only if there are non-

join filters below the join

If incoming join-input estimates

are acceptable, and outgoing

estimates bad, it is likely

containment model related

If it’s determined that

containment is at fault, simply

recommend the opposite

containment model

SELECT *

FROM FactCurrencyRate AS f

INNER JOIN DimDate AS d ON f.DateKey = d.DateKey

WHERE d.MonthNumberOfYear = 7 AND f.CurrencyKey = 3 AND f.AverageRate > 1

SQL updates statistics automatically as needed to reflect changes in the

underlying data distribution

This helps the Query Optimizer generate better plans

However, extra time added to some short query executions due to stats update

may be an overhead: that’s why we have AUTO_UPDATE_STATISTICS_ASYNC

Stale statistics are then updated on a background thread asynchronously: may

still generate blocking

SQL Server 2022 allows async stats wait for the Sch-M lock to be low priority (DB

scoped config)

Statistics
metadata

object
Async

stats update
Sch-M

Waiting

Query N+1
Sch-S

Query N+2
Sch-S

Query M
Sch-S

Waiting

Waiting

Waiting

Query 1
Sch-S

Query 2
Sch-S

Query N
Sch-S

Holding

Holding

Normal priority queue

Holding

Statistics
metadata

object

Query 1
Sch-S

Query 2
Sch-S

Query M
Sch-S

Holding

Holding

Holding

Async
stats update

Sch-M

Waiting

Normal priority queue Low priority queue

Other Relational Engine improvements

Allow column drop with existing stats: opt-in to stats that

can get dropped if column is dropped

WINDOW clause: allows specifying window components using

a named window to use in OVER clauses directly (DB compat

160 only)

SELECT SUM(OrderQty)
OVER(PARTITION BY SalesOrderID)
AS TotalOrderQty
FROM Sales.SalesOrderDetail;

SELECT SUM(OrderQty) OVER
WinSales AS TotalOrderQty
FROM Sales.SalesOrderDetail
WINDOW WinSales AS (PARTITION
BY SalesOrderID);

Other Relational Engine improvements

GREATEST and LEAST (local var, columns, expressions)

STRING_SPLIT Ordinal (parameter and new column

added for programmatic handling)

SELECT GREATEST ('6.62', 3.1415, N'7') AS GreatestVal;

SELECT LEAST ('6.62', 3.1415, N'7') AS LeastVal;
GO

SELECT * FROM STRING_SPLIT('B-I-T-S', '-', 1);

value ordinal

B 1

I 2

T 3

S 4

Trusted
storage

Database ledger

Block N Block N-1 Block N-2

Ledger view

History tableAppend-only

ledger table
Updatable

ledger table

SQL Server ledger
Tamper-evidence track record of data over time

Bank ABank
Regulator

• Use a cryptographically hashed ledger to protect

data from tampering and by malicious actors

• Built into SQL Server with T-SQL

• Establish digital trust in a centralized system using

blockchain technology.

• Attest to other parties that data integrity has not

been compromised

I want the power of blockchain

in a centralized system like SQL Server

Azure AD Authentication

New authentication option for SQL Server instance

Allows to access Azure AD to authenticate and enables

MFA scenarios

Automated setup using Azure portal and Azure Arc

agent

Setup Azure AD administrator the same way Azure

SQL does

Azure Subscription

Resources

Resource GroupsPublished

Assignment

Data Reader
for

GrpDataScientists

Policy

Users Groups

Azure AD

Other

Always Encrypted with secure enclaves: new query patterns, including ORDER BY, JOIN and GROUP BY on

encrypted columns using enclaves

Crypto enhancements: import/backup/create certificates from PFX; Database Master Key backup/restore

to/from Azure Blob Storage; crypto improvements related to system-generated certificates and hashing

algorithm usage

New granular permissions and roles: new permissions to help implement the PoLP; Ownership-chaining

covered by new permission

New granular permissions for DDM: GRANT/DENY UNMASK permission at schema, table, and column-

level (same as Azure)

Support for TLS 1.3: moving from negotiated to strict encryption established by the connection string

Microsoft Defender for SQL Server: easier setup experience for SQL Server 2022

Register to apply for the SQL Server 2022 Early Adoption Program and stay informed

aka.ms/EAPSignup

Learn more about SQL Server 2022

aka.ms/sqlserver2022

Watch a technical deep-dive on SQL Server 2022

aka.ms/sqlserver2022mechanics

Don’t miss us on Data Exposed

aka.ms/dataexposed

https://aka.ms/EAPSignup
https://aka.ms/sqlserver2022
https://aka.ms/sqlserver2022mechanics
https://aka.ms/dataexposed

Advance your career in cloud data engineering Build in-demand skills Increase your productivity and efficiency

Get started at aka.ms/azuresqlfundamentals

Continue your SQL journey on Microsoft Learn

Sharpen the technical skills you need to advance your career with

free courses and designated learning paths.

career opportunities improvement58%
58% of certified professionals report Azure certifications

have helped them improve their career progression opportunities *

The next step to expanding your technical skills

* Nigel Frank Microsoft Azure Salary Survey (June 2020) https://www.nigelfrank.com/microsoft-azure-salary-survey/

http://aka.ms/azuresqlfundamentals
https://www.nigelfrank.com/microsoft-azure-salary-survey/

https://sqlb.it/?7207

https://sqlb.it/?72014

https://sqlb.it/?7207
https://sqlb.it/?72014

