
Query Performance Insights:
What’s new?

Slides in http://aka.ms/tigertoolbox

Under “Sessions” folder

P E D R O L O P E S

Sr. Program Manager, SQL Server

Engineering

/pedroazevedolopes

@SQLPedro

Focus Areas

Relational Engine: Query
Processor,
Programmability,
Performance

Agenda

A b r i e f h i s t o r y o f S Q L S e r v e r
Q u e r y Pe r f o r m a n c e

Query Performance Journey

Query Optimizer

Diagnostics and Tools

Query Execution

Retired SQL 2000 docs available in PDF at

https://download.microsoft.com/download/5/4/A/54AFD350-6477-4910-9DF2-

4C472C906684/SQL2000_release.pdf

https://download.microsoft.com/download/5/4/A/54AFD350-6477-4910-9DF2-4C472C906684/SQL2000_release.pdf

Query Performance Journey

Query Optimizer

Diagnostics and Tools

Query Execution

D i a g n o s t i c s E n h a n c e m e n t s

- S e r ve r a n d D a t a b a s e

Performance Dashboard in SSMS Starting with SSMS v17.2

No extra downloads!

No new schema to deploy!

Long standing request by

CSS and customers

New categorized

Latches page

Scoring added to

Missing Index Report

Categorized Wait

stats page

Query Store – new reports

D i a g n o s t i c s E n h a n c e m e n t s

- Q u e r y A n a l y s i s

Query plans: fundamental query perf diagnostics

15

• Query

• Session

• Global

Getting all context info in Showplan: Trace Flags
TFs enabled at

query compile time

TFs active at query

execution time

Getting all context info in Showplan: Times

Is all the elapsed time

spent on CPU? Look

for waits

How much elapsed

time is spent on UDF?
More on

Scalar

UDFs later

Getting all context info in Showplan: Waits

Shows top 10 waits from
sys.dm_exec_session_wait_stats

Correlate waits

with overall

query times

Note: Parallelism waits available in SQL Server 2016 SP2, 2017 CU3 and 2019

Getting all context info in Showplan: memory

Is the used memory close to granted? Great!

Is the used memory much below granted?

Hurting concurrency…

Is the used memory above granted?

Possibility of OOM…

Look for memory warnings

More on

this later

Insights into every query plan node

SET STATISTICS IO not

needed

SET STATISTICS TIME

not needed

Widely unbalanced

parallelism?

Start by looking at statistics

Fa s t e r i n s i g h t s

• You’re on call for supporting the
data tier of a mission-critical SQL
Server instance.

• Key business processes are being
delayed when ETL is running.

• You get a call asking to mitigate
the issue and then determine the
root cause.

The middle-of-the-night call

Defining the problem

Reasonable hypothesis: a long running query.

But query completion is a prerequisite for the

availability of an actual query plan.

So… actual query plans aren’t suitable for

troubleshooting complex performance issues:

• Long running queries

• Queries that run indefinitely and never finish execution.

What we need – Query progress: anytime, anywhere

• Using global TF 7412

• Enabling query_thread_profile,
query_plan_profile*, and
query_post_execution_plan_profile**
extended events

• Using query hint USE
HINT(‘query_plan_profile’)***

Default in

SQL Server

2019

We get Live Query Statistics for all sessions!

A d a p t i v e Q u e r y P r o c e s s i n g

A b r i e f r e t r o s p e c t i v e

Interleaved Execution for MSTVFs

Interleaved Execution for MSTVFs

140 database

compatibility level

Batch Mode Memory Grant Feedback (MGF)

140 database

compatibility level

First

Execution
Adjusting Stable Disabled

Batch Mode Adaptive Joins (AJ)

140 database

compatibility level

Build Input

Build
Threshold

Hash
Match

Nested
Loops

I n t e l l i g e n t Q u e r y P r o c e s s i n g

B r o a d e n i n g t h e s c o p e …

Intelligent Query Processing

Intelligent QP

Adaptive QP

Adaptive Joins Batch Mode

Interleaved

Execution

Memory Grant

Feedback

Batch Mode

Row Mode

Table Variable

Deferred

Compilation

Batch Mode on

Rowstore

Scalar UDF

Inlining

Approximate QP
Approximate

Count Distinct

SQL Server 2017 SQL Server 2019

Azure SQL Database

Row Mode Memory Grant Feedback (MGF)

• Row-mode spills to disk → MGF corrects grant misestimations

• Row-mode excessive memory grant → MGF corrects wasted memory, improves
concurrency

First

Execution
Adjusting Stable Disabled

150 database

compatibility level

Table Variable Deferred Compilation

Area Temporary Tables Table Variables

Manual stats creation and

update

Yes No

Indexes Yes Only inline index definitions

allowed.

Constraints Yes Only PK, uniqueness and check

constraints.

Automatic stats creation Yes No

Creating and using a temporary

object in a single batch

Compilation of a statement that

references a temp table that

doesn’t exist is deferred until

the first execution of the

statement

A statement that references a

table variable is compiled along

with all other statements before

any statement that populates

the TV is executed, so

compilation sees it as “1”.

Table Variable Deferred Compilation

Area Temporary Tables Table Variables

Manual stats creation and

update

Yes No

Indexes Yes Only inline index definitions

allowed.

Constraints Yes Only PK, uniqueness and check

constraints.

Automatic stats creation Yes No

Creating and using a temporary

object in a single batch

Compilation of a statement that

references a temp table that

doesn’t exist is deferred until

the first execution of the

statement

Compilation of a statement that

references a table variable that

doesn’t exist is deferred until

the first execution of the

statement

150 database

compatibility level

T-SQL Scalar User-Defined Functions (UDFs)

User-Defined Functions that are implemented in Transact-SQL and return a

single data value are referred to as T-SQL Scalar User-Defined Functions

T-SQL UDFs are an elegant way to achieve code reuse and modularity across

SQL queries

Some computations (such as complex business rules) are easier to express in

imperative UDF form

UDFs help in building up complex logic without requiring expertise in writing

complex SQL queries

T-SQL Scalar UDF performance issues!

Iterative invocation: Invoked once per qualifying row. Repeated context switching – and

even worse for UDFs that have T-SQL queries that access data

Lack of costing: Scalar operators are not costed (realistically)

Interpreted execution: Each statement itself is compiled, and the compiled plan is cached.

Although this caching strategy saves some time as it avoids recompilations, each statement

executes in isolation. No cross-statement optimizations are carried out.

Serial execution: SQL Server does not allow intra-query parallelism in queries that invoke

Scalar UDFs. In other words, Scalar UDFs are parallelism inhibitors.

T-SQL Scalar UDF Inlining

• Goal of the Scalar UDF Inlining feature is to
improve performance for queries that
invoke scalar UDFs where UDF execution is
the main bottleneck

Before SQL 2019/DB Compat 150:
• Using query rewriting techniques, UDFs are

transformed into equivalent relational
expressions that are “inlined” into the
calling query

Source: “Froid: Optimization of Imperative Programs in a Relational Database”

150 database

compatibility level

T-SQL Scalar UDF Inlining

Source: “Froid: Optimization of Imperative Programs in a Relational Database”

Scalar UDF Inlining candidates

• DECLARE, SET: Variable declaration and assignments.

• SELECT: SQL query with multiple variable assignments.

• IF/ELSE: Branching with arbitrary levels of nesting.

• RETURN: Single or multiple return statements.

• UDF: Nested/recursive function calls.

• Others: Relational operations such as EXISTS, ISNULL.

To inline, or not to inline

See sys.sql_modules catalog view includes a property called is_inlineable:

• 1 indicates that it is inlineable, and 0 indicates otherwise

• Value of 1 for all inline TVFs as well

If a scalar UDF is inlineable, it doesn’t imply that it will always be inlined.

SQL Server will decide (on a per-query, per-UDF basis) whether to inline

a UDF or not if:

• UDF definition has thousands of lines of code (itself or by using nesting)

• UDF used in a GROUP BY clause

Decision is made when the query referencing a scalar UDF is compiled.

Batch Mode and Columnstore

Columnstore

indexes

Access only the data in

columns that you need

Effective compression

over traditional

rowstore

Batch Mode

Allows query operators

to process data more

efficiently by working

on a batch of rows at a

time

Built for analytical

workload scale

Since SQL

Server

2012 –

we’ve

bound

these two

features

together

CPUI/O

Batch Mode on Rowstore

Sometimes Columnstore isn’t an option:

• OLTP-sensitive workloads

• Vendor support

• Columnstore interoperability limitations

Now get analytical processing CPU-benefits without

Columnstore indexes.

Batch mode on rowstore supports:

• On-disk heaps and B-tree indexes and existing batch-capable operators (new

scan operator can evaluate batch mode bitmap filters)

• Existing batch mode operators

150 database

compatibility level

Batch Mode on Rowstore candidate workloads

A significant part of the workload consists of analytical queries

AND

The workload is CPU bound AND

• Creating a columnstore index adds too much overhead to the transactional

part of your workload OR

• Creating a columnstore index is not feasible because your application depends

on a feature that is not yet supported with columnstore indexes OR

• You depend on a feature not supported with columnstore (for example,

triggers)

Batch Mode on Rowstore considerations

There is no guarantee that query plans will use batch mode.

No guarantee that if you get a row mode plan, it will be the same as the

plan you get in a lower compatibility level.

No guarantee that if you get a batch mode plan, it will be the same as

the plan you'd get with a columnstore index.

Plans may also change in subtle ways for queries that mix columnstore

and rowstore indexes, because of the new batch mode rowstore scan.

APPROX_COUNT_DISTINCT - When approximate is good enough…

Provides approximate COUNT DISTINCT for big data scenarios with

the benefit of high performance and a (very) low memory footprint.

Dashboard scenarios and trend analysis against big data sets with many

distinct values (for example, distinct orders counts over a time period) – and

many concurrent users where exact values are not necessary.

Data science big data set exploration. Need to understand data distributions

quickly and exact values are not paramount.

Not banking applications or anywhere an exact value is required!

In te l l igen t Quer y P rocess ing

D E M O

• Regressions due to a feature?

• Situations where something didn’t kick off and you
think it should have?

These features are in public preview – and we want
your feedback!

Please email IntelligentQP@Microsoft.com

Intelligent QP next steps…

mailto:IntelligentQP@Microsoft.com

Bookmarks

SQL Server Team (Tiger) Blog

Tiger Toolbox GitHub

SQL Server Release Blog

Best Practices and Perf Checks

SQL Server Standards Support

Trace Flags

SQL Server Support lifecycle

SQL Server Updates

SQL Server Guides

SQL Feedback (New “Connect”)

T-SQL Syntax Conventions

SQL Server Errors

SQL Performance Center

Twitter

http://aka.ms/sqlserverteam

http://aka.ms/tigertoolbox

http://aka.ms/sqlreleases

http://aka.ms/bpcheck

http://aka.ms/sqlstandards

http://aka.ms/traceflags

http://aka.ms/sqllifecycle

http://aka.ms/sqlupdates

http://aka.ms/sqlserverguides

http://aka.ms/sqlfeedback

http://aka.ms/sqlconventions

http://aka.ms/sqlerrors

http://aka.ms/sqlperfcenter

@mssqltiger

We’d love your feedback

Aka.ms/SQLBits19

