Query Performance Insights:
What's new?

Slides in http://aka.ms/tigertoolbox

Under “Sessions” folder

m Microsoft

PEDRO LOPES

Sr. Program Manager, SQL Server
Engineering

@ /pedroazevedolopes
@ @SQLPedro

Focus Areas

Relational Engine: Query
Processor,
Programmability,
Performance

Agenda

» A brief history of SQL Server query performance
 Diagnostics improvements

 Adaptive Query Processing in SQL Server 201/

« Intelligent Query Processing in SQL Server 2019

A brief history of SQL Server
Query Performance

Query Performance Journey

https://download.microsoft.com/download/5/4/A/54AFD350-6477-4910-9DF2-

4C472C906684/SQL2000_release.pdf

Retired SQL 2000 docs available in PDF at

- Diagnostics and Tools
- Query Execution

https://download.microsoft.com/download/5/4/A/54AFD350-6477-4910-9DF2-4C472C906684/SQL2000_release.pdf

Query Performance Journey

Diagnostics Enhancements

- Server and Database

Performance Dashboard in SSMS

Microsoft SQL Server Performance Dashboard

Report Local Time: 5/31/2017 3:31:04 FM

_13.0.4422‘0 - Enterprise Edition (64-bit))

) Overall performance may be degraded because the system shows signs of being
« Y CPU-bound.This SQL Server instance is consuming the majority of the CPU. Clidk on
any of the SQL data peints in the chart below to investigate further,

System CPU Utilization

% CPU

Object Explorer > 1 x
Connect~ ¥ *¥ Ve
Connect...
Da . EEEZEEEEZE=ZE=Z=E=EZ==CZ=
Sel Disconnect [y e T G IR T T T O a H o E T T
[SIS R e e e e e e R
Sef Register... R T I B B B L B
[S e e T o T s B S e B = B« M
Re Too T eSS AN ®
New Query M e dEmmmmmomomMmomom o
Pol
Al Activity Menitor End Time
M
Start -
Intj Current Activity
x'i 5q SIop |Llser Reguests |LlserSﬁs'|nns |
7] X Pause Count 27 32
Resume Elapsed Time {ms) 4573004 741818
Restart CPUTime (ms) 2043203(44.68%) 101108(13.63%)
Wait Time (ms) 2529801(55. 32%) 640710(86.37%)
Policies Cache Hit Ratio 100.000% 93.313%
Facets
S ety | Performance Dashboard
Open in Azure Data Studic Server Dashboard
Reports Standard Reports 3 | Configuration Changes History
Refresh Custom Reports... Schema Changes History

Other
I sQL

Starting with SSMS v17.2

No extra downloads!
No new schema to deploy!
Long standing request by

CSS and customers

Current Waiting Requests

Wait Time (ms)
EN

()

Latches g

Parallelism
Wait Category

10 Statistics

Categorized Wait
stats page

Expensive Qu‘eries
By CPU
By Logical Reads
By Logical Writes

Miscellaneous Information
Active Traces

Active Xevent Sessions

Databases

Missing Indexes

New categorized

By Duration
By Physical Reads
By CLR Time

11

Latches page

Scoring added to
Missing Index Report

Query Store — new reports

Comprehensive query-performance information
when you need it most!

= g QueryStoreTest

Tables

Wiews

External Resources
Synonyms
Programmability
=] Cuery Store

&%) Regressed Cueries

&) Overall Resource Consumption
&) Top Resource Consurming Cueries
&3] Queries With Forced Plans

&3] Queries With High Variation

&) Query Wait Statistic

&3 Tracked Cueries %

Service Broker

B #

Storage
Security

Diagnostics Enhancements

- Query Analysis

Query plans: fundamental query perf diagnostics

How data is accessed

How data is joined

Sequence of operations

Use of temporary worktables and sorts

Estimated rowcounts, iterations, and costs from each step

Actual rowcounts and iterations '—

How data is aggregated
Use of parallelism

Query execution warnings
Query execution stats
Hardware/Resource stats

Compute Scalar

Nests
[(Left O

Save Execution Plan &s...

Show Execution Plan XML...
Compare Showplan

Analyze Actual Execution Plan
Find Node

Zoom In
Zoom Cut
Custom Zoom...

Zoom to Fit

Properties

N
R

Getting all context info in Showplan: Trace Flags —

B TraceFlags / query compile time
= [

« Shows list of active trace

B iraceriag

ﬂagS: 8 [

Scope Global
- Query -:a|u: 2371
« Session B2 .
SCope Globa
« Global Value 7412
= [3]

« Useful to understand if V% e
active Trace Flags influence | =8
execution context hi

Scope Global

Scope Global

Getting all context info in Showplan: Times

Persisting information on elapsed and CPU times

B QueryTimeStats
. Is all the elapsed time
CpuTime gI%03 4 spent on CPU? Look
ElapsedTime 92330 for waits

And Scalar UDF elapsed and CPU times

Sl QueryTimeStats

How much elapsed

CpuTime 628 o

ElapsedTime 1174 time is spent on UDF? More on

UdfCpuTime 443 Scalar
445

UdfElapsedTime
. UDFs later

Getting all context info in Showplan: Waits

Shows top 10 waits from
sys.dm_exec_session_wait_stats

B Misc
Cached plan size 160 KB
Correlate Wa|tS Carclin_alit;—'Estimatic:nf'v'1|:|:Ir:I'v 130
CompileCPU M
Wlth ove r‘a” Compilefemory 728
) CompileTime 136
query tlmeS DatabaseContextSettingsld 3
Degree of Parallelism 12
Estiated Number of Rows 121308
Estimated Operator Cost 0 (0%)

B WaitStats

B [1]
WaitCount
WaitTimeMs
WaitType

B8 [2]
WaitCount
WaitTimeMs
WaitType

B [3]
WaitCount
WaitTimeMs
WaitType

= [4]
WaitCount

WaitTimehs

Estimated Subtree Cost 4.428002
Mermory Grant 20448 WaitType
Bl QueryTimeStats MemoryGrantinfo B [3]
CpuTime 1045 Optimization Level FULL WaitCount
g o WaitTirneMs
FlapsedTime 3010 —

Note: Parallelism waits available in SQL Server 2016 SP2, 2017 CU3 and 2019

WaitType

[5=

[V]

LATCH_SH

o
_rl.rl

761
PAGEIOLATCH_SH
a7

1942
LATCH_EX

CXPACKET

Getting all context info in Showplan: memory

Showplan extended to include grant usage per thread and iterator

Memuory Grant 783288

=] MemoryGrantinfo Is the used memory close to granted? Great!
i 8502000
DesiredMemory Is the used memory much below granted?
GrantedMemory 783283

Hurting concurrency...
GrantWaitTirme

]
MaxUsedMemory — Is the used memory above granted?
4064

RequestedMemory Possibility of OOM...
RequiredMemaory

Look for memory warnings

SerialDesiredMemory 28538448
SerialRequiredMemory 512
Also found in sys.dm_exec_query _stats More on

this later

Insights into every query plan node

Widely unbalanced
parallelism?
Start by looking at statistics

Properties
Clustered Index Scan (Clustered)
ot 24
B Misc
Actual Execution Mode

E Actual 17O Statistics
Actual Lob Logical Reads
Actual Lob Physical Reads
Actual Lob Read Aheads
Actual Logical Reads
Actual Physical Reads
Actual Read Aheads
Actual Scans
Actual Mumber of Batches
E Actual Mumber of Rows

Thread 0

Thread 1

HEEHEHEEHEH

\ 4

Thread 2
Thread 3
Thread 4
Actual Rebinds
Actual Rewinds
E Actual Time Statistics
Actual Elapsed CPU Time (ms)
Actual Elapsed Time (ms)

Row

1345

1376
5

]
121317

40604
17684

456

SET STATISTICS 1O not
needed

SET STATISTICS TIME
not needed

Faster insights

The middle-of-the-night call

« You're on call for supporting the
data tier of a mission-critical SQL
Server instance.

« Key business processes are being
delayed when ETL is running.

« You get a call asking to mitigate
the issue and then determine the
root cause.

Defining the problem

Reasonable hypothesis: a long running query.

. But query completion is a prerequisite for the

"W availability of an actual query plan.

So... actual query plans aren’t suitable for

troubleshooting complex performance issues:
 Long running queries

* Queries that run indefinitely and never finish execution.

What we need — Query progress: anytime, anywhere

Starting with SQL Server 2016 SPT and Srocesses
2017, the new lightweight query execution — [S-E 08 s Uos. U T L om.] fos.] VT o V.. &

. . . . 57 1 B=m= Advertur.. RUNNA.. SELECT SQLCMD 0
statistics profile infrastructure allows S 1 WEE. s RN SELECT SQLCHD 0
. . 57 1 e Adventur... RUNMNA... SELECT 5SQLCMD 1]
continuous collection of per-operator o v A AN e Saicw .
- ‘ ‘ ? o o Details o ; - o
query execution statistics. How: == e
« Using global TF 7412 s [28 CXPACK.
rEr 328 CKPACK...
+ Enabling query_thread_profile, . e e
query_plan_profile*, and Resource Waits
query_post_execution_plan_profile** Data File 10
extended events Recent Expensive Queries
« Using query hint USE Bl Dot in
1 Nk %%
HINT('query_plan_profile’) SQL Server
* SQL Server 2016 SP2 CU3, 2017 CU11 and 2019 2019
o SQL Server 2017 CU14 and 2019

o SQL Server 2017 CUT1, 2016 SP2 CU3 and 2019

We get Live Query Statistics for all sessions!

= [+ b =~ L
1 Results _'j Messages & Live Query Statistics
Estimated query|Query 1l: Query cost (relative to the batch): 100%

progress: 0% CREATE FROCEDURE [Sales].[SalesFromDate] EStartOrderdate datetime AS SELECT * FROM Sales.SalesCOrderHeader

s

E

£

=_| i
[Merge Join Clustered Index Scan (Clustered)
{Inner Join) Compute Scalar Compuze Scalax [SalesOrderHeaderBulk] . [FK_SalesOrd.
SELECT 06575 0.857= 0.857=s 0_657s -
0_657= - 0 of 3501 of 3501 of 3‘5(”- oz
176237 (1% 176237 (1%
4771820 (0%) 2R 237 A1%) 176237 (1%)

=

£

|
Clustered Index Scan (Clustered)
e T s b s S S [SalesOrderDetailBulk] . [PE SalesOrd._
0._657s 0_657s -
0_857s
42 of 42 of 42 of
2

G065850 (0%) B0ESB50 (0%) 6065850 (D%}

e
~ %
S
N

Adaptive Query Processing

A brief retrospective

Interleaved Execution for MSTVFs

Problem: Multi-statement table
valued functions (MSTVFs) are
treated as a black box by QP and we
use a fixed optimization guess.

Pre 2017

100 rows Performance
guessed for issues if
MSTVFs skewed!

Interleaved Execution for MSTVFs

Pre 2017

Problem: Multi-statement table
valued functions (MSTVFs) are
treated as a black box by QP and we

. . . . 100 rows Performance
use a fixed optimization guess guessedfor issuesif
MSTVFs skewed!
. . . . 2017+
Interleaved Execution will materialize -

and use row counts for MSTVFs. “Suuiily SN, S, S

Downstream operations will benefit o beate sookrome Good
from the corrected MSTVF identified ~ MSTVF assumed Performance!
cardinality estimate. [

140 database
compatibility level

Batch Mode Memory Grant Feedback (MGF) .

=

Problem: Queries may spill to disk or take too much memory
based on poor cardinality estimates. Memory misestimations
result in spills, and overestimations hurt concurrency.

MGF will adjust memory grants based on execution feedback.

MGF will remove spills and improve concurrency for repeating

queries.
140 database
compatibility level

Batch Mode Adaptive Joins (AJ)

Problem: It cardinality estimates are @uild InpuD
skewed, we may choose an

inappropriate join algorithm. [T Hash
Build ' Match

AJ will defer the choice of Hash Thresy Yes

Match or Nested Loops join until

after the first join input has been | | Nested

scanned. Ne ool

AJ uses Nested Loops for small
inputs, Hash Match for large inputs. [

140 database
compatibility level

Intelligent Query Processing

Broadening the scope...

Intelligent Query Processing

The intelligent query
processing feature
family includes
features with broad
impact that improve
the performance of
existing workloads
with minimal

Adaptive Joins

4[Batch Mode

Adaptive QP

Interleaved
Execution

(Table Variable)

Deferred

| Compilation |

Memory Grant
Feedback

Batch Mode

{ Intelligent QP

Batch Mode on

Rowstore

implementation effort.

Azure SQL Database

(")

SQL Server 2017} {SQL Server 2019

(.

&

Scalar UDF
Inlining

J

Row Mode

&

Approximate QP

Approximate
Count Distinct

Row Mode Memory Grant Feedback (MGF)

Same as batch-mode MGF, updating the cached plan for:
« Row-mode spills to disk = MGF corrects grant misestimations

« Row-mode excessive memory grant = MGF corrects wasted memory, improves
concurrency

New query execution plan attributes to understand the state of
memory grant feedback! prammmmre—

DesiredMemory 13992

GrantedMemory 13992
GrantWaitTime

IsMemoryGrantFeedbackAdjusted YesStable [

LastRequestedMemory 13992

MaxQueryMemory 1497128

150 database
compatibility level

MaxUsedMemory 3744

Table Variable Deferred Compilation

Legacy behavior

Area Temporary Tables Table Variables

Manual stats creation and Yes No

update

Indexes Yes Only inline index definitions
allowed.

Constraints Yes Only PK, uniqueness and check
constraints.

Automatic stats creation Yes No

Creating and using a temporary
object in a single batch

Compilation of a statement that
references a temp table that
doesn't exist is deferred until
the first execution of the
statement

A statement that references a
table variable is compiled along
with all other statements before
any statement that populates
the TV is executed, so
compilation sees it as “1".

150 database
compatibility level

Azure SQL Database and SQL Server 2019 behavior

Table Variable Deferred Compilation

Area Temporary Tables Table Variables

Manual stats creation and Yes No

update

Indexes Yes Only inline index definitions
allowed.

Constraints Yes Only PK, uniqueness and check
constraints.

Automatic stats creation Yes No

Creating and using a temporary
object in a single batch

Compilation of a statement that
references a temp table that
doesn't exist is deferred until
the first execution of the
statement

T-SQL Scalar User-Defined Functions (UDFs)

User-Defined Functions that are implemented in Transact-SQL and return a
single data value are referred to as T-SQL Scalar User-Defined Functions

T-SQL UDFs are an elegant way to achieve code reuse and modularity across
SQL queries

Some computations (such as complex business rules) are easier to express in
imperative UDF form

UDFs help in building up complex logic without requiring expertise in writing
complex SQL queries

T-SQL Scalar UDF performance issues!

Iterative invocation: Invoked once per qualifying row. Repeated context switching — and
even worse for UDFs that have T-SQL queries that access data

Lack of costing: Scalar operators are not costed (realistically)

Interpreted execution: Each statement itself is compiled, and the compiled plan is cached.
Although this caching strategy saves some time as it avoids recompilations, each statement
executes in isolation. No cross-statement optimizations are carried out.

Serial execution: SQL Server does not allow intra-query parallelism in queries that invoke
Scalar UDFs. In other words, Scalar UDFs are parallelism inhibitors.

T-SQL Scalar UDF Inlining

Enable the benefits of UDFs without
the performance penalty!

« Goal of the Scalar UDF Inlining feature is to
improve performance for queries that

the main bottleneck
Before SQL 2019/DB Compat 150:

« Using query rewriting techniques, UDFs are
transformed into equivalent relational
expressions that are “inlined” into the
calling query

Source: “Froid: Optimization of Imperative Programs in a Relational Database”

SOL Query with UDF calls

4

invoke scalar UDFs where UDF execution is auqwee &

Binding

UDF operator
encountered

Continue with

Bound
Query tree

FROID

UDF Algebrization
[Parse UDF definition |

| Construct UDF Regions ‘

Regions to relational
expressions

Combine expressions
using Apply operator

v

substituted
expression
—

Substitute UDF expression
(as sub-guery) in Query tree

14

[compatibility level

150 database

J

T-SQL Scalar UDF Inlining

Table 1: Relational algebraic expressions for imperative statements (using standard T-SQL notation from [33])

Imperative Statement (T-SQL) Relational expression (T-SQL)
DECLARE {@uar data_type [= expr|}|,...n]; SELECT {expr|null AS var}[,...n]|;
SET {Quar = expr}[,...n]; SELECT {expr AS var}|,...n|;
SELECT {@Quarl = prj_exprl}]|,...n] FROM sql_expr; {SELECT prj_exprl AS varl FROM sqgl_expr}; [,...n]

SELECT CASE WHEN pred_eczpr THEN 1 ELSE 0 END AS pred_val;

IF (pred. t_stmt;[...n]} ELSE tmi; [, ...
(pred-eapr) {t-stmt;[...n]} {fstmt; [nl} | R ECT CASE WHEN pred.val = 1 THEN t_stmt ELSE f_stmt: }[. . .n]

RETURN expr; SELECT expr AS returnVal;

Source: “Froid: Optimization of Imperative Programs in a Relational Database”

Scalar UDF Inlining candidates

Existing UDFs will be inlined during compilation with
no need to make changes.

First version candidates:

« DECLARE, SET: Variable declaration and assignments.
« SELECT: SQL query with multiple variable assignments.
- IF/ELSE: Branching with arbitrary levels of nesting.

« RETURN: Single or multiple return statements.

« UDF: Nested/recursive function calls.

« Others: Relational operations such as EXISTS, ISNULL.

To inline, or not to inline

See sys.sql_modules catalog view includes a property called is_inlineable:

« 1 indicates that it is inlineable, and 0 indicates otherwise
 Value of 1 for all inline TVFs as well

If a scalar UDF is inlineable, it doesn’t imply that it will always be inlined.
SQL Server will decide (on a per-query, per-UDF basis) whether to inline
a UDF or not if:

« UDF definition has thousands of lines of code (itself or by using nesting)
« UDF used in a GROUP BY clause

Decision is made when the query referencing a scalar UDF is compiled.

Batch Mode and Columnstore

Since SQL
Server
2012 -
we've
bound

these two

features
together

/

-

Columnstore

Indexes

/O

~

Access only the data in
columns that you need

(&

~

)

~

Effective compression
over traditional
rowstore

~

~

Batch Mode
CPU

~
Allows query operators

to process data more
efficiently by working
on a batch of rows at a

time
\ J

4)

Built for analytical
workload scale

150 database
Batch Mode on Rowstore compatibility level

Sometimes Columnstore isn't an option:

« OLTP-sensitive workloads
« Vendor support
« Columnstore interoperability limitations

Now get analytical processing CPU-benefits without
Columnstore indexes.

Batch mode on rowstore supports:

« On-disk heaps and B-tree indexes and existing batch-capable operators (new
scan operator can evaluate batch mode bitmap filters)

« Existing batch mode operators

Batch Mode on Rowstore candidate workloads

A significant part of the workload consists of analytical queries
AND

The workload is CPU bound AND

 Creating a columnstore index adds too much overhead to the transactional
part of your workload OR

 Creating a columnstore index is not feasible because your application depends
on a feature that is not yet supported with columnstore indexes OR

 You depend on a feature not supported with columnstore (for example,
triggers)

Batch Mode on Rowstore considerations

There is no guarantee that query plans will use batch mode

No guarantee that if you get a row mode plan, it will be the same as the
plan you get in a lower compatibility level.

No guarantee that if you get a batch mode plan, it will be the same as
the plan you'd get with a columnstore index

Plans may also change in subtle ways for queries that mix columnstore
and rowstore indexes, because of the new batch mode rowstore scan

APPROX_COUNT_DISTINCT - When approximate is good enough...

Provides approximate COUNT DISTINCT for big data scenarios with
the benefit of high performance and a (very) low memory footprint.

Dashboard scenarios and trend analysis against big data sets with many
distinct values (for example, distinct orders counts over a time period) — and
many concurrent users where exact values are not necessary.

Data science big data set exploration. Need to understand data distributions
quickly and exact values are not paramount.

Not banking applications or anywhere an exact value is required!

DEMO

Intelligent Query Processing

Intelligent QP next steps...

 Regressions due to a feature?

« Situations where something didn't kick off and you
think it should have?

These features are in public preview — and we want
your feedback!

Please emall IntelligentQP@Microsoft.com

mailto:IntelligentQP@Microsoft.com

Bookmarks

SQL Server Team (Tiger) Blog
Tiger Toolbox GitHub

SQL Server Release Blog

Best Practices and Perf Checks
SQL Server Standards Support
Trace Flags

SQL Server Support lifecycle
SQL Server Updates

SQL Server Guides

SQL Feedback (New “Connect”)
T-5SQL Syntax Conventions
SQL Server Errors

SQL Performance Center
Twitter

http://aka.ms/sqglserverteam
http://aka.ms/tigertoolbox
http://aka.ms/sglreleases
http://aka.ms/bpcheck
http://aka.ms/sglstandards
http://aka.ms/traceflags
http://aka.ms/sqllifecycle
http://aka.ms/sglupdates
http://aka.ms/sqglserverguides
http://aka.ms/sqglfeedback
http://aka.ms/sglconventions
http://aka.ms/sqglerrors
http://aka.ms/sglperfcenter
@mssgltiger

3

SQL Server Tiger Team

Wed love your feedback

Aka.ms/SQLBits19

m Microsoft

= Microsoft

© 2014 Microsoft Corporation. All rights reserved.

