2% Microsoft

Azure SQL & SQL
Server 2022
Intelligent Database
Futures

Pedro Lopes
Principal Architect
@SQLPedro

[-:005400 T0P-005400

| == O

J
2

.

'''''''''''''''''''''''''''''''''''''''

X

BONUS
2000

X

L
1

)

At the end, please rate this session

[m];

https://sqlb.it/?7187 -

[=]

[=]

https://nam06.safelinks.protection.outlook.com/?url=https%3A%2F%2Fsqlb.it%2F%3F7187&data=04%7C01%7Cpedro.lopes%40microsoft.com%7C8ce5174d9c6e4ba367a308d9f9465567%7C72f988bf86f141af91ab2d7cd011db47%7C1%7C0%7C637814903360407263%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000&sdata=r720yRlYl4sq273OGteANd7RrInOoUllA5Gor4DdOn4%3D&reserved=0

Agenda

- Query Store
- ON by default
- Query Store hints
- Query Store for Secondary Replicas

- 1QP
- Parameter-sensitive Plan (PSP) Optimization
- Improvements to Memory Grant Feedback
- CE Feedback
- DOP Feedback
- Optimized Plan Forcing using compilation replay
- Approximate Percentile

Query Store ON by default

1

NEANEDANR

Query Store ON by default

For new databases only

« SQL never changes database defaults when restoring/attaching to
higher version engine.

« We've added numerous scalability improvements over the years in
Azure and in SQL Server

« Better defaults starting with SQL Server 2019 = Azure

« Handles heavy ad-hoc workloads due to internal memory limits and
throttling

« Custom capture policies available for fine tuning

Query Store hints

Now in public preview in Azure SQL Database

SQL Server 2022 CTP 1.0

1

NEANEDANR

What are Query hints?

- |deally the Query Optimizer selects an optimal execution plan for a
query.

- When this doesn’t happen, a developer or DBA may wish to
manually optimize for specific conditions.

- Specified via the OPTION clause, query hints can be used to
iInfluence the behavior of operators in a statement.

SELECT COUNT(DISTINCT [WWI Order ID])
FROM [Fact].[OrderHistoryExtended]
OPTION (USE HINT('DISALLOW BATCH MODE'), RECOMPILE);

Applying Query hints Today

- Query hints help provide localized solutions to various performance-
related issues — but they do require a rewrite of the original query
text

- DBAs often cannot make changes directly to T-SQL code
- T-SQL hard-coded into application
- T-SQL automatically generated by the application

- DBA may have to rely on plan guides

- Common feedback: “plan guides are complex to use and manage”

Query Store hint Scope and Behavior

Query Store hints support statement (query)-level hints in the first
version

Query Store hints are persisted, surviving restarts

They override hard-coded statement level hints and plan guide hints

If hints contradict what is possible, we will not block query execution
and Query Store hint will not be applied

How to use Query Store hints - Step 1
Find the Query Store query_id of the query you wish to modify:

SELECT query sqgl text, g.query id

FROM sys.query store query text qt

INNER JOIN sys.query store query gq ON
gt.query text id = g.query text id

WHERE query sqgql text like N'%April Minerd%';

query_sql_text query_id
SELECT T_S_SYMB, AVG(T_TRADE_PRICE) AS AVG_TRADE_... 46006

How to use Query Store hints — Step 2

Execute sp_query_store_set_hints with the query_id and query hint
string you wish to apply to the query:

-- Setting a single query hint
EXEC sp_query store set hints 46006, N'OPTION(MAXDOP 1)';

-- Setting multiple query hints
EXEC sp _query store set hints 46006, N'OPTION(MAXDOP 1, USE

HINT (' 'QUERY_OPTIMIZER COMPATIBILITY LEVEL_120''))"’;

To remove a hint:
EXEC sp_query store clear hints 46006;

<>

Query Store for Secondary Replicas

2022 public preview in Azure SQL Database

SQL Server 2022 CTP 1.2

NEANENAN

[N N/
\/

1

\
/

Query Store for Secondary Replicas

- Get the same support for the secondary replicas as you already do
on the primary

nad

¥

Read Write
workload

Primary Replica (Read/Write)

nad

L

Read Only
workloads

- Query data will be visible by role type or replica name

Enable Query Store for Secondary Replicas
Connect to the Primary Replica and enable Query Store:

ALTER DATABASE [Database Name] SET QUERY _STORE = ON;

Turn on the query store for the secondary (execute on Primary):

ALTER DATABASE [Database Name]
FOR SECONDARY SET QUERY_STORE = ON (OPERATION MODE = READ WRITE);

Force and Unforce plan

New optional plan scope argument added to the force and unforce plan
procedures:

EXEC sp query store force plan 46006, 2, 1
EXEC sp query store unforce plan 46006, 2, 1

Plan forcing Scope parameter:
- 0 = force on read-write replica (default if omitted)
-1 = force/unforce on all read-only replicas

- 2 = force/unforce on all replicas

A brief history of Intelligent
Database

...and how to get started

1

<>

NEANENAN

[N N/
\/

\
/

Intelligent Query Processing

Adaptive
Joins

Batch Mode

The Intelligent Query Processing feature family

Intelligent
Query
Processing
Adaptive Table Variable Batch Mode Approximate Scalar UDF
Query Deferred Query o
) L for Row Store R Inlining
Processing Compilation Processing
Memory .
Interleaved Approximate
Execution Grant Count Distinct
Feedback
Batch Mode Row Mode

Azure SQL DB

SQL Server 2017 SQL Server 2019

Intelligent Query Processing

Available by default on the latest
database compatibility level
setting

Delivering broad impact that

improves the performance of

existing workloads with zero

implementation effort Adaptive

Joins
Critical parallel workloads improve
when running at scale, while
remaining adaptive to changes in
data

Batch Mode

References: https://aka.ms/IQP and https://aka.ms/IQPDemos

The Intelligent Query Processing feature family

Intelligent
Query
Processing
Adaptive Table Variable Batch Mode Approximate Scalar UDF
Query Deferred Query o
4 L for Row Store R Inlining
Processing Compilation Processing
Memory .
Interleaved Approximate
Execution Grant Count Distinct
Feedback
Batch Mode Row Mode

Azure SQL DB

SQL Server 2017 SQL Server 2019

https://aka.ms/IQP
https://aka.ms/IQPDemos

Intelligent Query Processing

Adaptive Joins

Batch Mode

Interleaved
Execution

The Intelligent Query Processing feature family

Intelligent
Query
Processing

Adaptive Table Variable Approximate

Batch Mode Scalar UDF
Query Deferred Query "
d L for Row Store R Inlining
Processing Compilation Processing
DOP Memory Grant Approximate Approximate
CE Feedback Feedback Feedback Count Distinct Percentile

Batch Mode Row Mode Feefiback

Persistence

SQL Server 2017

Parameter
Sensitive Plan
Optimization

Azure SQL DB

SQL Server 2019

Optimized
Plan Forcing

SQL Server 2022

Parameter-sensitive Plan
Optimization

2022 public preview in Azure SQL Database

SQL Server 2022 CTP 1.0

1

NEANENAN

[N N/
\/

\

/

Parameter-sensitive plan problem

Parameter-sensitive Plan (PSP), a.k.a. Parameter-sniffing
problem refers to a scenario where a single cached plan for
a parameterized query is not optimal for all possible
Incoming parameter values

If the 15t compilation is not representative of most
executions, you have a perceived "bad plan”

PSP today (example of Real Estate agents portfolio)

New compile on Agent 4

)] it

Nested Loops Index S5eek (NonClustered)

=== chifr;z . {Inner Join) — [Property] . [NCI Property BgentId]
SELECT Caost: 0 % Cost: 15 %
Cost: 0 % 0.000s 0.000s 0.000s
s of 3 of 3 of
3 (100%) 3 (100%) 3 (100%)

=B QueryTimeStats
CpuTime

T -
ElapsedTime
EKEey Lookup (Clustered)
[Froperty] . [FE__ Property_ TOCSAT354..
Cost: 33 %
0.000s
3 of

3 [(100%)

PSP today (example of Real Estate agents portfolio)

Using cached plan for Agent 2

¥ i i

=== He=zted Loops

Index Seek (NonClustered)

=== Sort
=== . {Inner Join) <::::::::::j [Property] . [NCI_Property_ AgentId]
SELECT Ciii;)ii N = Cost: 0 % S Cost: 15 %
Cost: 0 % T 0:01:=01 14.224=
4993370 of 4985370 of 49895370 of
3 (166512333%) 3 {les512333%) 3 (legeb5l2333%)

)

EKEey Lookup (Clustered)

Cost: 33 %

38.36E83
4985370 of
3 (le6512333%)

New compile on Agent 2

Irf1

+—4 (A

= zd T

=== Farallelism Sort Clustered Index Scan (Clustered)
== or

l{Gather Streams) <:::::::] c 47 2 [Froperty] . [PE FProperty TOCSAT3IS54..
s S — — —
SELECT Cost: 15 % es Cost: 39 %
2.247s

Cost: 0 % 7.193= 4995370 of 0.6663
49495370 of ° 4895370 of

49585370 (100%
49595370 (100%) () 45955370 (100%)

[Froperty] . [PE__ Property TOCSAT3S54..

B QueryTimeStats
CpuTime 88667
214222

ElapsedTime

B QueryTimeStats
CpuTime 46620
105288

ElapsedTime

PSP workarounds

OPTION Disable
(OPTIMIZE FOR parameter
UNKNOWN) sniffing entirely

OPTION
RECOMPILE (OPTIMIZE
FOR...)

Force a known
plan

NEINETe Dynamic string

KEEPFIXEDPLAN :
procedures execution

PSP Optimization

Enabled using Database Compatibility 160

Automatically enable multiple, active cached plans for a single
parameterized statement

Cached execution plans will accommodate different data sizes
pased on the customer-provided runtime parameter value(s)

Design considerations
- If we generate too many plans, we could create cache bloat, so limit # of plans in cache

- Overhead of PSP optimization must not outweigh downstream benefit

- Compatible with Query Store plan forcing

Predicate selection

During initial compilation we will evaluate the most “at
risk” parameterized predicates (up to three out of all

available)

First version is scoped to equality predicates referencing
statistics-covered columns; 1.e., WHERE AgentId =
@AgentId

Uses the column statistics histogram(s) to identify non
uniform distributions

Boundary value selection (example of Real Estate
agents portfolio)

Parameterized query

A J

Dispatcher plan

— |

Query variant 'Agents with < 10k listings' Query variant 'Agents with > 10k to < 1M listings' Query variant '‘Agents with >= 1M listings'

| | |

Cached plan: seek + lookup + small memory grant Cached plan: scan + medium memory grant Cached plan: scan + large memory grant

PSP Optimization

Demo

Memory Grant Feedback —
Persistence and Percentile

2022 public preview in Azure SQL Database

SQL Server 2022 CTP 1.1

1

NEANENAN

[N N/
\/

\

/

Memory Grant Feedback (MGF)

Queries may spill to disk or take too much memory based on poor
cardinality estimates. Memory misestimations result in spills, and
overestimations hurt concurrency

MGF remove spills and improve concurrency for repeating queries

Batch mode in Database Compatibility 140, Row mode in Database
Compatibility 150

MGF improvements (1/2): Persistence

Problem: Feedback is not persisted if the plan is evicted from cache

Cache or failover
Eviction Record of how to adjust memory is lost and must re-learn

Solution: Persist the memory grant feedback in the Query Store

Persist the
feedback

MGF improvements (2/2): Fixing Oscillation

MGF adjusts memory grants based on last execution feedback

Feedback can be disabled if memory grant requirements keep
oscillating (e.g. PSP)

lnna

b — ¥ v " v

cdsize (MB)

—a— Granted see

a— Actual Needed

Grant

MGF improvements (2/2): Fixing Oscillation

Smooth the grant size values based on past execution usage history
and try to optimize for minimizing spills using a percentile-based

calculation

—a— Percentile Granted
#— La= Used Granted

Actual needed

e (MB)

e

eds

Gran

Parameterized Query Execution

CE Feedback

2022 public preview in Azure SQL Database

SQL Server 2022 CTP 1.0

1

NEANEDANR

Cardinality Estimation today

Cardinality estimation (CE) is the process by which the Query
Optimizer derives the estimated # of rows for a query plan

CE models are based on assumptions about data distribution and
expected usage. To know more about cardinality estimation, refer to
https://aka.ms/sqlCE

The cardinality estimation process sometimes makes incorrect
assumptions which lead to poor plan quality

One model doesn’t fit all scenarios

https://aka.ms/sqlCE

Introducing CE Feedback

Learn which CE CE Feedback will identify model-related assumptions and will

model evaluate whether they are accurate for repeating queries
assumptions are

optimal over time |f an assumption looks incorrect, we'll test a new CE model

and then apply assumption and verify if it helps

the historically

“correct” If it helps, we'll replace the current cached plan

assumption.

Addresses Independence vs. Correlation assumptions (how multiple predicates

scenarios not yet
handled by other
IQP features that Join Containment assumptions (simple vs base)
can cause
perceived

regressions: Row Goal

over same table correlate)

CE Feedback Not a new "new CE”

Enabled using Database Compatibility 160

CEF will only apply feedback in the presence of significant model estimation errors
resulting in performance drops (e.g. orders of magnitude off)

Repeating queries with cache-persistent plans

Adjusted through USE HINT query hints + hint support in Query Store.
- Will honor any hard-coded query hints if used

Only verified feedback is persisted (Query Store).
- If next execution regresses, back off.
- Cancelled query = regression

CE Feedback

Demo

DOP Feedback

2022 public preview in Azure SQL Database

SQL Server 2022 CTP 1.4

1

NEANEDANR

Parallelism today

Parallelism is often beneficial for reporting / analytical queries or
otherwise large amounts of data

OLTP-centric queries could suffer when time spent coordinating all
threads outweighs the advantages of using a parallel plan

Before SQL Server 2019, default value for maxdop = 0: use all
available schedulers if a query is eligible for parallelism

With SQL Server 2019, default is calculation at setup time based on
available processors; 8 in Azure SQL Database

DOP Feedback

DOP Feedback will identify parallelism inefficiencies for repeating queries, based on CPU time,
elapsed time, and waits

If parallelism usage is inefficient, lower from whatever is the configured DOP for next execution
(min DOP = 2), and verify if it helps

Only verified feedback is persisted (Query Store).
- If next execution regresses, back to last good known DOP
- Cancelled query = regression

Considerations:

Goal is to increase concurrency and reduce waits significantly, even if it slightly increases elapsed time

Adjusting DOP doesn’t recompile plans

Current stable feedback is re-verified upon plan recompilation and may readjust back up, or continue
down, but never above MAXDOP setting

Will uphold MAXDOP hints as ceiling

Optimized Plan Forcing

using Query Compilation Replay

2022 public preview in Azure SQL Database

SQL Server 2022 CTP 1.3

1

NEANENAN

[N N/
\/

\

/

Query compilation today

Query optimization and compilation is a multi-phased process
of quickly generating a “good-enough” query execution plan

Query execution time includes compilation. Can be time and resource
consuming (CPU, memory)

To reduce compilation overhead for repeating queries, SQL caches query
plans for re-use

N

Plans can
be evicted from
cache due to restarts

Subsequent calls to
the query require a

full new compilation
Or memory pressure

Optimized Plan Forcing using query compilation replay

Compilation Replay will store a compilation replay script (CRS) that
persists key compilation steps in Query Store (not user visible)

v1 targets previously forced plans through Query Store and Automatic
Plan Correction

Uses those previously-recorded CRS to quickly reproduce and cache the
original forced plan at a fraction of the original compilation cost

Compatible with Query Store hints and secondary replica support

Approximate QP

Approximate QP was introduced back in SQL Server 2019 and
Azure SQL to enable operations on large data sets with minimal
resource usage

Scenarios where responsiveness and scalability is more critical than
absolute precision:

-+ KPIl and telemetry dashboards
- Data science exploration
- Anomaly detection

- Big data analysis and visualization

Approximate QP: Approximate Percentile (CTP 1.3)

Continuous: approximate value based on a continuous distribution of the column value. Result is
interpolated and might not be equal to any of the specific values in the column

PERCENTILE CONT — APPROX PERCENTILE CONT

Discrete: smallest approximate column value >= designated percentile. Result is equal to a
specific column value

PERCENTILE _DISC — APPROX_ PERCENTILE DISC

Implicitly covers APPROX_MEDIAN use case

Equivalent of APPROX_PERCENTILE*(0.5)

Still nondeterministic functions: may return different results each time, even with
identical input values and no changes to data

Learn more

Learn more about SQL Server 2022

aka.ms/sqlserver2022

\.‘ Watch a technical deep-dive on SQL Server 2022
N aka.ms/sqlserver2022mechanics

Don’t miss us on Data Exposed
é aka.ms/dataexposed

https://aka.ms/sqlserver2022
https://aka.ms/sqlserver2022mechanics
https://aka.ms/dataexposed

== Microsoft

Continue your SQL journey on Microsoft Learn

The next step to expanding your technical skills

: : , (0
Sharpen the technical skills you need to advance your career with 58 /0 career opportunities improvement

free courses and designated learning paths. 58% of certified professionals report Azure certifications
have helped them improve their career progression opportunities *

Advance your career in cloud data engineering Build in-demand skills Increase your productivity and efficiency

Get started at aka.ms/azuresqlfundamentals

“Nigel Frank Microsoft Azure Salary Survey (June 2020) https://www.nigelfrank.com/microsoft-azure-salary-survey/

http://aka.ms/azuresqlfundamentals
https://www.nigelfrank.com/microsoft-azure-salary-survey/

Please rate this session

[m];

https://salb.it/?7187 -

[=]

[=]

https://nam06.safelinks.protection.outlook.com/?url=https%3A%2F%2Fsqlb.it%2F%3F7187&data=04%7C01%7Cpedro.lopes%40microsoft.com%7C8ce5174d9c6e4ba367a308d9f9465567%7C72f988bf86f141af91ab2d7cd011db47%7C1%7C0%7C637814903360407263%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000&sdata=r720yRlYl4sq273OGteANd7RrInOoUllA5Gor4DdOn4%3D&reserved=0

