m Microsoft

SQL Server’s Path Toward an Intelligent Database

SQL Intersection June 2019

Pedro Lopes

Intelligent Database

(o

« Database
compatibility
level regression
protection

« Automatic plan
regression

correction
 Query Tuning
Assistant

Anxiety-free upgrades

Predictable performance

2

Adaptive Query
Processing

Intelligent Query
Processing

Resource
governor

Guaranteed
resources in SQL
DB

Auto-Soft NUMA

Management-by-default

Automatic
Indexing in SQL
DB

Flexible Scaling
Integrity
Checking
Intelligent
Insights
Lightweight
Query Profiling-
enabled
troubleshooting

« Advanced Threat
Detection

e Data
Classification

 Vulnerability
Assessment

Security in-depth 24x7

Adapts to the constantly changing world of businesses and data

Intelligent Database

2

« Adaptive Query
Processing

* Intelligent Query
Processing

Predictable performance

Adapts to the constantly changing world of businesses and data

The Intelligent Query Processing principles

- Available by default on the latest database
compatibility level setting

- Delivering broad impact that improves the
nerformance of existing workloads with minimal
implementation effort

- Critical parallel workloads improve when running
at scale, while remaining adaptive

Intelligent Query Processing

. . — Adaptive Joins Batch Mode

The intelligent query
p roceSSi N g featu e — Adaptive QP Interleaved Execution

. . Batch Mode
fa M |y I nC| u d es | | Table Variable | | Memory Grant {

Deferred Compilation Feedback

features that : o Mode
automatically ntlligent P owsiore
Im prove wo rkload L{ Scalar UDF Inlining
performance

Approximate Count
Distinct

— Approximate QP*

Azure SQL Database

SQL Server 2017 SQL Server 2019
DB Compat 140 DB Compat 150

Up to 130 database
compatibility level

Interleaved Execution for MSTVFs

[Pre SQL 2017]

Multi-statement table-valued functions

(MSTVFs) are treated as a black box by QP and

SQL Server uses a fixed optimization guess. 100 rows Performance
guessed for issues if # rows

MSTVFs is much larger

140 database
compatibility level

Interleaved Execution for MSTVFs

[Pre SQL 2017]

Multi-statement table-valued functions

(MSTVFs) are treated as a black box by QP and

SQL Server uses a fixed optimization guess. 100rows Performance
guessed for issues if # rows

MSTVFs is much larger

SQL 2017+
Interleaved Execution will materialize and use
MSTVF Execute 500k rows Good
identified MSTVF assumed performance!
Downstream operations will benefit from the from Tst
execution

corrected MSTVF cardinality estimate.

140 and 150 database
compatibility level

Memory Grant Feedback (MGF)

Queries may spill to disk or take too much memory based on poor cardinality estimates.
Memory misestimations result in spills, and overestimations hurt concurrency

MGF will adjust memory grants based on execution feedback

MGF will remove spills and improve concurrency for repeating queries

« Spills to disk = MGF corrects grant misestimations
 Excessive memory grant — MGF corrects wasted memory, improves concurrency

140 database
compatibility level

Batch Mode Adaptive Joins (AJ)

If cardinality estimates are skewed, we may

choose an inappropriate join algorithm. <Bui|d |nput>

AJ will defer the choice of Hash Match or

Nested Loops join until after the first join Hash
input has been scanned. _ Match
Build
Threshold Yes
Nested
No ” Loops

AJ uses Nested Loops for small inputs, Hash

Match for large inputs.

Table Variable Deferred Compilation

Legacy behavior

Up to 140 database
compatibility level

Manual stats creation and update
Indexes

Constraints

Automatic stats creation

Creating and using a temporary
object in a single batch

Temporary Tables Table Variables

Yes No

Yes Only inline index definitions allowed.

Yes Only PK, uniqueness and check
constraints.

Yes No

Compilation of a statement that
references a temp table that doesn't
exist is deferred until the first
execution of the statement

Table Variable Deferred Compilation

150 database
compatibility level

Azure SQL Database and SQL Server 2019 behavior

Manual stats creation / update

Indexes

Constraints

Automatic stats creation

Creating and using a temporary
object in a single batch

Temporary Tables Table Variables

Yes No

Yes Only inline index definitions allowed.

Yes Only PK, uniqueness and check
constraints.

Yes No

Compilation of a statement that
references a temp table that doesn't
exist is deferred until the first
execution of the statement

APPROX_COUNT_DISTINCT
When approximate is good enough...

Provides approximate COUNT DISTINCT for big data scenarios with
the benefit of high performance and a (very) low memory footprint.

Dashboard scenarios and trend analysis against big data sets with many distinct values (for example,
distinct orders counts over a time period) — and many concurrent users where exact values are not
necessary.

Data science big data set exploration. Need to understand data distributions quickly and exact values are
not paramount.

Not banking applications or anywhere an exact value is required!

Batch Mode and Columnstore

0 f N
Columnstore
. Batch Mode
Indexes
\ /O \ CPU
Since SQL
s D s D
Server 2012 Allows query
we’ve bound Access only the data operators to process
in columns that you data more efficiently
these two need by working on a batch
features g) _ ofrowsatatime
together
. D a D
Effective compression Built for analytical

over traditional

workload scale
rowstore

150 database
[compatibility level }
Batch Mode on Rowstore

Sometimes Columnstore isn't an option:

« OLTP-sensitive workloads
« Vendor support

« Columnstore interoperability limitations

Now get analytical processing CPU-benefits without Columnstore
indexes.

Batch mode on rowstore supports:

« On-disk heaps and B-tree indexes and existing batch-capable operators (new scan
operator can evaluate batch mode bitmap filters)

« Existing batch mode operators

Batch Mode on Rowstore candidate workloads

A significant part of the workload consists of analytical queries

AND

 Creating a columnstore index adds too much overhead to the transactional
part of your workload OR

 Creating a columnstore index is not feasible because your application depends
on a feature that is not yet supported with columnstore indexes OR

« You depend on a feature not supported with columnstore (for example,
triggers)

T-SQL Scalar User-Defined Functions (UDFs)

User-Defined Functions that are implemented in Transact-SQL and return a
single data value are referred to as T-SQL Scalar User-Defined Functions

T-SQL UDFs are an elegant way to achieve code reuse and modularity across
SQL queries

Some computations (such as complex business rules) are easier to express in
imperative UDF form

UDFs help in building up complex logic without requiring expertise in writing
complex SQL queries

T-SQL Scalar UDF performance issues!

Iterative invocation: Invoked once per qualifying row. Repeated context switching — and
even worse for UDFs that have T-SQL queries that access data

Lack of costing: Scalar operators are not costed (realistically)

Interpreted execution: Each statement itself is compiled, and the compiled plan is
cached. Although this caching strategy saves some time as it avoids recompilations, each
statement executes in isolation. No cross-statement optimizations are carried out.

Serial execution: SQL Server does not allow intra-query parallelism in queries that
invoke Scalar UDFs. In other words, Scalar UDFs are parallelism inhibitors.

150 database
compatibility level

T-SQL Scalar UDF Inlining

Enable the benefits of UDFs without the

performance penalty! QL Query with UDF calls FROID

.) =] UDF Algebrization
« Goal of the Scalar UDF Inlining feature is to "’ T ——
improve performance for queries that invoke scalar Parsing
UDFs where UDF execution is the main bottleneck uerytree o fons
Binding Regions to relational
expressions

UDF operator
encountered |

Combine expressions

oo using Apply operator
substituted *
 Using query rewriting techniques, UDFs are E— | Substitute UDF expression
. . . . Bound - i
transformed into equivalent relational expressions e W (@s sub-query) in Query tree

that are “inlined” into the calling query

Source: "Froid: Optimization of Imperative Programs in a Relational Database”

T-SQL Scalar UDF Inlining

Table 1: Relational algebraic expressions for imperative statements (using standard T-SQL notation from [33])

Imperative Statement (T-SQL) Relational expression (T-SQL)
DECLARE {@uvar data_type [= expr|}],...n]; SELECT {expr|null AS var}|,...n];
SET {@var = expr}|,...n|; SELECT {expr AS var}[,...n];
SELECT {@uarl = prj_exprl}],...n] FROM sgl_expr; {SELECT prj_exprl AS varl FROM sgl_expr}; [,...n]

SELECT CASE WHEN pred_expr THEN 1 ELSE 0 END AS pred_val;

IF (pred. t_stmt:|...n]} ELSE tmt;],...
(pred.expr) {t-stmt;[...n]} U stmti [, nl} R ECT CASE WHEN pred_val — 1 THEN t_stmt ELSE f_stmt: }[.. .l

RETURN expr; SELECT expr AS returnVal;

Scalar UDF Inlining non-starters

Non-inlineable constructs:

« Invoking any intrinsic function that is either time-dependent (such
as GETDATE()) or has side effects (such as NEWSEQUENTIALID())

 Referencing table variables or table-valued parameters
 Referencing scalar UDF call in its GROUP BY clause
« Natively compiled (interop is supported)

« Used in a computed column or a check constraint definition —
we've received lots of feedback on this scenario for this one

 References user-defined types
« Used in a partition function

What's next?

The features we saw today are in public preview — and we want your
feedback!

We continue working on intelligent query processing features as we
speak — share your scenarios with us!

Please email IntelligentQP@microsoft.com

mailto:IntelligentQP@Microsoft.com

Learn more

Download and try
SQL Server 2019

https://aka.ms/ss19

Check out these
great data-related
demos

https://aka.ms/DataDemos

https://aka.ms/IQPDemos

Continue learning
with our new book

https://aka.ms/LearnTSQLQuerying

One shortcut to rule
them all!

https://aka.ms/SQLShortcuts

T-SQL
Querying

A guide to developing efficient and elegant T-SQL code

-_—

2

-y

U Packt

Pedro Lopes and Pam Lahoud

https://aka.ms/ss19
https://aka.ms/IQPDemos
https://aka.ms/LearnTSQLQuerying
https://aka.ms/SQLShortcuts

