
SQL Intersection June 2019



A
n

x
ie

ty
-f

re
e
 u

p
g

ra
d

e
s • Database 

compatibility 

level regression 

protection

• Automatic plan 

regression 

correction

• Query Tuning 

Assistant

P
re

d
ic

ta
b

le
 p

e
rf

o
rm

a
n

c
e • Adaptive Query 

Processing 

• Intelligent Query 

Processing 

• Resource 

governor

• Guaranteed 

resources in SQL 

DB

• Auto-Soft NUMA

M
a
n

a
g

e
m

e
n

t-
b

y
-d

e
fa

u
lt • Automatic 

Indexing in SQL 

DB

• Flexible Scaling

• Integrity 

Checking

• Intelligent 

Insights

• Lightweight 

Query Profiling-

enabled 

troubleshooting S
e
c
u

ri
ty

 i
n

-d
e
p

th
 2

4
x

7 • Advanced Threat 

Detection

• Data 

Classification

• Vulnerability 

Assessment

Adapts to the constantly changing world of businesses and data



A
n

x
ie

ty
-f

re
e
 u

p
g

ra
d

e
s • Database 

compatibility 

level regression 

protection

• Automatic plan 

regression 

correction

• Query Tuning 

Assistant

P
re

d
ic

ta
b

le
 p

e
rf

o
rm

a
n

c
e • Adaptive Query 

Processing 

• Intelligent Query 

Processing 

• Resource 

governor

• Guaranteed 

resources in SQL 

DB

• Auto-Soft NUMA

M
a
n

a
g

e
m

e
n

t-
b

y
-d

e
fa

u
lt • Automatic 

Indexing in SQL 

DB

• Flexible Scaling

• Integrity 

Checking

• Intelligent 

Insights

• Lightweight 

Query Profiling-

enabled 

troubleshooting S
e
c
u

ri
ty

 i
n

-d
e
p

th
 2

4
x

7 • Advanced Threat 

Detection

• Data 

Classification

• Vulnerability 

Assessment

Adapts to the constantly changing world of businesses and data





SQL Server 2017

DB Compat 140

SQL Server 2019

DB Compat 150

Azure SQL Database

Intelligent QP

Adaptive QP

Adaptive Joins Batch Mode

Interleaved Execution

Memory Grant 

Feedback

Batch Mode

Row Mode

Table Variable 

Deferred Compilation

Batch Mode on 

Rowstore

Scalar UDF Inlining

Approximate QP*
Approximate Count 

Distinct



Up to 130 database 

compatibility level

Multi-statement table-valued functions 

(MSTVFs) are treated as a black box by QP and 

SQL Server uses a fixed optimization guess.

Optimize

100 rows 

guessed for 

MSTVFs

Execute

Performance 

issues if # rows 

is much larger

Pre SQL 2017



140 database 

compatibility level

Multi-statement table-valued functions 

(MSTVFs) are treated as a black box by QP and 

SQL Server uses a fixed optimization guess.

Interleaved Execution will materialize and use 

row counts for MSTVFs.

Downstream operations will benefit from the 

corrected MSTVF cardinality estimate.

Optimize

100 rows 

guessed for 

MSTVFs

Execute

Performance 

issues if # rows 

is much larger

Pre SQL 2017

Optimize

MSTVF 

identified

Execute

Execute 

MSTVF

Optimize

500k rows 

assumed 

from 1st 

execution

Execute

Good 

performance!

SQL 2017+



First 

Execution
Adjusting Stable Disabled

140 and 150 database 

compatibility level

Queries may spill to disk or take too much memory based on poor cardinality estimates. 

Memory misestimations result in spills, and overestimations hurt concurrency

MGF will adjust memory grants based on execution feedback

Batch Mode in 140, Row Mode in 150

MGF will remove spills and improve concurrency for repeating queries

• Spills to disk → MGF corrects grant misestimations

• Excessive memory grant → MGF corrects wasted memory, improves concurrency



Build Input

Build 
Threshold

Hash 
Match

Nested 
Loops

140 database 

compatibility level

If cardinality estimates are skewed, we may 

choose an inappropriate join algorithm.

AJ will defer the choice of Hash Match or 

Nested Loops join until after the first join 

input has been scanned.

Adaptive Buffer is used up to the point where 

it’s needed as the Build Table for HJ, or Outer 

Table for NLJ – Threshold is dynamic

AJ uses Nested Loops for small inputs, Hash 

Match for large inputs.



Area Temporary Tables Table Variables

Manual stats creation and update Yes No

Indexes Yes Only inline index definitions allowed. 

Constraints Yes Only PK, uniqueness and check 

constraints.

Automatic stats creation Yes No

Creating and using a temporary 

object in a single batch

Compilation of a statement that 

references a temp table that doesn’t 

exist is deferred until the first 

execution of the statement

A statement that references a table 

variable is compiled along with all 

other statements before any 

statement that populates the TV is 

executed, so compilation sees it as 

“1”.

Table Variable Deferred Compilation

Legacy behavior

Up to 140 database 

compatibility level



Area Temporary Tables Table Variables

Manual stats creation / update Yes No

Indexes Yes Only inline index definitions allowed. 

Constraints Yes Only PK, uniqueness and check 

constraints.

Automatic stats creation Yes No

Creating and using a temporary 

object in a single batch

Compilation of a statement that 

references a temp table that doesn’t 

exist is deferred until the first 

execution of the statement

Compilation of a statement that 

references a table variable that 

doesn’t exist is deferred until the first 

execution of the statement

Table Variable Deferred Compilation

Azure SQL Database and SQL Server 2019 behavior

150 database 

compatibility level



Provides approximate COUNT DISTINCT for big data scenarios with 

the benefit of high performance and a (very) low memory footprint.

Dashboard scenarios and trend analysis against big data sets with many distinct values (for example, 

distinct orders counts over a time period) – and many concurrent users where exact values are not 

necessary.

Data science big data set exploration. Need to understand data distributions quickly and exact values are 

not paramount.

Not banking applications or anywhere an exact value is required!



Columnstore 

indexes

Access only the data 

in columns that you 

need

Effective compression 

over traditional 

rowstore 

Batch Mode

Allows query 

operators to process 

data more efficiently 

by working on a batch 

of rows at a time

Built for analytical 

workload scale

Since SQL 

Server 2012 

we’ve bound 

these two 

features 

together

CPUI/O



Sometimes Columnstore isn’t an option:

• OLTP-sensitive workloads 

• Vendor support

• Columnstore interoperability limitations 

Now get analytical processing CPU-benefits without Columnstore 

indexes.

Batch mode on rowstore supports:

• On-disk heaps and B-tree indexes and existing batch-capable operators (new scan 

operator can evaluate batch mode bitmap filters)

• Existing batch mode operators

150 database 

compatibility level



A significant part of the workload consists of analytical queries 

AND

The workload is CPU bound AND

• Creating a columnstore index adds too much overhead to the transactional 

part of your workload OR

• Creating a columnstore index is not feasible because your application depends 

on a feature that is not yet supported with columnstore indexes OR

• You depend on a feature not supported with columnstore (for example, 

triggers)



User-Defined Functions that are implemented in Transact-SQL and return a 

single data value are referred to as T-SQL Scalar User-Defined Functions

T-SQL UDFs are an elegant way to achieve code reuse and modularity across 

SQL queries

Some computations (such as complex business rules) are easier to express in 

imperative UDF form

UDFs help in building up complex logic without requiring expertise in writing 

complex SQL queries



Iterative invocation: Invoked once per qualifying row. Repeated context switching – and 

even worse for UDFs that have T-SQL queries that access data

Lack of costing: Scalar operators are not costed (realistically)

Interpreted execution: Each statement itself is compiled, and the compiled plan is 

cached. Although this caching strategy saves some time as it avoids recompilations, each 

statement executes in isolation. No cross-statement optimizations are carried out.

Serial execution: SQL Server does not allow intra-query parallelism in queries that 

invoke Scalar UDFs. In other words, Scalar UDFs are parallelism inhibitors.



Source: “Froid: Optimization of Imperative Programs in a Relational Database” 

150 database 

compatibility level

Enable the benefits of UDFs without the 

performance penalty!

• Goal of the Scalar UDF Inlining feature is to 

improve performance for queries that invoke scalar 

UDFs where UDF execution is the main bottleneck

Before SQL 2019/DB Compat 150:

• Using query rewriting techniques, UDFs are 

transformed into equivalent relational expressions 

that are “inlined” into the calling query



Source: “Froid: Optimization of Imperative Programs in a Relational Database” 



Non-inlineable constructs:

• Invoking any intrinsic function that is either time-dependent (such 

as GETDATE()) or has side effects (such as NEWSEQUENTIALID())

• Referencing table variables or table-valued parameters

• Referencing scalar UDF call in its GROUP BY clause

• Natively compiled (interop is supported)

• Used in a computed column or a check constraint definition –

we’ve received lots of feedback on this scenario for this one

• References user-defined types

• Used in a partition function



IntelligentQP@microsoft.com

mailto:IntelligentQP@Microsoft.com


Download and try 

SQL Server 2019 

https://aka.ms/ss19

Check out these 

great data-related 

demos

https://aka.ms/DataDemos

https://aka.ms/IQPDemos

Continue learning 

with our new book

https://aka.ms/LearnTSQLQuerying

One shortcut to rule 

them all!

https://aka.ms/SQLShortcuts

https://aka.ms/ss19
https://aka.ms/IQPDemos
https://aka.ms/LearnTSQLQuerying
https://aka.ms/SQLShortcuts

