Browse Source

add encryption files

wangyu 8 years ago
parent
commit
2e86288cb0
4 changed files with 723 additions and 0 deletions
  1. 595 0
      aes.c
  2. 41 0
      aes.h
  3. 76 0
      encryption.cpp
  4. 11 0
      encryption.h

+ 595 - 0
aes.c

@@ -0,0 +1,595 @@
+/*
+
+This is an implementation of the AES algorithm, specifically ECB and CBC mode.
+Block size can be chosen in aes.h - available choices are AES128, AES192, AES256.
+
+The implementation is verified against the test vectors in:
+  National Institute of Standards and Technology Special Publication 800-38A 2001 ED
+
+ECB-AES128
+----------
+
+  plain-text:
+    6bc1bee22e409f96e93d7e117393172a
+    ae2d8a571e03ac9c9eb76fac45af8e51
+    30c81c46a35ce411e5fbc1191a0a52ef
+    f69f2445df4f9b17ad2b417be66c3710
+
+  key:
+    2b7e151628aed2a6abf7158809cf4f3c
+
+  resulting cipher
+    3ad77bb40d7a3660a89ecaf32466ef97 
+    f5d3d58503b9699de785895a96fdbaaf 
+    43b1cd7f598ece23881b00e3ed030688 
+    7b0c785e27e8ad3f8223207104725dd4 
+
+
+NOTE:   String length must be evenly divisible by 16byte (str_len % 16 == 0)
+        You should pad the end of the string with zeros if this is not the case.
+        For AES192/256 the block size is proportionally larger.
+
+*/
+
+
+/*****************************************************************************/
+/* Includes:                                                                 */
+/*****************************************************************************/
+#include <stdint.h>
+#include <string.h> // CBC mode, for memset
+#include "aes.h"
+
+/*****************************************************************************/
+/* Defines:                                                                  */
+/*****************************************************************************/
+// The number of columns comprising a state in AES. This is a constant in AES. Value=4
+#define Nb 4
+#define BLOCKLEN 16 //Block length in bytes AES is 128b block only
+
+#if defined(AES256) && (AES256 == 1)
+    #define Nk 8
+    #define KEYLEN 32
+    #define Nr 14
+    #define keyExpSize 240
+#elif defined(AES192) && (AES192 == 1)
+    #define Nk 6
+    #define KEYLEN 24
+    #define Nr 12
+    #define keyExpSize 208
+#else
+    #define Nk 4        // The number of 32 bit words in a key.
+    #define KEYLEN 16   // Key length in bytes
+    #define Nr 10       // The number of rounds in AES Cipher.
+    #define keyExpSize 176
+#endif
+
+// jcallan@github points out that declaring Multiply as a function 
+// reduces code size considerably with the Keil ARM compiler.
+// See this link for more information: https://github.com/kokke/tiny-AES128-C/pull/3
+#ifndef MULTIPLY_AS_A_FUNCTION
+  #define MULTIPLY_AS_A_FUNCTION 0
+#endif
+
+
+/*****************************************************************************/
+/* Private variables:                                                        */
+/*****************************************************************************/
+// state - array holding the intermediate results during decryption.
+typedef uint8_t state_t[4][4];
+static state_t* state;
+
+// The array that stores the round keys.
+static uint8_t RoundKey[keyExpSize];
+
+// The Key input to the AES Program
+static const uint8_t* Key;
+
+#if defined(CBC) && CBC
+  // Initial Vector used only for CBC mode
+  static uint8_t* Iv;
+#endif
+
+// The lookup-tables are marked const so they can be placed in read-only storage instead of RAM
+// The numbers below can be computed dynamically trading ROM for RAM - 
+// This can be useful in (embedded) bootloader applications, where ROM is often limited.
+static const uint8_t sbox[256] = {
+  //0     1    2      3     4    5     6     7      8    9     A      B    C     D     E     F
+  0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
+  0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
+  0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
+  0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
+  0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
+  0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
+  0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
+  0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
+  0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
+  0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
+  0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
+  0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
+  0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
+  0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
+  0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
+  0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 };
+
+static const uint8_t rsbox[256] = {
+  0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb,
+  0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb,
+  0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e,
+  0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25,
+  0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92,
+  0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84,
+  0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06,
+  0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b,
+  0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73,
+  0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e,
+  0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b,
+  0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4,
+  0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f,
+  0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef,
+  0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61,
+  0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d };
+
+// The round constant word array, Rcon[i], contains the values given by 
+// x to th e power (i-1) being powers of x (x is denoted as {02}) in the field GF(2^8)
+static const uint8_t Rcon[11] = {
+  0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36 };
+
+/*
+ * Jordan Goulder points out in PR #12 (https://github.com/kokke/tiny-AES128-C/pull/12),
+ * that you can remove most of the elements in the Rcon array, because they are unused.
+ *
+ * From Wikipedia's article on the Rijndael key schedule @ https://en.wikipedia.org/wiki/Rijndael_key_schedule#Rcon
+ * 
+ * "Only the first some of these constants are actually used – up to rcon[10] for AES-128 (as 11 round keys are needed), 
+ *  up to rcon[8] for AES-192, up to rcon[7] for AES-256. rcon[0] is not used in AES algorithm."
+ *
+ * ... which is why the full array below has been 'disabled' below.
+ */
+#if 0
+static const uint8_t Rcon[256] = {
+  0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a,
+  0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39,
+  0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a,
+  0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8,
+  0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef,
+  0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc,
+  0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b,
+  0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3,
+  0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94,
+  0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20,
+  0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35,
+  0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f,
+  0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04,
+  0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63,
+  0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd,
+  0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d };
+#endif
+
+/*****************************************************************************/
+/* Private functions:                                                        */
+/*****************************************************************************/
+static uint8_t getSBoxValue(uint8_t num)
+{
+  return sbox[num];
+}
+
+static uint8_t getSBoxInvert(uint8_t num)
+{
+  return rsbox[num];
+}
+
+// This function produces Nb(Nr+1) round keys. The round keys are used in each round to decrypt the states. 
+static void KeyExpansion(void)
+{
+  uint32_t i, k;
+  uint8_t tempa[4]; // Used for the column/row operations
+  
+  // The first round key is the key itself.
+  for (i = 0; i < Nk; ++i)
+  {
+    RoundKey[(i * 4) + 0] = Key[(i * 4) + 0];
+    RoundKey[(i * 4) + 1] = Key[(i * 4) + 1];
+    RoundKey[(i * 4) + 2] = Key[(i * 4) + 2];
+    RoundKey[(i * 4) + 3] = Key[(i * 4) + 3];
+  }
+
+  // All other round keys are found from the previous round keys.
+  //i == Nk
+  for (; i < Nb * (Nr + 1); ++i)
+  {
+    {
+      tempa[0]=RoundKey[(i-1) * 4 + 0];
+      tempa[1]=RoundKey[(i-1) * 4 + 1];
+      tempa[2]=RoundKey[(i-1) * 4 + 2];
+      tempa[3]=RoundKey[(i-1) * 4 + 3];
+    }
+
+    if (i % Nk == 0)
+    {
+      // This function shifts the 4 bytes in a word to the left once.
+      // [a0,a1,a2,a3] becomes [a1,a2,a3,a0]
+
+      // Function RotWord()
+      {
+        k = tempa[0];
+        tempa[0] = tempa[1];
+        tempa[1] = tempa[2];
+        tempa[2] = tempa[3];
+        tempa[3] = k;
+      }
+
+      // SubWord() is a function that takes a four-byte input word and 
+      // applies the S-box to each of the four bytes to produce an output word.
+
+      // Function Subword()
+      {
+        tempa[0] = getSBoxValue(tempa[0]);
+        tempa[1] = getSBoxValue(tempa[1]);
+        tempa[2] = getSBoxValue(tempa[2]);
+        tempa[3] = getSBoxValue(tempa[3]);
+      }
+
+      tempa[0] =  tempa[0] ^ Rcon[i/Nk];
+    }
+#if defined(AES256) && (AES256 == 1)
+    if (i % Nk == 4)
+    {
+      // Function Subword()
+      {
+        tempa[0] = getSBoxValue(tempa[0]);
+        tempa[1] = getSBoxValue(tempa[1]);
+        tempa[2] = getSBoxValue(tempa[2]);
+        tempa[3] = getSBoxValue(tempa[3]);
+      }
+    }
+#endif
+    RoundKey[i * 4 + 0] = RoundKey[(i - Nk) * 4 + 0] ^ tempa[0];
+    RoundKey[i * 4 + 1] = RoundKey[(i - Nk) * 4 + 1] ^ tempa[1];
+    RoundKey[i * 4 + 2] = RoundKey[(i - Nk) * 4 + 2] ^ tempa[2];
+    RoundKey[i * 4 + 3] = RoundKey[(i - Nk) * 4 + 3] ^ tempa[3];
+  }
+}
+
+// This function adds the round key to state.
+// The round key is added to the state by an XOR function.
+static void AddRoundKey(uint8_t round)
+{
+  uint8_t i,j;
+  for (i=0;i<4;++i)
+  {
+    for (j = 0; j < 4; ++j)
+    {
+      (*state)[i][j] ^= RoundKey[round * Nb * 4 + i * Nb + j];
+    }
+  }
+}
+
+// The SubBytes Function Substitutes the values in the
+// state matrix with values in an S-box.
+static void SubBytes(void)
+{
+  uint8_t i, j;
+  for (i = 0; i < 4; ++i)
+  {
+    for (j = 0; j < 4; ++j)
+    {
+      (*state)[j][i] = getSBoxValue((*state)[j][i]);
+    }
+  }
+}
+
+// The ShiftRows() function shifts the rows in the state to the left.
+// Each row is shifted with different offset.
+// Offset = Row number. So the first row is not shifted.
+static void ShiftRows(void)
+{
+  uint8_t temp;
+
+  // Rotate first row 1 columns to left  
+  temp           = (*state)[0][1];
+  (*state)[0][1] = (*state)[1][1];
+  (*state)[1][1] = (*state)[2][1];
+  (*state)[2][1] = (*state)[3][1];
+  (*state)[3][1] = temp;
+
+  // Rotate second row 2 columns to left  
+  temp           = (*state)[0][2];
+  (*state)[0][2] = (*state)[2][2];
+  (*state)[2][2] = temp;
+
+  temp           = (*state)[1][2];
+  (*state)[1][2] = (*state)[3][2];
+  (*state)[3][2] = temp;
+
+  // Rotate third row 3 columns to left
+  temp           = (*state)[0][3];
+  (*state)[0][3] = (*state)[3][3];
+  (*state)[3][3] = (*state)[2][3];
+  (*state)[2][3] = (*state)[1][3];
+  (*state)[1][3] = temp;
+}
+
+static uint8_t xtime(uint8_t x)
+{
+  return ((x<<1) ^ (((x>>7) & 1) * 0x1b));
+}
+
+// MixColumns function mixes the columns of the state matrix
+static void MixColumns(void)
+{
+  uint8_t i;
+  uint8_t Tmp,Tm,t;
+  for (i = 0; i < 4; ++i)
+  {  
+    t   = (*state)[i][0];
+    Tmp = (*state)[i][0] ^ (*state)[i][1] ^ (*state)[i][2] ^ (*state)[i][3] ;
+    Tm  = (*state)[i][0] ^ (*state)[i][1] ; Tm = xtime(Tm);  (*state)[i][0] ^= Tm ^ Tmp ;
+    Tm  = (*state)[i][1] ^ (*state)[i][2] ; Tm = xtime(Tm);  (*state)[i][1] ^= Tm ^ Tmp ;
+    Tm  = (*state)[i][2] ^ (*state)[i][3] ; Tm = xtime(Tm);  (*state)[i][2] ^= Tm ^ Tmp ;
+    Tm  = (*state)[i][3] ^ t ;              Tm = xtime(Tm);  (*state)[i][3] ^= Tm ^ Tmp ;
+  }
+}
+
+// Multiply is used to multiply numbers in the field GF(2^8)
+#if MULTIPLY_AS_A_FUNCTION
+static uint8_t Multiply(uint8_t x, uint8_t y)
+{
+  return (((y & 1) * x) ^
+       ((y>>1 & 1) * xtime(x)) ^
+       ((y>>2 & 1) * xtime(xtime(x))) ^
+       ((y>>3 & 1) * xtime(xtime(xtime(x)))) ^
+       ((y>>4 & 1) * xtime(xtime(xtime(xtime(x))))));
+  }
+#else
+#define Multiply(x, y)                                \
+      (  ((y & 1) * x) ^                              \
+      ((y>>1 & 1) * xtime(x)) ^                       \
+      ((y>>2 & 1) * xtime(xtime(x))) ^                \
+      ((y>>3 & 1) * xtime(xtime(xtime(x)))) ^         \
+      ((y>>4 & 1) * xtime(xtime(xtime(xtime(x))))))   \
+
+#endif
+
+// MixColumns function mixes the columns of the state matrix.
+// The method used to multiply may be difficult to understand for the inexperienced.
+// Please use the references to gain more information.
+static void InvMixColumns(void)
+{
+  int i;
+  uint8_t a, b, c, d;
+  for (i = 0; i < 4; ++i)
+  { 
+    a = (*state)[i][0];
+    b = (*state)[i][1];
+    c = (*state)[i][2];
+    d = (*state)[i][3];
+
+    (*state)[i][0] = Multiply(a, 0x0e) ^ Multiply(b, 0x0b) ^ Multiply(c, 0x0d) ^ Multiply(d, 0x09);
+    (*state)[i][1] = Multiply(a, 0x09) ^ Multiply(b, 0x0e) ^ Multiply(c, 0x0b) ^ Multiply(d, 0x0d);
+    (*state)[i][2] = Multiply(a, 0x0d) ^ Multiply(b, 0x09) ^ Multiply(c, 0x0e) ^ Multiply(d, 0x0b);
+    (*state)[i][3] = Multiply(a, 0x0b) ^ Multiply(b, 0x0d) ^ Multiply(c, 0x09) ^ Multiply(d, 0x0e);
+  }
+}
+
+
+// The SubBytes Function Substitutes the values in the
+// state matrix with values in an S-box.
+static void InvSubBytes(void)
+{
+  uint8_t i,j;
+  for (i = 0; i < 4; ++i)
+  {
+    for (j = 0; j < 4; ++j)
+    {
+      (*state)[j][i] = getSBoxInvert((*state)[j][i]);
+    }
+  }
+}
+
+static void InvShiftRows(void)
+{
+  uint8_t temp;
+
+  // Rotate first row 1 columns to right  
+  temp = (*state)[3][1];
+  (*state)[3][1] = (*state)[2][1];
+  (*state)[2][1] = (*state)[1][1];
+  (*state)[1][1] = (*state)[0][1];
+  (*state)[0][1] = temp;
+
+  // Rotate second row 2 columns to right 
+  temp = (*state)[0][2];
+  (*state)[0][2] = (*state)[2][2];
+  (*state)[2][2] = temp;
+
+  temp = (*state)[1][2];
+  (*state)[1][2] = (*state)[3][2];
+  (*state)[3][2] = temp;
+
+  // Rotate third row 3 columns to right
+  temp = (*state)[0][3];
+  (*state)[0][3] = (*state)[1][3];
+  (*state)[1][3] = (*state)[2][3];
+  (*state)[2][3] = (*state)[3][3];
+  (*state)[3][3] = temp;
+}
+
+
+// Cipher is the main function that encrypts the PlainText.
+static void Cipher(void)
+{
+  uint8_t round = 0;
+
+  // Add the First round key to the state before starting the rounds.
+  AddRoundKey(0); 
+  
+  // There will be Nr rounds.
+  // The first Nr-1 rounds are identical.
+  // These Nr-1 rounds are executed in the loop below.
+  for (round = 1; round < Nr; ++round)
+  {
+    SubBytes();
+    ShiftRows();
+    MixColumns();
+    AddRoundKey(round);
+  }
+  
+  // The last round is given below.
+  // The MixColumns function is not here in the last round.
+  SubBytes();
+  ShiftRows();
+  AddRoundKey(Nr);
+}
+
+static void InvCipher(void)
+{
+  uint8_t round=0;
+
+  // Add the First round key to the state before starting the rounds.
+  AddRoundKey(Nr); 
+
+  // There will be Nr rounds.
+  // The first Nr-1 rounds are identical.
+  // These Nr-1 rounds are executed in the loop below.
+  for (round = (Nr - 1); round > 0; --round)
+  {
+    InvShiftRows();
+    InvSubBytes();
+    AddRoundKey(round);
+    InvMixColumns();
+  }
+  
+  // The last round is given below.
+  // The MixColumns function is not here in the last round.
+  InvShiftRows();
+  InvSubBytes();
+  AddRoundKey(0);
+}
+
+
+/*****************************************************************************/
+/* Public functions:                                                         */
+/*****************************************************************************/
+#if defined(ECB) && (ECB == 1)
+
+
+void AES_ECB_encrypt(const uint8_t* input, const uint8_t* key, uint8_t* output, const uint32_t length)
+{
+  // Copy input to output, and work in-memory on output
+  memcpy(output, input, length);
+  state = (state_t*)output;
+
+  Key = key;
+  KeyExpansion();
+
+  // The next function call encrypts the PlainText with the Key using AES algorithm.
+  Cipher();
+}
+
+void AES_ECB_decrypt(const uint8_t* input, const uint8_t* key, uint8_t *output, const uint32_t length)
+{
+  // Copy input to output, and work in-memory on output
+  memcpy(output, input, length);
+  state = (state_t*)output;
+
+  // The KeyExpansion routine must be called before encryption.
+  Key = key;
+  KeyExpansion();
+
+  InvCipher();
+}
+
+
+#endif // #if defined(ECB) && (ECB == 1)
+
+
+
+
+
+#if defined(CBC) && (CBC == 1)
+
+
+static void XorWithIv(uint8_t* buf)
+{
+  uint8_t i;
+  for (i = 0; i < BLOCKLEN; ++i) //WAS for(i = 0; i < KEYLEN; ++i) but the block in AES is always 128bit so 16 bytes!
+  {
+    buf[i] ^= Iv[i];
+  }
+}
+
+void AES_CBC_encrypt_buffer(uint8_t* output, uint8_t* input, uint32_t length, const uint8_t* key, const uint8_t* iv)
+{
+  uintptr_t i;
+  uint8_t extra = length % BLOCKLEN; /* Remaining bytes in the last non-full block */
+
+  // Skip the key expansion if key is passed as 0
+  if (0 != key)
+  {
+    Key = key;
+    KeyExpansion();
+  }
+
+  if (iv != 0)
+  {
+    Iv = (uint8_t*)iv;
+  }
+
+  for (i = 0; i < length; i += BLOCKLEN)
+  {
+    XorWithIv(input);
+    memcpy(output, input, BLOCKLEN);
+    state = (state_t*)output;
+    Cipher();
+    Iv = output;
+    input += BLOCKLEN;
+    output += BLOCKLEN;
+    //printf("Step %d - %d", i/16, i);
+  }
+
+  if (extra)
+  {
+    memcpy(output, input, extra);
+    state = (state_t*)output;
+    Cipher();
+  }
+}
+
+void AES_CBC_decrypt_buffer(uint8_t* output, uint8_t* input, uint32_t length, const uint8_t* key, const uint8_t* iv)
+{
+  uintptr_t i;
+  uint8_t extra = length % BLOCKLEN; /* Remaining bytes in the last non-full block */
+
+  // Skip the key expansion if key is passed as 0
+  if (0 != key)
+  {
+    Key = key;
+    KeyExpansion();
+  }
+
+  // If iv is passed as 0, we continue to encrypt without re-setting the Iv
+  if (iv != 0)
+  {
+    Iv = (uint8_t*)iv;
+  }
+
+  for (i = 0; i < length; i += BLOCKLEN)
+  {
+    memcpy(output, input, BLOCKLEN);
+    state = (state_t*)output;
+    InvCipher();
+    XorWithIv(output);
+    Iv = input;
+    input += BLOCKLEN;
+    output += BLOCKLEN;
+  }
+
+  if (extra)
+  {
+    memcpy(output, input, extra);
+    state = (state_t*)output;
+    InvCipher();
+  }
+}
+
+#endif // #if defined(CBC) && (CBC == 1)

+ 41 - 0
aes.h

@@ -0,0 +1,41 @@
+#ifndef _AES_H_
+#define _AES_H_
+
+#include <stdint.h>
+
+
+// #define the macros below to 1/0 to enable/disable the mode of operation.
+//
+// CBC enables AES encryption in CBC-mode of operation.
+// ECB enables the basic ECB 16-byte block algorithm. Both can be enabled simultaneously.
+
+// The #ifndef-guard allows it to be configured before #include'ing or at compile time.
+#ifndef CBC
+  #define CBC 1
+#endif
+
+#ifndef ECB
+  #define ECB 1
+#endif
+
+#define AES128 1
+//#define AES192 1
+//#define AES256 1
+
+#if defined(ECB) && (ECB == 1)
+
+void AES_ECB_encrypt(const uint8_t* input, const uint8_t* key, uint8_t *output, const uint32_t length);
+void AES_ECB_decrypt(const uint8_t* input, const uint8_t* key, uint8_t *output, const uint32_t length);
+
+#endif // #if defined(ECB) && (ECB == !)
+
+
+#if defined(CBC) && (CBC == 1)
+
+void AES_CBC_encrypt_buffer(uint8_t* output, uint8_t* input, uint32_t length, const uint8_t* key, const uint8_t* iv);
+void AES_CBC_decrypt_buffer(uint8_t* output, uint8_t* input, uint32_t length, const uint8_t* key, const uint8_t* iv);
+
+#endif // #if defined(CBC) && (CBC == 1)
+
+
+#endif //_AES_H_

+ 76 - 0
encryption.cpp

@@ -0,0 +1,76 @@
+#include <aes.h>
+#include <md5.h>
+#include <string.h>
+#include <stdint.h>
+#include <stdlib.h>
+#include <stdio.h>
+
+//static uint64_t seq=1;
+
+static uint8_t zero_iv[]={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,   0,0,0,0};//this prog use zero iv,you should make sure first block of data contains a random/nonce data
+
+static uint8_t g_key[]={1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,   0,0,0,0};
+
+static uint8_t buf[65535+100];
+
+
+int my_encrypt(uint8_t *data,uint8_t *output,int &len,uint8_t * key)
+{
+	memcpy(output,data,len);
+	return 0;
+
+	int ori_len=len;
+
+	len=len+16;//md5
+	len+=2;//length
+
+	if(len%16!=0)
+	{
+		len= (len/16)*16+16;
+	}
+
+	if(len>65535) return -1;
+
+	data[len-16-2]=(uint16_t(ori_len))>>8;
+	data[len-16-1]=((uint16_t(ori_len))<<8)>>8;
+
+
+	//printf("%d %d\n",data[len-16-2],data[len-16-1]);
+	md5(data,len-16,data+len-16);
+
+	//memcpy(buf,data,len);  //not thread safe
+
+	AES_CBC_encrypt_buffer((unsigned char *)output,(unsigned char *)data,len,(unsigned char *)key,(unsigned char *)zero_iv);
+	//it doesnt allow over lap
+
+	return 0;
+}
+int my_decrypt(uint8_t *data,uint8_t *output,int &len,uint8_t * key)
+{
+	memcpy(output,data,len);
+	return 0;
+
+	uint8_t md5_res[16];
+	if(len>65535) return -1;
+	if(len<32) return -1;
+	if(len%16 !=0) return -1;
+
+	//memcpy(buf,data,len);
+
+	AES_CBC_decrypt_buffer((unsigned char *)output,(unsigned char *)data,len,(unsigned char *)key,(unsigned char *)zero_iv);
+
+	//printf("%d %d\n",data[len-16-2],data[len-16-1]);
+
+	//printf("<<%d>>",len);
+	md5(output,len-16,md5_res);
+
+	if(memcmp(output+len-16,md5_res,16)!=0)
+	{
+		return -2;
+	}
+
+	len=output[len-16-2]*256u+output[len-16-1];
+
+	return 0;
+}
+

+ 11 - 0
encryption.h

@@ -0,0 +1,11 @@
+#ifndef _ENCRYPTION_H_
+#define _ENCRYPTION_H_
+#include <aes.h>
+#include <md5.h>
+#include <string.h>
+#include <stdint.h>
+#include <stdlib.h>
+#include <stdio.h>
+int my_encrypt(uint8_t *data,uint8_t *output,int &len,uint8_t * key);
+int my_decrypt(uint8_t *data,uint8_t *output,int &len,uint8_t * key);
+#endif