common.cpp 19 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063
  1. /*
  2. * comm.cpp
  3. *
  4. * Created on: Jul 29, 2017
  5. * Author: wangyu
  6. */
  7. #include "common.h"
  8. #include "log.h"
  9. #include "misc.h"
  10. static int random_number_fd=-1;
  11. int force_socket_buf=0;
  12. int address_t::from_str(char *str)
  13. {
  14. clear();
  15. char ip_addr_str[100];u32_t port;
  16. mylog(log_info,"parsing address: %s\n",str);
  17. int is_ipv6=0;
  18. if(sscanf(str, "[%[^]]]:%u", ip_addr_str,&port)==2)
  19. {
  20. mylog(log_info,"its an ipv6 adress\n");
  21. inner.ipv6.sin6_family=AF_INET6;
  22. is_ipv6=1;
  23. }
  24. else if(sscanf(str, "%[^:]:%u", ip_addr_str,&port)==2)
  25. {
  26. mylog(log_info,"its an ipv4 adress\n");
  27. inner.ipv4.sin_family=AF_INET;
  28. }
  29. else
  30. {
  31. mylog(log_error,"failed to parse\n");
  32. myexit(-1);
  33. }
  34. mylog(log_info,"ip_address is {%s}, port is {%u}\n",ip_addr_str,port);
  35. if(port>65535)
  36. {
  37. mylog(log_error,"invalid port: %d\n",port);
  38. myexit(-1);
  39. }
  40. int ret=-100;
  41. if(is_ipv6)
  42. {
  43. ret=inet_pton(AF_INET6, ip_addr_str,&(inner.ipv6.sin6_addr));
  44. inner.ipv6.sin6_port=htons(port);
  45. if(ret==0) // 0 if address type doesnt match
  46. {
  47. mylog(log_error,"ip_addr %s is not an ipv6 address, %d\n",ip_addr_str,ret);
  48. myexit(-1);
  49. }
  50. else if(ret==1) // inet_pton returns 1 on success
  51. {
  52. //okay
  53. }
  54. else
  55. {
  56. mylog(log_error,"ip_addr %s is invalid, %d\n",ip_addr_str,ret);
  57. myexit(-1);
  58. }
  59. }
  60. else
  61. {
  62. ret=inet_pton(AF_INET, ip_addr_str,&(inner.ipv4.sin_addr));
  63. inner.ipv4.sin_port=htons(port);
  64. if(ret==0)
  65. {
  66. mylog(log_error,"ip_addr %s is not an ipv4 address, %d\n",ip_addr_str,ret);
  67. myexit(-1);
  68. }
  69. else if(ret==1)
  70. {
  71. //okay
  72. }
  73. else
  74. {
  75. mylog(log_error,"ip_addr %s is invalid, %d\n",ip_addr_str,ret);
  76. myexit(-1);
  77. }
  78. }
  79. return 0;
  80. }
  81. int address_t::from_str_ip_only(char * str)
  82. {
  83. clear();
  84. u32_t type;
  85. if(strchr(str,':')==NULL)
  86. type=AF_INET;
  87. else
  88. type=AF_INET6;
  89. ((sockaddr*)&inner)->sa_family=type;
  90. int ret;
  91. if(type==AF_INET)
  92. {
  93. ret=inet_pton(type, str,&inner.ipv4.sin_addr);
  94. }
  95. else
  96. {
  97. ret=inet_pton(type, str,&inner.ipv6.sin6_addr);
  98. }
  99. if(ret==0) // 0 if address type doesnt match
  100. {
  101. mylog(log_error,"confusion in parsing %s, %d\n",str,ret);
  102. myexit(-1);
  103. }
  104. else if(ret==1) // inet_pton returns 1 on success
  105. {
  106. //okay
  107. }
  108. else
  109. {
  110. mylog(log_error,"ip_addr %s is invalid, %d\n",str,ret);
  111. myexit(-1);
  112. }
  113. return 0;
  114. }
  115. char * address_t::get_str()
  116. {
  117. static char res[max_addr_len];
  118. to_str(res);
  119. return res;
  120. }
  121. void address_t::to_str(char * s)
  122. {
  123. //static char res[max_addr_len];
  124. char ip_addr[max_addr_len];
  125. u32_t port;
  126. const char * ret=0;
  127. if(get_type()==AF_INET6)
  128. {
  129. ret=inet_ntop(AF_INET6, &inner.ipv6.sin6_addr, ip_addr,max_addr_len);
  130. port=inner.ipv6.sin6_port;
  131. }
  132. else if(get_type()==AF_INET)
  133. {
  134. ret=inet_ntop(AF_INET, &inner.ipv4.sin_addr, ip_addr,max_addr_len);
  135. port=inner.ipv4.sin_port;
  136. }
  137. else
  138. {
  139. assert(0==1);
  140. }
  141. if(ret==0) //NULL on failure
  142. {
  143. mylog(log_error,"inet_ntop failed\n");
  144. myexit(-1);
  145. }
  146. port=ntohs(port);
  147. ip_addr[max_addr_len-1]=0;
  148. if(get_type()==AF_INET6)
  149. {
  150. sprintf(s,"[%s]:%u",ip_addr,(u32_t)port);
  151. }else
  152. {
  153. sprintf(s,"%s:%u",ip_addr,(u32_t)port);
  154. }
  155. //return res;
  156. }
  157. char* address_t::get_ip()
  158. {
  159. char ip_addr[max_addr_len];
  160. static char s[max_addr_len];
  161. const char * ret=0;
  162. if(get_type()==AF_INET6)
  163. {
  164. ret=inet_ntop(AF_INET6, &inner.ipv6.sin6_addr, ip_addr,max_addr_len);
  165. }
  166. else if(get_type()==AF_INET)
  167. {
  168. ret=inet_ntop(AF_INET, &inner.ipv4.sin_addr, ip_addr,max_addr_len);
  169. }
  170. else
  171. {
  172. assert(0==1);
  173. }
  174. if(ret==0) //NULL on failure
  175. {
  176. mylog(log_error,"inet_ntop failed\n");
  177. myexit(-1);
  178. }
  179. ip_addr[max_addr_len-1]=0;
  180. if(get_type()==AF_INET6)
  181. {
  182. sprintf(s,"%s",ip_addr);
  183. }else
  184. {
  185. sprintf(s,"%s",ip_addr);
  186. }
  187. return s;
  188. }
  189. int address_t::from_sockaddr(sockaddr * addr,socklen_t slen)
  190. {
  191. clear();
  192. //memset(&inner,0,sizeof(inner));
  193. if(addr->sa_family==AF_INET6)
  194. {
  195. assert(slen==sizeof(sockaddr_in6));
  196. //inner.ipv6= *( (sockaddr_in6*) addr );
  197. memcpy(&inner,addr,slen);
  198. }
  199. else if(addr->sa_family==AF_INET)
  200. {
  201. assert(slen==sizeof(sockaddr_in));
  202. //inner.ipv4= *( (sockaddr_in*) addr );
  203. memcpy(&inner,addr,slen);
  204. }
  205. else
  206. {
  207. assert(0==1);
  208. }
  209. return 0;
  210. }
  211. int address_t::new_connected_udp_fd()
  212. {
  213. int new_udp_fd;
  214. new_udp_fd = socket(get_type(), SOCK_DGRAM, IPPROTO_UDP);
  215. if (new_udp_fd < 0) {
  216. mylog(log_warn, "create udp_fd error\n");
  217. return -1;
  218. }
  219. setnonblocking(new_udp_fd);
  220. set_buf_size(new_udp_fd,socket_buf_size);
  221. mylog(log_debug, "created new udp_fd %d\n", new_udp_fd);
  222. int ret = connect(new_udp_fd, (struct sockaddr *) &inner, get_len());
  223. if (ret != 0) {
  224. mylog(log_warn, "udp fd connect fail %d %s\n",ret,strerror(errno) );
  225. //sock_close(new_udp_fd);
  226. close(new_udp_fd);
  227. return -1;
  228. }
  229. return new_udp_fd;
  230. }
  231. bool my_ip_t::equal (const my_ip_t &b) const
  232. {
  233. //extern int raw_ip_version;
  234. if(raw_ip_version==AF_INET)
  235. {
  236. return v4==b.v4;
  237. }else if(raw_ip_version==AF_INET6)
  238. {
  239. return memcmp(&v6,&b.v6,sizeof(v6))==0;
  240. }
  241. assert(0==1);
  242. return 0;
  243. }
  244. char * my_ip_t::get_str1() const
  245. {
  246. static char res[max_addr_len];
  247. if(raw_ip_version==AF_INET6)
  248. {
  249. assert(inet_ntop(AF_INET6, &v6, res,max_addr_len)!=0);
  250. }
  251. else
  252. {
  253. assert(raw_ip_version==AF_INET);
  254. assert(inet_ntop(AF_INET, &v4, res,max_addr_len)!=0);
  255. }
  256. return res;
  257. }
  258. char * my_ip_t::get_str2() const
  259. {
  260. static char res[max_addr_len];
  261. if(raw_ip_version==AF_INET6)
  262. {
  263. assert(inet_ntop(AF_INET6, &v6, res,max_addr_len)!=0);
  264. }
  265. else
  266. {
  267. assert(raw_ip_version==AF_INET);
  268. assert(inet_ntop(AF_INET, &v4, res,max_addr_len)!=0);
  269. }
  270. return res;
  271. }
  272. int my_ip_t::from_address_t(address_t tmp_addr)
  273. {
  274. if(tmp_addr.get_type()==raw_ip_version&&raw_ip_version==AF_INET)
  275. {
  276. v4=tmp_addr.inner.ipv4.sin_addr.s_addr;
  277. }
  278. else if(tmp_addr.get_type()==raw_ip_version&&raw_ip_version==AF_INET6)
  279. {
  280. v6=tmp_addr.inner.ipv6.sin6_addr;
  281. }
  282. else
  283. {
  284. assert(0==1);
  285. }
  286. return 0;
  287. }
  288. /*
  289. int my_ip_t::from_str(char * str)
  290. {
  291. u32_t type;
  292. if(strchr(str,':')==NULL)
  293. type=AF_INET;
  294. else
  295. type=AF_INET6;
  296. int ret;
  297. ret=inet_pton(type, str,this);
  298. if(ret==0) // 0 if address type doesnt match
  299. {
  300. mylog(log_error,"confusion in parsing %s, %d\n",str,ret);
  301. myexit(-1);
  302. }
  303. else if(ret==1) // inet_pton returns 1 on success
  304. {
  305. //okay
  306. }
  307. else
  308. {
  309. mylog(log_error,"ip_addr %s is invalid, %d\n",str,ret);
  310. myexit(-1);
  311. }
  312. return 0;
  313. }*/
  314. u64_t get_current_time()
  315. {
  316. timespec tmp_time;
  317. clock_gettime(CLOCK_MONOTONIC, &tmp_time);
  318. return ((u64_t)tmp_time.tv_sec)*1000llu+((u64_t)tmp_time.tv_nsec)/(1000*1000llu);
  319. }
  320. u64_t pack_u64(u32_t a,u32_t b)
  321. {
  322. u64_t ret=a;
  323. ret<<=32u;
  324. ret+=b;
  325. return ret;
  326. }
  327. u32_t get_u64_h(u64_t a)
  328. {
  329. return a>>32u;
  330. }
  331. u32_t get_u64_l(u64_t a)
  332. {
  333. return (a<<32u)>>32u;
  334. }
  335. char * my_ntoa(u32_t ip)
  336. {
  337. in_addr a;
  338. a.s_addr=ip;
  339. return inet_ntoa(a);
  340. }
  341. void init_random_number_fd()
  342. {
  343. random_number_fd=open("/dev/urandom",O_RDONLY);
  344. if(random_number_fd==-1)
  345. {
  346. mylog(log_fatal,"error open /dev/urandom\n");
  347. myexit(-1);
  348. }
  349. setnonblocking(random_number_fd);
  350. }
  351. u64_t get_true_random_number_64()
  352. {
  353. u64_t ret;
  354. int size=read(random_number_fd,&ret,sizeof(ret));
  355. if(size!=sizeof(ret))
  356. {
  357. mylog(log_fatal,"get random number failed %d\n",size);
  358. myexit(-1);
  359. }
  360. return ret;
  361. }
  362. u32_t get_true_random_number()
  363. {
  364. u32_t ret;
  365. int size=read(random_number_fd,&ret,sizeof(ret));
  366. if(size!=sizeof(ret))
  367. {
  368. mylog(log_fatal,"get random number failed %d\n",size);
  369. myexit(-1);
  370. }
  371. return ret;
  372. }
  373. u32_t get_true_random_number_nz() //nz for non-zero
  374. {
  375. u32_t ret=0;
  376. while(ret==0)
  377. {
  378. ret=get_true_random_number();
  379. }
  380. return ret;
  381. }
  382. u64_t ntoh64(u64_t a)
  383. {
  384. #ifdef UDP2RAW_LITTLE_ENDIAN
  385. u32_t h=get_u64_h(a);
  386. u32_t l=get_u64_l(a);
  387. return pack_u64(ntohl(l),ntohl(h));
  388. //return bswap_64( a);
  389. #else
  390. return a;
  391. #endif
  392. }
  393. u64_t hton64(u64_t a)
  394. {
  395. return ntoh64(a);
  396. }
  397. void write_u16(char * p,u16_t w)
  398. {
  399. *(unsigned char*)(p + 1) = (w & 0xff);
  400. *(unsigned char*)(p + 0) = (w >> 8);
  401. }
  402. u16_t read_u16(char * p)
  403. {
  404. u16_t res;
  405. res = *(const unsigned char*)(p + 0);
  406. res = *(const unsigned char*)(p + 1) + (res << 8);
  407. return res;
  408. }
  409. void write_u32(char * p,u32_t l)
  410. {
  411. *(unsigned char*)(p + 3) = (unsigned char)((l >> 0) & 0xff);
  412. *(unsigned char*)(p + 2) = (unsigned char)((l >> 8) & 0xff);
  413. *(unsigned char*)(p + 1) = (unsigned char)((l >> 16) & 0xff);
  414. *(unsigned char*)(p + 0) = (unsigned char)((l >> 24) & 0xff);
  415. }
  416. u32_t read_u32(char * p)
  417. {
  418. u32_t res;
  419. res = *(const unsigned char*)(p + 0);
  420. res = *(const unsigned char*)(p + 1) + (res << 8);
  421. res = *(const unsigned char*)(p + 2) + (res << 8);
  422. res = *(const unsigned char*)(p + 3) + (res << 8);
  423. return res;
  424. }
  425. void write_u64(char * s,u64_t a)
  426. {
  427. assert(0==1);
  428. }
  429. u64_t read_u64(char * s)
  430. {
  431. assert(0==1);
  432. return 0;
  433. }
  434. void setnonblocking(int sock) {
  435. int opts;
  436. opts = fcntl(sock, F_GETFL);
  437. if (opts < 0) {
  438. mylog(log_fatal,"fcntl(sock,GETFL)\n");
  439. //perror("fcntl(sock,GETFL)");
  440. myexit(1);
  441. }
  442. opts = opts | O_NONBLOCK;
  443. if (fcntl(sock, F_SETFL, opts) < 0) {
  444. mylog(log_fatal,"fcntl(sock,SETFL,opts)\n");
  445. //perror("fcntl(sock,SETFL,opts)");
  446. myexit(1);
  447. }
  448. }
  449. /*
  450. Generic checksum calculation function
  451. */
  452. unsigned short csum(const unsigned short *ptr,int nbytes) {//works both for big and little endian
  453. register long sum;
  454. unsigned short oddbyte;
  455. register short answer;
  456. sum=0;
  457. while(nbytes>1) {
  458. sum+=*ptr++;
  459. nbytes-=2;
  460. }
  461. if(nbytes==1) {
  462. oddbyte=0;
  463. *((u_char*)&oddbyte)=*(u_char*)ptr;
  464. sum+=oddbyte;
  465. }
  466. sum = (sum>>16)+(sum & 0xffff);
  467. sum = sum + (sum>>16);
  468. answer=(short)~sum;
  469. return(answer);
  470. }
  471. unsigned short csum_with_header(char* header,int hlen,const unsigned short *ptr,int nbytes) {//works both for big and little endian
  472. long sum;
  473. unsigned short oddbyte;
  474. short answer;
  475. assert(hlen%2==0);
  476. sum=0;
  477. unsigned short * tmp= (unsigned short *)header;
  478. for(int i=0;i<hlen/2;i++)
  479. {
  480. sum+=*tmp++;
  481. }
  482. while(nbytes>1) {
  483. sum+=*ptr++;
  484. nbytes-=2;
  485. }
  486. if(nbytes==1) {
  487. oddbyte=0;
  488. *((u_char*)&oddbyte)=*(u_char*)ptr;
  489. sum+=oddbyte;
  490. }
  491. sum = (sum>>16)+(sum & 0xffff);
  492. sum = sum + (sum>>16);
  493. answer=(short)~sum;
  494. return(answer);
  495. }
  496. int set_buf_size(int fd,int socket_buf_size)
  497. {
  498. if(force_socket_buf)
  499. {
  500. if(setsockopt(fd, SOL_SOCKET, SO_SNDBUFFORCE, &socket_buf_size, sizeof(socket_buf_size))<0)
  501. {
  502. mylog(log_fatal,"SO_SNDBUFFORCE fail socket_buf_size=%d errno=%s\n",socket_buf_size,strerror(errno));
  503. myexit(1);
  504. }
  505. if(setsockopt(fd, SOL_SOCKET, SO_RCVBUFFORCE, &socket_buf_size, sizeof(socket_buf_size))<0)
  506. {
  507. mylog(log_fatal,"SO_RCVBUFFORCE fail socket_buf_size=%d errno=%s\n",socket_buf_size,strerror(errno));
  508. myexit(1);
  509. }
  510. }
  511. else
  512. {
  513. if(setsockopt(fd, SOL_SOCKET, SO_SNDBUF, &socket_buf_size, sizeof(socket_buf_size))<0)
  514. {
  515. mylog(log_fatal,"SO_SNDBUF fail socket_buf_size=%d errno=%s\n",socket_buf_size,strerror(errno));
  516. myexit(1);
  517. }
  518. if(setsockopt(fd, SOL_SOCKET, SO_RCVBUF, &socket_buf_size, sizeof(socket_buf_size))<0)
  519. {
  520. mylog(log_fatal,"SO_RCVBUF fail socket_buf_size=%d errno=%s\n",socket_buf_size,strerror(errno));
  521. myexit(1);
  522. }
  523. }
  524. return 0;
  525. }
  526. int numbers_to_char(my_id_t id1,my_id_t id2,my_id_t id3,char * &data,int &len)
  527. {
  528. static char buf[buf_len];
  529. data=buf;
  530. my_id_t tmp=htonl(id1);
  531. memcpy(buf,&tmp,sizeof(tmp));
  532. tmp=htonl(id2);
  533. memcpy(buf+sizeof(tmp),&tmp,sizeof(tmp));
  534. tmp=htonl(id3);
  535. memcpy(buf+sizeof(tmp)*2,&tmp,sizeof(tmp));
  536. len=sizeof(my_id_t)*3;
  537. return 0;
  538. }
  539. int char_to_numbers(const char * data,int len,my_id_t &id1,my_id_t &id2,my_id_t &id3)
  540. {
  541. if(len<int(sizeof(my_id_t)*3)) return -1;
  542. //id1=ntohl( *((id_t*)(data+0)) );
  543. memcpy(&id1,data+0,sizeof(id1));
  544. id1=ntohl(id1);
  545. //id2=ntohl( *((id_t*)(data+sizeof(id_t))) );
  546. memcpy(&id2,data+sizeof(my_id_t),sizeof(id2));
  547. id2=ntohl(id2);
  548. //id3=ntohl( *((id_t*)(data+sizeof(id_t)*2)) );
  549. memcpy(&id3,data+sizeof(my_id_t)*2,sizeof(id3));
  550. id3=ntohl(id3);
  551. return 0;
  552. }
  553. int hex_to_u32(const string & a,u32_t &output)
  554. {
  555. //string b="0x";
  556. //b+=a;
  557. if(sscanf(a.c_str(),"%x",&output)==1)
  558. {
  559. //printf("%s %x\n",a.c_str(),output);
  560. return 0;
  561. }
  562. mylog(log_error,"<%s> doesnt contain a hex\n",a.c_str());
  563. return -1;
  564. }
  565. int hex_to_u32_with_endian(const string & a,u32_t &output)
  566. {
  567. //string b="0x";
  568. //b+=a;
  569. if(sscanf(a.c_str(),"%x",&output)==1)
  570. {
  571. output=htonl(output);
  572. //printf("%s %x\n",a.c_str(),output);
  573. return 0;
  574. }
  575. mylog(log_error,"<%s> doesnt contain a hex\n",a.c_str());
  576. return -1;
  577. }
  578. bool larger_than_u32(u32_t a,u32_t b)
  579. {
  580. return ((i32_t(a-b)) >0);
  581. /*
  582. u32_t smaller,bigger;
  583. smaller=min(a,b);//smaller in normal sense
  584. bigger=max(a,b);
  585. u32_t distance=min(bigger-smaller,smaller+(0xffffffff-bigger+1));
  586. if(distance==bigger-smaller)
  587. {
  588. if(bigger==a)
  589. {
  590. return 1;
  591. }
  592. else
  593. {
  594. return 0;
  595. }
  596. }
  597. else
  598. {
  599. if(smaller==b)
  600. {
  601. return 0;
  602. }
  603. else
  604. {
  605. return 1;
  606. }
  607. }
  608. */
  609. }
  610. bool larger_than_u16(uint16_t a,uint16_t b)
  611. {
  612. return ((i16_t(a-b)) >0);
  613. /*
  614. uint16_t smaller,bigger;
  615. smaller=min(a,b);//smaller in normal sense
  616. bigger=max(a,b);
  617. uint16_t distance=min(bigger-smaller,smaller+(0xffff-bigger+1));
  618. if(distance==bigger-smaller)
  619. {
  620. if(bigger==a)
  621. {
  622. return 1;
  623. }
  624. else
  625. {
  626. return 0;
  627. }
  628. }
  629. else
  630. {
  631. if(smaller==b)
  632. {
  633. return 0;
  634. }
  635. else
  636. {
  637. return 1;
  638. }
  639. }*/
  640. }
  641. void myexit(int a)
  642. {
  643. if(enable_log_color)
  644. printf("%s\n",RESET);
  645. if(keep_thread_running)
  646. {
  647. if(pthread_cancel(keep_thread))
  648. {
  649. mylog(log_warn,"pthread_cancel failed\n");
  650. }
  651. else
  652. {
  653. mylog(log_info,"pthread_cancel success\n");
  654. }
  655. }
  656. clear_iptables_rule();
  657. exit(a);
  658. }
  659. vector<string> string_to_vec(const char * s,const char * sp) {
  660. vector<string> res;
  661. string str=s;
  662. char *p = strtok ((char *)str.c_str(),sp);
  663. while (p != NULL)
  664. {
  665. res.push_back(p);
  666. //printf ("%s\n",p);
  667. p = strtok(NULL, sp);
  668. }
  669. /* for(int i=0;i<(int)res.size();i++)
  670. {
  671. printf("<<%s>>\n",res[i].c_str());
  672. }*/
  673. return res;
  674. }
  675. vector< vector <string> > string_to_vec2(const char * s)
  676. {
  677. vector< vector <string> > res;
  678. vector<string> lines=string_to_vec(s,"\n");
  679. for(int i=0;i<int(lines.size());i++)
  680. {
  681. vector<string> tmp;
  682. tmp=string_to_vec(lines[i].c_str(),"\t ");
  683. res.push_back(tmp);
  684. }
  685. return res;
  686. }
  687. int read_file(const char * file,string &output)
  688. {
  689. const int max_len=3*1024*1024;
  690. // static char buf[max_len+100];
  691. string buf0;
  692. buf0.reserve(max_len+200);
  693. char * buf=(char *)buf0.c_str();
  694. buf[max_len]=0;
  695. //buf[sizeof(buf)-1]=0;
  696. int fd=open(file,O_RDONLY);
  697. if(fd==-1)
  698. {
  699. mylog(log_error,"read_file %s fail\n",file);
  700. return -1;
  701. }
  702. int len=read(fd,buf,max_len);
  703. if(len==max_len)
  704. {
  705. buf[0]=0;
  706. mylog(log_error,"%s too long,buf not large enough\n",file);
  707. return -2;
  708. }
  709. else if(len<0)
  710. {
  711. buf[0]=0;
  712. mylog(log_error,"%s read fail %d\n",file,len);
  713. return -3;
  714. }
  715. else
  716. {
  717. buf[len]=0;
  718. output=buf;
  719. }
  720. return 0;
  721. }
  722. int run_command(string command0,char * &output,int flag) {
  723. FILE *in;
  724. if((flag&show_log)==0) command0+=" 2>&1 ";
  725. const char * command=command0.c_str();
  726. int level= (flag&show_log)?log_warn:log_debug;
  727. if(flag&show_command)
  728. {
  729. mylog(log_info,"run_command %s\n",command);
  730. }
  731. else
  732. {
  733. mylog(log_debug,"run_command %s\n",command);
  734. }
  735. static __thread char buf[1024*1024+100];
  736. buf[sizeof(buf)-1]=0;
  737. if(!(in = popen(command, "r"))){
  738. mylog(level,"command %s popen failed,errno %s\n",command,strerror(errno));
  739. return -1;
  740. }
  741. int len =fread(buf, 1024*1024, 1, in);
  742. if(len==1024*1024)
  743. {
  744. buf[0]=0;
  745. mylog(level,"too long,buf not larger enough\n");
  746. return -2;
  747. }
  748. else
  749. {
  750. buf[len]=0;
  751. }
  752. int ret;
  753. if(( ret=ferror(in) ))
  754. {
  755. mylog(level,"command %s fread failed,ferror return value %d \n",command,ret);
  756. return -3;
  757. }
  758. //if(output!=0)
  759. output=buf;
  760. ret= pclose(in);
  761. int ret2=WEXITSTATUS(ret);
  762. if(ret!=0||ret2!=0)
  763. {
  764. mylog(level,"commnad %s ,pclose returned %d ,WEXITSTATUS %d,errnor :%s \n",command,ret,ret2,strerror(errno));
  765. return -4;
  766. }
  767. return 0;
  768. }
  769. /*
  770. int run_command_no_log(string command0,char * &output) {
  771. FILE *in;
  772. command0+=" 2>&1 ";
  773. const char * command=command0.c_str();
  774. mylog(log_debug,"run_command_no_log %s\n",command);
  775. static char buf[1024*1024+100];
  776. buf[sizeof(buf)-1]=0;
  777. if(!(in = popen(command, "r"))){
  778. mylog(log_debug,"command %s popen failed,errno %s\n",command,strerror(errno));
  779. return -1;
  780. }
  781. int len =fread(buf, 1024*1024, 1, in);
  782. if(len==1024*1024)
  783. {
  784. buf[0]=0;
  785. mylog(log_debug,"too long,buf not larger enough\n");
  786. return -2;
  787. }
  788. else
  789. {
  790. buf[len]=0;
  791. }
  792. int ret;
  793. if(( ret=ferror(in) ))
  794. {
  795. mylog(log_debug,"command %s fread failed,ferror return value %d \n",command,ret);
  796. return -3;
  797. }
  798. //if(output!=0)
  799. output=buf;
  800. ret= pclose(in);
  801. int ret2=WEXITSTATUS(ret);
  802. if(ret!=0||ret2!=0)
  803. {
  804. mylog(log_debug,"commnad %s ,pclose returned %d ,WEXITSTATUS %d,errnor :%s \n",command,ret,ret2,strerror(errno));
  805. return -4;
  806. }
  807. return 0;
  808. }*/
  809. // Remove preceding and trailing characters
  810. string trim(const string& str, char c) {
  811. size_t first = str.find_first_not_of(c);
  812. if(string::npos==first)
  813. {
  814. return "";
  815. }
  816. size_t last = str.find_last_not_of(c);
  817. return str.substr(first,(last-first+1));
  818. }
  819. vector<string> parse_conf_line(const string& s0)
  820. {
  821. string s=s0;
  822. s.reserve(s.length()+200);
  823. char *buf=(char *)s.c_str();
  824. //char buf[s.length()+200];
  825. char *p=buf;
  826. int i=int(s.length())-1;
  827. int j;
  828. vector<string>res;
  829. strcpy(buf,(char *)s.c_str());
  830. while(i>=0)
  831. {
  832. if(buf[i]==' ' || buf[i]== '\t')
  833. buf[i]=0;
  834. else break;
  835. i--;
  836. }
  837. while(*p!=0)
  838. {
  839. if(*p==' ' || *p== '\t')
  840. {
  841. p++;
  842. }
  843. else break;
  844. }
  845. int new_len=strlen(p);
  846. if(new_len==0)return res;
  847. if(p[0]=='#') return res;
  848. if(p[0]!='-')
  849. {
  850. mylog(log_fatal,"line :<%s> not begin with '-' ",s.c_str());
  851. myexit(-1);
  852. }
  853. for(i=0;i<new_len;i++)
  854. {
  855. if(p[i]==' '||p[i]=='\t')
  856. {
  857. break;
  858. }
  859. }
  860. if(i==new_len)
  861. {
  862. res.push_back(p);
  863. return res;
  864. }
  865. j=i;
  866. while(p[j]==' '||p[j]=='\t')
  867. j++;
  868. p[i]=0;
  869. res.push_back(p);
  870. res.push_back(p+j);
  871. return res;
  872. }
  873. int create_fifo(char * file)
  874. {
  875. if(mkfifo (file, 0666)!=0)
  876. {
  877. if(errno==EEXIST)
  878. {
  879. mylog(log_warn,"warning fifo file %s exist\n",file);
  880. }
  881. else
  882. {
  883. mylog(log_fatal,"create fifo file %s failed\n",file);
  884. myexit(-1);
  885. }
  886. }
  887. int fifo_fd=open (file, O_RDWR);
  888. if(fifo_fd<0)
  889. {
  890. mylog(log_fatal,"create fifo file %s failed\n",file);
  891. myexit(-1);
  892. }
  893. struct stat st;
  894. if (fstat(fifo_fd, &st)!=0)
  895. {
  896. mylog(log_fatal,"fstat failed for fifo file %s\n",file);
  897. myexit(-1);
  898. }
  899. if(!S_ISFIFO(st.st_mode))
  900. {
  901. mylog(log_fatal,"%s is not a fifo\n",file);
  902. myexit(-1);
  903. }
  904. setnonblocking(fifo_fd);
  905. return fifo_fd;
  906. }
  907. /*
  908. void ip_port_t::from_u64(u64_t u64)
  909. {
  910. ip=get_u64_h(u64);
  911. port=get_u64_l(u64);
  912. }
  913. u64_t ip_port_t::to_u64()
  914. {
  915. return pack_u64(ip,port);
  916. }
  917. char * ip_port_t::to_s()
  918. {
  919. static char res[40];
  920. sprintf(res,"%s:%d",my_ntoa(ip),port);
  921. return res;
  922. }*/
  923. void print_binary_chars(const char * a,int len)
  924. {
  925. for(int i=0;i<len;i++)
  926. {
  927. unsigned char b=a[i];
  928. log_bare(log_debug,"<%02x>",(int)b);
  929. }
  930. log_bare(log_debug,"\n");
  931. }
  932. u32_t djb2(unsigned char *str,int len)
  933. {
  934. u32_t hash = 5381;
  935. int c;
  936. int i=0;
  937. while(c = *str++,i++!=len)
  938. {
  939. hash = ((hash << 5) + hash)^c; /* (hash * 33) ^ c */
  940. }
  941. hash=htonl(hash);
  942. return hash;
  943. }
  944. u32_t sdbm(unsigned char *str,int len)
  945. {
  946. u32_t hash = 0;
  947. int c;
  948. int i=0;
  949. while(c = *str++,i++!=len)
  950. {
  951. hash = c + (hash << 6) + (hash << 16) - hash;
  952. }
  953. //hash=htonl(hash);
  954. return hash;
  955. }