common.cpp 19 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061
  1. /*
  2. * comm.cpp
  3. *
  4. * Created on: Jul 29, 2017
  5. * Author: wangyu
  6. */
  7. #include "common.h"
  8. #include "log.h"
  9. #include "misc.h"
  10. static int random_number_fd=-1;
  11. int force_socket_buf=0;
  12. int address_t::from_str(char *str)
  13. {
  14. clear();
  15. char ip_addr_str[100];u32_t port;
  16. mylog(log_info,"parsing address: %s\n",str);
  17. int is_ipv6=0;
  18. if(sscanf(str, "[%[^]]]:%u", ip_addr_str,&port)==2)
  19. {
  20. mylog(log_info,"its an ipv6 adress\n");
  21. inner.ipv6.sin6_family=AF_INET6;
  22. is_ipv6=1;
  23. }
  24. else if(sscanf(str, "%[^:]:%u", ip_addr_str,&port)==2)
  25. {
  26. mylog(log_info,"its an ipv4 adress\n");
  27. inner.ipv4.sin_family=AF_INET;
  28. }
  29. else
  30. {
  31. mylog(log_error,"failed to parse\n");
  32. myexit(-1);
  33. }
  34. mylog(log_info,"ip_address is {%s}, port is {%u}\n",ip_addr_str,port);
  35. if(port>65535)
  36. {
  37. mylog(log_error,"invalid port: %d\n",port);
  38. myexit(-1);
  39. }
  40. int ret=-100;
  41. if(is_ipv6)
  42. {
  43. ret=inet_pton(AF_INET6, ip_addr_str,&(inner.ipv6.sin6_addr));
  44. inner.ipv6.sin6_port=htons(port);
  45. if(ret==0) // 0 if address type doesnt match
  46. {
  47. mylog(log_error,"ip_addr %s is not an ipv6 address, %d\n",ip_addr_str,ret);
  48. myexit(-1);
  49. }
  50. else if(ret==1) // inet_pton returns 1 on success
  51. {
  52. //okay
  53. }
  54. else
  55. {
  56. mylog(log_error,"ip_addr %s is invalid, %d\n",ip_addr_str,ret);
  57. myexit(-1);
  58. }
  59. }
  60. else
  61. {
  62. ret=inet_pton(AF_INET, ip_addr_str,&(inner.ipv4.sin_addr));
  63. inner.ipv4.sin_port=htons(port);
  64. if(ret==0)
  65. {
  66. mylog(log_error,"ip_addr %s is not an ipv4 address, %d\n",ip_addr_str,ret);
  67. myexit(-1);
  68. }
  69. else if(ret==1)
  70. {
  71. //okay
  72. }
  73. else
  74. {
  75. mylog(log_error,"ip_addr %s is invalid, %d\n",ip_addr_str,ret);
  76. myexit(-1);
  77. }
  78. }
  79. return 0;
  80. }
  81. int address_t::from_str_ip_only(char * str)
  82. {
  83. clear();
  84. u32_t type;
  85. if(strchr(str,':')==NULL)
  86. type=AF_INET;
  87. else
  88. type=AF_INET6;
  89. ((sockaddr*)&inner)->sa_family=type;
  90. int ret;
  91. if(type==AF_INET)
  92. {
  93. ret=inet_pton(type, str,&inner.ipv4.sin_addr);
  94. }
  95. else
  96. {
  97. ret=inet_pton(type, str,&inner.ipv6.sin6_addr);
  98. }
  99. if(ret==0) // 0 if address type doesnt match
  100. {
  101. mylog(log_error,"confusion in parsing %s, %d\n",str,ret);
  102. myexit(-1);
  103. }
  104. else if(ret==1) // inet_pton returns 1 on success
  105. {
  106. //okay
  107. }
  108. else
  109. {
  110. mylog(log_error,"ip_addr %s is invalid, %d\n",str,ret);
  111. myexit(-1);
  112. }
  113. return 0;
  114. }
  115. char * address_t::get_str()
  116. {
  117. static char res[max_addr_len];
  118. to_str(res);
  119. return res;
  120. }
  121. void address_t::to_str(char * s)
  122. {
  123. //static char res[max_addr_len];
  124. char ip_addr[max_addr_len];
  125. u32_t port;
  126. const char * ret=0;
  127. if(get_type()==AF_INET6)
  128. {
  129. ret=inet_ntop(AF_INET6, &inner.ipv6.sin6_addr, ip_addr,max_addr_len);
  130. port=inner.ipv6.sin6_port;
  131. }
  132. else if(get_type()==AF_INET)
  133. {
  134. ret=inet_ntop(AF_INET, &inner.ipv4.sin_addr, ip_addr,max_addr_len);
  135. port=inner.ipv4.sin_port;
  136. }
  137. else
  138. {
  139. assert(0==1);
  140. }
  141. if(ret==0) //NULL on failure
  142. {
  143. mylog(log_error,"inet_ntop failed\n");
  144. myexit(-1);
  145. }
  146. port=ntohs(port);
  147. ip_addr[max_addr_len-1]=0;
  148. if(get_type()==AF_INET6)
  149. {
  150. sprintf(s,"[%s]:%u",ip_addr,(u32_t)port);
  151. }else
  152. {
  153. sprintf(s,"%s:%u",ip_addr,(u32_t)port);
  154. }
  155. //return res;
  156. }
  157. char* address_t::get_ip()
  158. {
  159. char ip_addr[max_addr_len];
  160. static char s[max_addr_len];
  161. const char * ret=0;
  162. if(get_type()==AF_INET6)
  163. {
  164. ret=inet_ntop(AF_INET6, &inner.ipv6.sin6_addr, ip_addr,max_addr_len);
  165. }
  166. else if(get_type()==AF_INET)
  167. {
  168. ret=inet_ntop(AF_INET, &inner.ipv4.sin_addr, ip_addr,max_addr_len);
  169. }
  170. else
  171. {
  172. assert(0==1);
  173. }
  174. if(ret==0) //NULL on failure
  175. {
  176. mylog(log_error,"inet_ntop failed\n");
  177. myexit(-1);
  178. }
  179. ip_addr[max_addr_len-1]=0;
  180. if(get_type()==AF_INET6)
  181. {
  182. sprintf(s,"%s",ip_addr);
  183. }else
  184. {
  185. sprintf(s,"%s",ip_addr);
  186. }
  187. return s;
  188. }
  189. int address_t::from_sockaddr(sockaddr * addr,socklen_t slen)
  190. {
  191. clear();
  192. //memset(&inner,0,sizeof(inner));
  193. if(addr->sa_family==AF_INET6)
  194. {
  195. assert(slen==sizeof(sockaddr_in6));
  196. //inner.ipv6= *( (sockaddr_in6*) addr );
  197. memcpy(&inner,addr,slen);
  198. }
  199. else if(addr->sa_family==AF_INET)
  200. {
  201. assert(slen==sizeof(sockaddr_in));
  202. //inner.ipv4= *( (sockaddr_in*) addr );
  203. memcpy(&inner,addr,slen);
  204. }
  205. else
  206. {
  207. assert(0==1);
  208. }
  209. return 0;
  210. }
  211. int address_t::new_connected_udp_fd()
  212. {
  213. int new_udp_fd;
  214. new_udp_fd = socket(get_type(), SOCK_DGRAM, IPPROTO_UDP);
  215. if (new_udp_fd < 0) {
  216. mylog(log_warn, "create udp_fd error\n");
  217. return -1;
  218. }
  219. setnonblocking(new_udp_fd);
  220. set_buf_size(new_udp_fd,socket_buf_size);
  221. mylog(log_debug, "created new udp_fd %d\n", new_udp_fd);
  222. int ret = connect(new_udp_fd, (struct sockaddr *) &inner, get_len());
  223. if (ret != 0) {
  224. mylog(log_warn, "udp fd connect fail %d %s\n",ret,strerror(errno) );
  225. //sock_close(new_udp_fd);
  226. close(new_udp_fd);
  227. return -1;
  228. }
  229. return new_udp_fd;
  230. }
  231. bool my_ip_t::equal (const my_ip_t &b) const
  232. {
  233. //extern int raw_ip_version;
  234. if(raw_ip_version==AF_INET)
  235. {
  236. return v4==b.v4;
  237. }else if(raw_ip_version==AF_INET6)
  238. {
  239. return memcmp(&v6,&b.v6,sizeof(v6))==0;
  240. }
  241. assert(0==1);
  242. return 0;
  243. }
  244. char * my_ip_t::get_str1() const
  245. {
  246. static char res[max_addr_len];
  247. if(raw_ip_version==AF_INET6)
  248. {
  249. assert(inet_ntop(AF_INET6, &v6, res,max_addr_len)!=0);
  250. }
  251. else if(raw_ip_version==AF_INET6)
  252. {
  253. assert(inet_ntop(AF_INET, &v4, res,max_addr_len)!=0);
  254. }
  255. return res;
  256. }
  257. char * my_ip_t::get_str2() const
  258. {
  259. static char res[max_addr_len];
  260. if(raw_ip_version==AF_INET6)
  261. {
  262. assert(inet_ntop(AF_INET6, &v6, res,max_addr_len)!=0);
  263. }
  264. else if(raw_ip_version==AF_INET)
  265. {
  266. assert(inet_ntop(AF_INET, &v4, res,max_addr_len)!=0);
  267. }
  268. return res;
  269. }
  270. int my_ip_t::from_address_t(address_t tmp_addr)
  271. {
  272. if(tmp_addr.get_type()==raw_ip_version&&raw_ip_version==AF_INET)
  273. {
  274. v4=tmp_addr.inner.ipv4.sin_addr.s_addr;
  275. }
  276. else if(tmp_addr.get_type()==raw_ip_version&&raw_ip_version==AF_INET6)
  277. {
  278. v6=tmp_addr.inner.ipv6.sin6_addr;
  279. }
  280. else
  281. {
  282. assert(0==1);
  283. }
  284. return 0;
  285. }
  286. /*
  287. int my_ip_t::from_str(char * str)
  288. {
  289. u32_t type;
  290. if(strchr(str,':')==NULL)
  291. type=AF_INET;
  292. else
  293. type=AF_INET6;
  294. int ret;
  295. ret=inet_pton(type, str,this);
  296. if(ret==0) // 0 if address type doesnt match
  297. {
  298. mylog(log_error,"confusion in parsing %s, %d\n",str,ret);
  299. myexit(-1);
  300. }
  301. else if(ret==1) // inet_pton returns 1 on success
  302. {
  303. //okay
  304. }
  305. else
  306. {
  307. mylog(log_error,"ip_addr %s is invalid, %d\n",str,ret);
  308. myexit(-1);
  309. }
  310. return 0;
  311. }*/
  312. u64_t get_current_time()
  313. {
  314. timespec tmp_time;
  315. clock_gettime(CLOCK_MONOTONIC, &tmp_time);
  316. return ((u64_t)tmp_time.tv_sec)*1000llu+((u64_t)tmp_time.tv_nsec)/(1000*1000llu);
  317. }
  318. u64_t pack_u64(u32_t a,u32_t b)
  319. {
  320. u64_t ret=a;
  321. ret<<=32u;
  322. ret+=b;
  323. return ret;
  324. }
  325. u32_t get_u64_h(u64_t a)
  326. {
  327. return a>>32u;
  328. }
  329. u32_t get_u64_l(u64_t a)
  330. {
  331. return (a<<32u)>>32u;
  332. }
  333. char * my_ntoa(u32_t ip)
  334. {
  335. in_addr a;
  336. a.s_addr=ip;
  337. return inet_ntoa(a);
  338. }
  339. void init_random_number_fd()
  340. {
  341. random_number_fd=open("/dev/urandom",O_RDONLY);
  342. if(random_number_fd==-1)
  343. {
  344. mylog(log_fatal,"error open /dev/urandom\n");
  345. myexit(-1);
  346. }
  347. setnonblocking(random_number_fd);
  348. }
  349. u64_t get_true_random_number_64()
  350. {
  351. u64_t ret;
  352. int size=read(random_number_fd,&ret,sizeof(ret));
  353. if(size!=sizeof(ret))
  354. {
  355. mylog(log_fatal,"get random number failed %d\n",size);
  356. myexit(-1);
  357. }
  358. return ret;
  359. }
  360. u32_t get_true_random_number()
  361. {
  362. u32_t ret;
  363. int size=read(random_number_fd,&ret,sizeof(ret));
  364. if(size!=sizeof(ret))
  365. {
  366. mylog(log_fatal,"get random number failed %d\n",size);
  367. myexit(-1);
  368. }
  369. return ret;
  370. }
  371. u32_t get_true_random_number_nz() //nz for non-zero
  372. {
  373. u32_t ret=0;
  374. while(ret==0)
  375. {
  376. ret=get_true_random_number();
  377. }
  378. return ret;
  379. }
  380. u64_t ntoh64(u64_t a)
  381. {
  382. #ifdef UDP2RAW_LITTLE_ENDIAN
  383. u32_t h=get_u64_h(a);
  384. u32_t l=get_u64_l(a);
  385. return pack_u64(ntohl(l),ntohl(h));
  386. //return bswap_64( a);
  387. #else
  388. return a;
  389. #endif
  390. }
  391. u64_t hton64(u64_t a)
  392. {
  393. return ntoh64(a);
  394. }
  395. void write_u16(char * p,u16_t w)
  396. {
  397. *(unsigned char*)(p + 1) = (w & 0xff);
  398. *(unsigned char*)(p + 0) = (w >> 8);
  399. }
  400. u16_t read_u16(char * p)
  401. {
  402. u16_t res;
  403. res = *(const unsigned char*)(p + 0);
  404. res = *(const unsigned char*)(p + 1) + (res << 8);
  405. return res;
  406. }
  407. void write_u32(char * p,u32_t l)
  408. {
  409. *(unsigned char*)(p + 3) = (unsigned char)((l >> 0) & 0xff);
  410. *(unsigned char*)(p + 2) = (unsigned char)((l >> 8) & 0xff);
  411. *(unsigned char*)(p + 1) = (unsigned char)((l >> 16) & 0xff);
  412. *(unsigned char*)(p + 0) = (unsigned char)((l >> 24) & 0xff);
  413. }
  414. u32_t read_u32(char * p)
  415. {
  416. u32_t res;
  417. res = *(const unsigned char*)(p + 0);
  418. res = *(const unsigned char*)(p + 1) + (res << 8);
  419. res = *(const unsigned char*)(p + 2) + (res << 8);
  420. res = *(const unsigned char*)(p + 3) + (res << 8);
  421. return res;
  422. }
  423. void write_u64(char * s,u64_t a)
  424. {
  425. assert(0==1);
  426. }
  427. u64_t read_u64(char * s)
  428. {
  429. assert(0==1);
  430. return 0;
  431. }
  432. void setnonblocking(int sock) {
  433. int opts;
  434. opts = fcntl(sock, F_GETFL);
  435. if (opts < 0) {
  436. mylog(log_fatal,"fcntl(sock,GETFL)\n");
  437. //perror("fcntl(sock,GETFL)");
  438. myexit(1);
  439. }
  440. opts = opts | O_NONBLOCK;
  441. if (fcntl(sock, F_SETFL, opts) < 0) {
  442. mylog(log_fatal,"fcntl(sock,SETFL,opts)\n");
  443. //perror("fcntl(sock,SETFL,opts)");
  444. myexit(1);
  445. }
  446. }
  447. /*
  448. Generic checksum calculation function
  449. */
  450. unsigned short csum(const unsigned short *ptr,int nbytes) {//works both for big and little endian
  451. register long sum;
  452. unsigned short oddbyte;
  453. register short answer;
  454. sum=0;
  455. while(nbytes>1) {
  456. sum+=*ptr++;
  457. nbytes-=2;
  458. }
  459. if(nbytes==1) {
  460. oddbyte=0;
  461. *((u_char*)&oddbyte)=*(u_char*)ptr;
  462. sum+=oddbyte;
  463. }
  464. sum = (sum>>16)+(sum & 0xffff);
  465. sum = sum + (sum>>16);
  466. answer=(short)~sum;
  467. return(answer);
  468. }
  469. unsigned short csum_with_header(char* header,int hlen,const unsigned short *ptr,int nbytes) {//works both for big and little endian
  470. long sum;
  471. unsigned short oddbyte;
  472. short answer;
  473. assert(hlen%2==0);
  474. sum=0;
  475. unsigned short * tmp= (unsigned short *)header;
  476. for(int i=0;i<hlen/2;i++)
  477. {
  478. sum+=*tmp++;
  479. }
  480. while(nbytes>1) {
  481. sum+=*ptr++;
  482. nbytes-=2;
  483. }
  484. if(nbytes==1) {
  485. oddbyte=0;
  486. *((u_char*)&oddbyte)=*(u_char*)ptr;
  487. sum+=oddbyte;
  488. }
  489. sum = (sum>>16)+(sum & 0xffff);
  490. sum = sum + (sum>>16);
  491. answer=(short)~sum;
  492. return(answer);
  493. }
  494. int set_buf_size(int fd,int socket_buf_size)
  495. {
  496. if(force_socket_buf)
  497. {
  498. if(setsockopt(fd, SOL_SOCKET, SO_SNDBUFFORCE, &socket_buf_size, sizeof(socket_buf_size))<0)
  499. {
  500. mylog(log_fatal,"SO_SNDBUFFORCE fail socket_buf_size=%d errno=%s\n",socket_buf_size,strerror(errno));
  501. myexit(1);
  502. }
  503. if(setsockopt(fd, SOL_SOCKET, SO_RCVBUFFORCE, &socket_buf_size, sizeof(socket_buf_size))<0)
  504. {
  505. mylog(log_fatal,"SO_RCVBUFFORCE fail socket_buf_size=%d errno=%s\n",socket_buf_size,strerror(errno));
  506. myexit(1);
  507. }
  508. }
  509. else
  510. {
  511. if(setsockopt(fd, SOL_SOCKET, SO_SNDBUF, &socket_buf_size, sizeof(socket_buf_size))<0)
  512. {
  513. mylog(log_fatal,"SO_SNDBUF fail socket_buf_size=%d errno=%s\n",socket_buf_size,strerror(errno));
  514. myexit(1);
  515. }
  516. if(setsockopt(fd, SOL_SOCKET, SO_RCVBUF, &socket_buf_size, sizeof(socket_buf_size))<0)
  517. {
  518. mylog(log_fatal,"SO_RCVBUF fail socket_buf_size=%d errno=%s\n",socket_buf_size,strerror(errno));
  519. myexit(1);
  520. }
  521. }
  522. return 0;
  523. }
  524. int numbers_to_char(my_id_t id1,my_id_t id2,my_id_t id3,char * &data,int &len)
  525. {
  526. static char buf[buf_len];
  527. data=buf;
  528. my_id_t tmp=htonl(id1);
  529. memcpy(buf,&tmp,sizeof(tmp));
  530. tmp=htonl(id2);
  531. memcpy(buf+sizeof(tmp),&tmp,sizeof(tmp));
  532. tmp=htonl(id3);
  533. memcpy(buf+sizeof(tmp)*2,&tmp,sizeof(tmp));
  534. len=sizeof(my_id_t)*3;
  535. return 0;
  536. }
  537. int char_to_numbers(const char * data,int len,my_id_t &id1,my_id_t &id2,my_id_t &id3)
  538. {
  539. if(len<int(sizeof(my_id_t)*3)) return -1;
  540. //id1=ntohl( *((id_t*)(data+0)) );
  541. memcpy(&id1,data+0,sizeof(id1));
  542. id1=ntohl(id1);
  543. //id2=ntohl( *((id_t*)(data+sizeof(id_t))) );
  544. memcpy(&id2,data+sizeof(my_id_t),sizeof(id2));
  545. id2=ntohl(id2);
  546. //id3=ntohl( *((id_t*)(data+sizeof(id_t)*2)) );
  547. memcpy(&id3,data+sizeof(my_id_t)*2,sizeof(id3));
  548. id3=ntohl(id3);
  549. return 0;
  550. }
  551. int hex_to_u32(const string & a,u32_t &output)
  552. {
  553. //string b="0x";
  554. //b+=a;
  555. if(sscanf(a.c_str(),"%x",&output)==1)
  556. {
  557. //printf("%s %x\n",a.c_str(),output);
  558. return 0;
  559. }
  560. mylog(log_error,"<%s> doesnt contain a hex\n",a.c_str());
  561. return -1;
  562. }
  563. int hex_to_u32_with_endian(const string & a,u32_t &output)
  564. {
  565. //string b="0x";
  566. //b+=a;
  567. if(sscanf(a.c_str(),"%x",&output)==1)
  568. {
  569. output=htonl(output);
  570. //printf("%s %x\n",a.c_str(),output);
  571. return 0;
  572. }
  573. mylog(log_error,"<%s> doesnt contain a hex\n",a.c_str());
  574. return -1;
  575. }
  576. bool larger_than_u32(u32_t a,u32_t b)
  577. {
  578. return ((i32_t(a-b)) >0);
  579. /*
  580. u32_t smaller,bigger;
  581. smaller=min(a,b);//smaller in normal sense
  582. bigger=max(a,b);
  583. u32_t distance=min(bigger-smaller,smaller+(0xffffffff-bigger+1));
  584. if(distance==bigger-smaller)
  585. {
  586. if(bigger==a)
  587. {
  588. return 1;
  589. }
  590. else
  591. {
  592. return 0;
  593. }
  594. }
  595. else
  596. {
  597. if(smaller==b)
  598. {
  599. return 0;
  600. }
  601. else
  602. {
  603. return 1;
  604. }
  605. }
  606. */
  607. }
  608. bool larger_than_u16(uint16_t a,uint16_t b)
  609. {
  610. return ((i16_t(a-b)) >0);
  611. /*
  612. uint16_t smaller,bigger;
  613. smaller=min(a,b);//smaller in normal sense
  614. bigger=max(a,b);
  615. uint16_t distance=min(bigger-smaller,smaller+(0xffff-bigger+1));
  616. if(distance==bigger-smaller)
  617. {
  618. if(bigger==a)
  619. {
  620. return 1;
  621. }
  622. else
  623. {
  624. return 0;
  625. }
  626. }
  627. else
  628. {
  629. if(smaller==b)
  630. {
  631. return 0;
  632. }
  633. else
  634. {
  635. return 1;
  636. }
  637. }*/
  638. }
  639. void myexit(int a)
  640. {
  641. if(enable_log_color)
  642. printf("%s\n",RESET);
  643. if(keep_thread_running)
  644. {
  645. if(pthread_cancel(keep_thread))
  646. {
  647. mylog(log_warn,"pthread_cancel failed\n");
  648. }
  649. else
  650. {
  651. mylog(log_info,"pthread_cancel success\n");
  652. }
  653. }
  654. clear_iptables_rule();
  655. exit(a);
  656. }
  657. vector<string> string_to_vec(const char * s,const char * sp) {
  658. vector<string> res;
  659. string str=s;
  660. char *p = strtok ((char *)str.c_str(),sp);
  661. while (p != NULL)
  662. {
  663. res.push_back(p);
  664. //printf ("%s\n",p);
  665. p = strtok(NULL, sp);
  666. }
  667. /* for(int i=0;i<(int)res.size();i++)
  668. {
  669. printf("<<%s>>\n",res[i].c_str());
  670. }*/
  671. return res;
  672. }
  673. vector< vector <string> > string_to_vec2(const char * s)
  674. {
  675. vector< vector <string> > res;
  676. vector<string> lines=string_to_vec(s,"\n");
  677. for(int i=0;i<int(lines.size());i++)
  678. {
  679. vector<string> tmp;
  680. tmp=string_to_vec(lines[i].c_str(),"\t ");
  681. res.push_back(tmp);
  682. }
  683. return res;
  684. }
  685. int read_file(const char * file,string &output)
  686. {
  687. const int max_len=3*1024*1024;
  688. // static char buf[max_len+100];
  689. string buf0;
  690. buf0.reserve(max_len+200);
  691. char * buf=(char *)buf0.c_str();
  692. buf[max_len]=0;
  693. //buf[sizeof(buf)-1]=0;
  694. int fd=open(file,O_RDONLY);
  695. if(fd==-1)
  696. {
  697. mylog(log_error,"read_file %s fail\n",file);
  698. return -1;
  699. }
  700. int len=read(fd,buf,max_len);
  701. if(len==max_len)
  702. {
  703. buf[0]=0;
  704. mylog(log_error,"%s too long,buf not large enough\n",file);
  705. return -2;
  706. }
  707. else if(len<0)
  708. {
  709. buf[0]=0;
  710. mylog(log_error,"%s read fail %d\n",file,len);
  711. return -3;
  712. }
  713. else
  714. {
  715. buf[len]=0;
  716. output=buf;
  717. }
  718. return 0;
  719. }
  720. int run_command(string command0,char * &output,int flag) {
  721. FILE *in;
  722. if((flag&show_log)==0) command0+=" 2>&1 ";
  723. const char * command=command0.c_str();
  724. int level= (flag&show_log)?log_warn:log_debug;
  725. if(flag&show_command)
  726. {
  727. mylog(log_info,"run_command %s\n",command);
  728. }
  729. else
  730. {
  731. mylog(log_debug,"run_command %s\n",command);
  732. }
  733. static __thread char buf[1024*1024+100];
  734. buf[sizeof(buf)-1]=0;
  735. if(!(in = popen(command, "r"))){
  736. mylog(level,"command %s popen failed,errno %s\n",command,strerror(errno));
  737. return -1;
  738. }
  739. int len =fread(buf, 1024*1024, 1, in);
  740. if(len==1024*1024)
  741. {
  742. buf[0]=0;
  743. mylog(level,"too long,buf not larger enough\n");
  744. return -2;
  745. }
  746. else
  747. {
  748. buf[len]=0;
  749. }
  750. int ret;
  751. if(( ret=ferror(in) ))
  752. {
  753. mylog(level,"command %s fread failed,ferror return value %d \n",command,ret);
  754. return -3;
  755. }
  756. //if(output!=0)
  757. output=buf;
  758. ret= pclose(in);
  759. int ret2=WEXITSTATUS(ret);
  760. if(ret!=0||ret2!=0)
  761. {
  762. mylog(level,"commnad %s ,pclose returned %d ,WEXITSTATUS %d,errnor :%s \n",command,ret,ret2,strerror(errno));
  763. return -4;
  764. }
  765. return 0;
  766. }
  767. /*
  768. int run_command_no_log(string command0,char * &output) {
  769. FILE *in;
  770. command0+=" 2>&1 ";
  771. const char * command=command0.c_str();
  772. mylog(log_debug,"run_command_no_log %s\n",command);
  773. static char buf[1024*1024+100];
  774. buf[sizeof(buf)-1]=0;
  775. if(!(in = popen(command, "r"))){
  776. mylog(log_debug,"command %s popen failed,errno %s\n",command,strerror(errno));
  777. return -1;
  778. }
  779. int len =fread(buf, 1024*1024, 1, in);
  780. if(len==1024*1024)
  781. {
  782. buf[0]=0;
  783. mylog(log_debug,"too long,buf not larger enough\n");
  784. return -2;
  785. }
  786. else
  787. {
  788. buf[len]=0;
  789. }
  790. int ret;
  791. if(( ret=ferror(in) ))
  792. {
  793. mylog(log_debug,"command %s fread failed,ferror return value %d \n",command,ret);
  794. return -3;
  795. }
  796. //if(output!=0)
  797. output=buf;
  798. ret= pclose(in);
  799. int ret2=WEXITSTATUS(ret);
  800. if(ret!=0||ret2!=0)
  801. {
  802. mylog(log_debug,"commnad %s ,pclose returned %d ,WEXITSTATUS %d,errnor :%s \n",command,ret,ret2,strerror(errno));
  803. return -4;
  804. }
  805. return 0;
  806. }*/
  807. // Remove preceding and trailing characters
  808. string trim(const string& str, char c) {
  809. size_t first = str.find_first_not_of(c);
  810. if(string::npos==first)
  811. {
  812. return "";
  813. }
  814. size_t last = str.find_last_not_of(c);
  815. return str.substr(first,(last-first+1));
  816. }
  817. vector<string> parse_conf_line(const string& s0)
  818. {
  819. string s=s0;
  820. s.reserve(s.length()+200);
  821. char *buf=(char *)s.c_str();
  822. //char buf[s.length()+200];
  823. char *p=buf;
  824. int i=int(s.length())-1;
  825. int j;
  826. vector<string>res;
  827. strcpy(buf,(char *)s.c_str());
  828. while(i>=0)
  829. {
  830. if(buf[i]==' ' || buf[i]== '\t')
  831. buf[i]=0;
  832. else break;
  833. i--;
  834. }
  835. while(*p!=0)
  836. {
  837. if(*p==' ' || *p== '\t')
  838. {
  839. p++;
  840. }
  841. else break;
  842. }
  843. int new_len=strlen(p);
  844. if(new_len==0)return res;
  845. if(p[0]=='#') return res;
  846. if(p[0]!='-')
  847. {
  848. mylog(log_fatal,"line :<%s> not begin with '-' ",s.c_str());
  849. myexit(-1);
  850. }
  851. for(i=0;i<new_len;i++)
  852. {
  853. if(p[i]==' '||p[i]=='\t')
  854. {
  855. break;
  856. }
  857. }
  858. if(i==new_len)
  859. {
  860. res.push_back(p);
  861. return res;
  862. }
  863. j=i;
  864. while(p[j]==' '||p[j]=='\t')
  865. j++;
  866. p[i]=0;
  867. res.push_back(p);
  868. res.push_back(p+j);
  869. return res;
  870. }
  871. int create_fifo(char * file)
  872. {
  873. if(mkfifo (file, 0666)!=0)
  874. {
  875. if(errno==EEXIST)
  876. {
  877. mylog(log_warn,"warning fifo file %s exist\n",file);
  878. }
  879. else
  880. {
  881. mylog(log_fatal,"create fifo file %s failed\n",file);
  882. myexit(-1);
  883. }
  884. }
  885. int fifo_fd=open (file, O_RDWR);
  886. if(fifo_fd<0)
  887. {
  888. mylog(log_fatal,"create fifo file %s failed\n",file);
  889. myexit(-1);
  890. }
  891. struct stat st;
  892. if (fstat(fifo_fd, &st)!=0)
  893. {
  894. mylog(log_fatal,"fstat failed for fifo file %s\n",file);
  895. myexit(-1);
  896. }
  897. if(!S_ISFIFO(st.st_mode))
  898. {
  899. mylog(log_fatal,"%s is not a fifo\n",file);
  900. myexit(-1);
  901. }
  902. setnonblocking(fifo_fd);
  903. return fifo_fd;
  904. }
  905. /*
  906. void ip_port_t::from_u64(u64_t u64)
  907. {
  908. ip=get_u64_h(u64);
  909. port=get_u64_l(u64);
  910. }
  911. u64_t ip_port_t::to_u64()
  912. {
  913. return pack_u64(ip,port);
  914. }
  915. char * ip_port_t::to_s()
  916. {
  917. static char res[40];
  918. sprintf(res,"%s:%d",my_ntoa(ip),port);
  919. return res;
  920. }*/
  921. void print_binary_chars(const char * a,int len)
  922. {
  923. for(int i=0;i<len;i++)
  924. {
  925. unsigned char b=a[i];
  926. log_bare(log_debug,"<%02x>",(int)b);
  927. }
  928. log_bare(log_debug,"\n");
  929. }
  930. u32_t djb2(unsigned char *str,int len)
  931. {
  932. u32_t hash = 5381;
  933. int c;
  934. int i=0;
  935. while(c = *str++,i++!=len)
  936. {
  937. hash = ((hash << 5) + hash)^c; /* (hash * 33) ^ c */
  938. }
  939. hash=htonl(hash);
  940. return hash;
  941. }
  942. u32_t sdbm(unsigned char *str,int len)
  943. {
  944. u32_t hash = 0;
  945. int c;
  946. int i=0;
  947. while(c = *str++,i++!=len)
  948. {
  949. hash = c + (hash << 6) + (hash << 16) - hash;
  950. }
  951. //hash=htonl(hash);
  952. return hash;
  953. }