common.cpp 19 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060
  1. /*
  2. * comm.cpp
  3. *
  4. * Created on: Jul 29, 2017
  5. * Author: wangyu
  6. */
  7. #include "common.h"
  8. #include "log.h"
  9. #include "misc.h"
  10. static int random_number_fd=-1;
  11. int force_socket_buf=0;
  12. int address_t::from_str(char *str)
  13. {
  14. clear();
  15. char ip_addr_str[100];u32_t port;
  16. mylog(log_info,"parsing address: %s\n",str);
  17. int is_ipv6=0;
  18. if(sscanf(str, "[%[^]]]:%u", ip_addr_str,&port)==2)
  19. {
  20. mylog(log_info,"its an ipv6 adress\n");
  21. inner.ipv6.sin6_family=AF_INET6;
  22. is_ipv6=1;
  23. }
  24. else if(sscanf(str, "%[^:]:%u", ip_addr_str,&port)==2)
  25. {
  26. mylog(log_info,"its an ipv4 adress\n");
  27. inner.ipv4.sin_family=AF_INET;
  28. }
  29. else
  30. {
  31. mylog(log_error,"failed to parse\n");
  32. myexit(-1);
  33. }
  34. mylog(log_info,"ip_address is {%s}, port is {%u}\n",ip_addr_str,port);
  35. if(port>65535)
  36. {
  37. mylog(log_error,"invalid port: %d\n",port);
  38. myexit(-1);
  39. }
  40. int ret=-100;
  41. if(is_ipv6)
  42. {
  43. ret=inet_pton(AF_INET6, ip_addr_str,&(inner.ipv6.sin6_addr));
  44. inner.ipv6.sin6_port=htons(port);
  45. if(ret==0) // 0 if address type doesnt match
  46. {
  47. mylog(log_error,"ip_addr %s is not an ipv6 address, %d\n",ip_addr_str,ret);
  48. myexit(-1);
  49. }
  50. else if(ret==1) // inet_pton returns 1 on success
  51. {
  52. //okay
  53. }
  54. else
  55. {
  56. mylog(log_error,"ip_addr %s is invalid, %d\n",ip_addr_str,ret);
  57. myexit(-1);
  58. }
  59. }
  60. else
  61. {
  62. ret=inet_pton(AF_INET, ip_addr_str,&(inner.ipv4.sin_addr));
  63. inner.ipv4.sin_port=htons(port);
  64. if(ret==0)
  65. {
  66. mylog(log_error,"ip_addr %s is not an ipv4 address, %d\n",ip_addr_str,ret);
  67. myexit(-1);
  68. }
  69. else if(ret==1)
  70. {
  71. //okay
  72. }
  73. else
  74. {
  75. mylog(log_error,"ip_addr %s is invalid, %d\n",ip_addr_str,ret);
  76. myexit(-1);
  77. }
  78. }
  79. return 0;
  80. }
  81. int address_t::from_str_ip_only(char * str)
  82. {
  83. clear();
  84. u32_t type;
  85. if(strchr(str,':')==NULL)
  86. type=AF_INET;
  87. else
  88. type=AF_INET6;
  89. ((sockaddr*)&inner)->sa_family=type;
  90. int ret;
  91. if(type==AF_INET)
  92. {
  93. ret=inet_pton(type, str,&inner.ipv4.sin_addr);
  94. }
  95. else
  96. {
  97. ret=inet_pton(type, str,&inner.ipv6.sin6_addr);
  98. }
  99. if(ret==0) // 0 if address type doesnt match
  100. {
  101. mylog(log_error,"confusion in parsing %s, %d\n",str,ret);
  102. myexit(-1);
  103. }
  104. else if(ret==1) // inet_pton returns 1 on success
  105. {
  106. //okay
  107. }
  108. else
  109. {
  110. mylog(log_error,"ip_addr %s is invalid, %d\n",str,ret);
  111. myexit(-1);
  112. }
  113. return 0;
  114. }
  115. char * address_t::get_str()
  116. {
  117. static char res[max_addr_len];
  118. to_str(res);
  119. return res;
  120. }
  121. void address_t::to_str(char * s)
  122. {
  123. //static char res[max_addr_len];
  124. char ip_addr[max_addr_len];
  125. u32_t port;
  126. const char * ret=0;
  127. if(get_type()==AF_INET6)
  128. {
  129. ret=inet_ntop(AF_INET6, &inner.ipv6.sin6_addr, ip_addr,max_addr_len);
  130. port=inner.ipv6.sin6_port;
  131. }
  132. else if(get_type()==AF_INET)
  133. {
  134. ret=inet_ntop(AF_INET, &inner.ipv4.sin_addr, ip_addr,max_addr_len);
  135. port=inner.ipv4.sin_port;
  136. }
  137. else
  138. {
  139. assert(0==1);
  140. }
  141. if(ret==0) //NULL on failure
  142. {
  143. mylog(log_error,"inet_ntop failed\n");
  144. myexit(-1);
  145. }
  146. port=ntohs(port);
  147. ip_addr[max_addr_len-1]=0;
  148. if(get_type()==AF_INET6)
  149. {
  150. sprintf(s,"[%s]:%u",ip_addr,(u32_t)port);
  151. }else
  152. {
  153. sprintf(s,"%s:%u",ip_addr,(u32_t)port);
  154. }
  155. //return res;
  156. }
  157. char* address_t::get_ip()
  158. {
  159. char ip_addr[max_addr_len];
  160. static char s[max_addr_len];
  161. const char * ret=0;
  162. if(get_type()==AF_INET6)
  163. {
  164. ret=inet_ntop(AF_INET6, &inner.ipv6.sin6_addr, ip_addr,max_addr_len);
  165. }
  166. else if(get_type()==AF_INET)
  167. {
  168. ret=inet_ntop(AF_INET, &inner.ipv4.sin_addr, ip_addr,max_addr_len);
  169. }
  170. else
  171. {
  172. assert(0==1);
  173. }
  174. if(ret==0) //NULL on failure
  175. {
  176. mylog(log_error,"inet_ntop failed\n");
  177. myexit(-1);
  178. }
  179. ip_addr[max_addr_len-1]=0;
  180. if(get_type()==AF_INET6)
  181. {
  182. sprintf(s,"%s",ip_addr);
  183. }else
  184. {
  185. sprintf(s,"%s",ip_addr);
  186. }
  187. return s;
  188. }
  189. int address_t::from_sockaddr(sockaddr * addr,socklen_t slen)
  190. {
  191. clear();
  192. //memset(&inner,0,sizeof(inner));
  193. if(addr->sa_family==AF_INET6)
  194. {
  195. assert(slen==sizeof(sockaddr_in6));
  196. //inner.ipv6= *( (sockaddr_in6*) addr );
  197. memcpy(&inner,addr,slen);
  198. }
  199. else if(addr->sa_family==AF_INET)
  200. {
  201. assert(slen==sizeof(sockaddr_in));
  202. //inner.ipv4= *( (sockaddr_in*) addr );
  203. memcpy(&inner,addr,slen);
  204. }
  205. else
  206. {
  207. assert(0==1);
  208. }
  209. return 0;
  210. }
  211. int address_t::new_connected_udp_fd()
  212. {
  213. int new_udp_fd;
  214. new_udp_fd = socket(get_type(), SOCK_DGRAM, IPPROTO_UDP);
  215. if (new_udp_fd < 0) {
  216. mylog(log_warn, "create udp_fd error\n");
  217. return -1;
  218. }
  219. setnonblocking(new_udp_fd);
  220. set_buf_size(new_udp_fd,socket_buf_size);
  221. mylog(log_debug, "created new udp_fd %d\n", new_udp_fd);
  222. int ret = connect(new_udp_fd, (struct sockaddr *) &inner, get_len());
  223. if (ret != 0) {
  224. mylog(log_warn, "udp fd connect fail %d %s\n",ret,strerror(errno) );
  225. //sock_close(new_udp_fd);
  226. close(new_udp_fd);
  227. return -1;
  228. }
  229. return new_udp_fd;
  230. }
  231. bool my_ip_t::equal (const my_ip_t &b) const
  232. {
  233. //extern int raw_ip_version;
  234. if(raw_ip_version==AF_INET)
  235. {
  236. return v4==b.v4;
  237. }else if(raw_ip_version==AF_INET6)
  238. {
  239. return memcmp(&v6,&b.v6,sizeof(v6))==0;
  240. }
  241. assert(0==1);
  242. return 0;
  243. }
  244. char * my_ip_t::get_str1() const
  245. {
  246. static char res[max_addr_len];
  247. if(raw_ip_version==AF_INET6)
  248. {
  249. assert(inet_ntop(AF_INET6, &v6, res,max_addr_len)!=0);
  250. }
  251. else if(raw_ip_version==AF_INET6)
  252. {
  253. assert(inet_ntop(AF_INET, &v4, res,max_addr_len)!=0);
  254. }
  255. return res;
  256. }
  257. char * my_ip_t::get_str2() const
  258. {
  259. static char res[max_addr_len];
  260. if(raw_ip_version==AF_INET6)
  261. {
  262. assert(inet_ntop(AF_INET6, &v6, res,max_addr_len)!=0);
  263. }
  264. else if(raw_ip_version==AF_INET)
  265. {
  266. assert(inet_ntop(AF_INET, &v4, res,max_addr_len)!=0);
  267. }
  268. return res;
  269. }
  270. int my_ip_t::from_address_t(address_t tmp_addr)
  271. {
  272. if(tmp_addr.get_type()==raw_ip_version&&raw_ip_version==AF_INET)
  273. {
  274. v4=tmp_addr.inner.ipv4.sin_addr.s_addr;
  275. }
  276. else if(tmp_addr.get_type()==raw_ip_version&&raw_ip_version==AF_INET6)
  277. {
  278. v6=tmp_addr.inner.ipv6.sin6_addr;
  279. }
  280. else
  281. {
  282. assert(0==1);
  283. }
  284. return 0;
  285. }
  286. /*
  287. int my_ip_t::from_str(char * str)
  288. {
  289. u32_t type;
  290. if(strchr(str,':')==NULL)
  291. type=AF_INET;
  292. else
  293. type=AF_INET6;
  294. int ret;
  295. ret=inet_pton(type, str,this);
  296. if(ret==0) // 0 if address type doesnt match
  297. {
  298. mylog(log_error,"confusion in parsing %s, %d\n",str,ret);
  299. myexit(-1);
  300. }
  301. else if(ret==1) // inet_pton returns 1 on success
  302. {
  303. //okay
  304. }
  305. else
  306. {
  307. mylog(log_error,"ip_addr %s is invalid, %d\n",str,ret);
  308. myexit(-1);
  309. }
  310. return 0;
  311. }*/
  312. u64_t get_current_time()
  313. {
  314. timespec tmp_time;
  315. clock_gettime(CLOCK_MONOTONIC, &tmp_time);
  316. return ((u64_t)tmp_time.tv_sec)*1000llu+((u64_t)tmp_time.tv_nsec)/(1000*1000llu);
  317. }
  318. u64_t pack_u64(u32_t a,u32_t b)
  319. {
  320. u64_t ret=a;
  321. ret<<=32u;
  322. ret+=b;
  323. return ret;
  324. }
  325. u32_t get_u64_h(u64_t a)
  326. {
  327. return a>>32u;
  328. }
  329. u32_t get_u64_l(u64_t a)
  330. {
  331. return (a<<32u)>>32u;
  332. }
  333. char * my_ntoa(u32_t ip)
  334. {
  335. in_addr a;
  336. a.s_addr=ip;
  337. return inet_ntoa(a);
  338. }
  339. void init_random_number_fd()
  340. {
  341. random_number_fd=open("/dev/urandom",O_RDONLY);
  342. if(random_number_fd==-1)
  343. {
  344. mylog(log_fatal,"error open /dev/urandom\n");
  345. myexit(-1);
  346. }
  347. setnonblocking(random_number_fd);
  348. }
  349. u64_t get_true_random_number_64()
  350. {
  351. u64_t ret;
  352. int size=read(random_number_fd,&ret,sizeof(ret));
  353. if(size!=sizeof(ret))
  354. {
  355. mylog(log_fatal,"get random number failed %d\n",size);
  356. myexit(-1);
  357. }
  358. return ret;
  359. }
  360. u32_t get_true_random_number()
  361. {
  362. u32_t ret;
  363. int size=read(random_number_fd,&ret,sizeof(ret));
  364. if(size!=sizeof(ret))
  365. {
  366. mylog(log_fatal,"get random number failed %d\n",size);
  367. myexit(-1);
  368. }
  369. return ret;
  370. }
  371. u32_t get_true_random_number_nz() //nz for non-zero
  372. {
  373. u32_t ret=0;
  374. while(ret==0)
  375. {
  376. ret=get_true_random_number();
  377. }
  378. return ret;
  379. }
  380. u64_t ntoh64(u64_t a)
  381. {
  382. if(__BYTE_ORDER == __LITTLE_ENDIAN)
  383. {
  384. return bswap_64( a);
  385. }
  386. else return a;
  387. }
  388. u64_t hton64(u64_t a)
  389. {
  390. if(__BYTE_ORDER == __LITTLE_ENDIAN)
  391. {
  392. return bswap_64( a);
  393. }
  394. else return a;
  395. }
  396. void write_u16(char * p,u16_t w)
  397. {
  398. *(unsigned char*)(p + 1) = (w & 0xff);
  399. *(unsigned char*)(p + 0) = (w >> 8);
  400. }
  401. u16_t read_u16(char * p)
  402. {
  403. u16_t res;
  404. res = *(const unsigned char*)(p + 0);
  405. res = *(const unsigned char*)(p + 1) + (res << 8);
  406. return res;
  407. }
  408. void write_u32(char * p,u32_t l)
  409. {
  410. *(unsigned char*)(p + 3) = (unsigned char)((l >> 0) & 0xff);
  411. *(unsigned char*)(p + 2) = (unsigned char)((l >> 8) & 0xff);
  412. *(unsigned char*)(p + 1) = (unsigned char)((l >> 16) & 0xff);
  413. *(unsigned char*)(p + 0) = (unsigned char)((l >> 24) & 0xff);
  414. }
  415. u32_t read_u32(char * p)
  416. {
  417. u32_t res;
  418. res = *(const unsigned char*)(p + 0);
  419. res = *(const unsigned char*)(p + 1) + (res << 8);
  420. res = *(const unsigned char*)(p + 2) + (res << 8);
  421. res = *(const unsigned char*)(p + 3) + (res << 8);
  422. return res;
  423. }
  424. void write_u64(char * s,u64_t a)
  425. {
  426. assert(0==1);
  427. }
  428. u64_t read_u64(char * s)
  429. {
  430. assert(0==1);
  431. return 0;
  432. }
  433. void setnonblocking(int sock) {
  434. int opts;
  435. opts = fcntl(sock, F_GETFL);
  436. if (opts < 0) {
  437. mylog(log_fatal,"fcntl(sock,GETFL)\n");
  438. //perror("fcntl(sock,GETFL)");
  439. myexit(1);
  440. }
  441. opts = opts | O_NONBLOCK;
  442. if (fcntl(sock, F_SETFL, opts) < 0) {
  443. mylog(log_fatal,"fcntl(sock,SETFL,opts)\n");
  444. //perror("fcntl(sock,SETFL,opts)");
  445. myexit(1);
  446. }
  447. }
  448. /*
  449. Generic checksum calculation function
  450. */
  451. unsigned short csum(const unsigned short *ptr,int nbytes) {//works both for big and little endian
  452. register long sum;
  453. unsigned short oddbyte;
  454. register short answer;
  455. sum=0;
  456. while(nbytes>1) {
  457. sum+=*ptr++;
  458. nbytes-=2;
  459. }
  460. if(nbytes==1) {
  461. oddbyte=0;
  462. *((u_char*)&oddbyte)=*(u_char*)ptr;
  463. sum+=oddbyte;
  464. }
  465. sum = (sum>>16)+(sum & 0xffff);
  466. sum = sum + (sum>>16);
  467. answer=(short)~sum;
  468. return(answer);
  469. }
  470. unsigned short csum_with_header(char* header,int hlen,const unsigned short *ptr,int nbytes) {//works both for big and little endian
  471. long sum;
  472. unsigned short oddbyte;
  473. short answer;
  474. assert(hlen%2==0);
  475. sum=0;
  476. unsigned short * tmp= (unsigned short *)header;
  477. for(int i=0;i<hlen/2;i++)
  478. {
  479. sum+=*tmp++;
  480. }
  481. while(nbytes>1) {
  482. sum+=*ptr++;
  483. nbytes-=2;
  484. }
  485. if(nbytes==1) {
  486. oddbyte=0;
  487. *((u_char*)&oddbyte)=*(u_char*)ptr;
  488. sum+=oddbyte;
  489. }
  490. sum = (sum>>16)+(sum & 0xffff);
  491. sum = sum + (sum>>16);
  492. answer=(short)~sum;
  493. return(answer);
  494. }
  495. int set_buf_size(int fd,int socket_buf_size)
  496. {
  497. if(force_socket_buf)
  498. {
  499. if(setsockopt(fd, SOL_SOCKET, SO_SNDBUFFORCE, &socket_buf_size, sizeof(socket_buf_size))<0)
  500. {
  501. mylog(log_fatal,"SO_SNDBUFFORCE fail socket_buf_size=%d errno=%s\n",socket_buf_size,strerror(errno));
  502. myexit(1);
  503. }
  504. if(setsockopt(fd, SOL_SOCKET, SO_RCVBUFFORCE, &socket_buf_size, sizeof(socket_buf_size))<0)
  505. {
  506. mylog(log_fatal,"SO_RCVBUFFORCE fail socket_buf_size=%d errno=%s\n",socket_buf_size,strerror(errno));
  507. myexit(1);
  508. }
  509. }
  510. else
  511. {
  512. if(setsockopt(fd, SOL_SOCKET, SO_SNDBUF, &socket_buf_size, sizeof(socket_buf_size))<0)
  513. {
  514. mylog(log_fatal,"SO_SNDBUF fail socket_buf_size=%d errno=%s\n",socket_buf_size,strerror(errno));
  515. myexit(1);
  516. }
  517. if(setsockopt(fd, SOL_SOCKET, SO_RCVBUF, &socket_buf_size, sizeof(socket_buf_size))<0)
  518. {
  519. mylog(log_fatal,"SO_RCVBUF fail socket_buf_size=%d errno=%s\n",socket_buf_size,strerror(errno));
  520. myexit(1);
  521. }
  522. }
  523. return 0;
  524. }
  525. int numbers_to_char(id_t id1,id_t id2,id_t id3,char * &data,int &len)
  526. {
  527. static char buf[buf_len];
  528. data=buf;
  529. id_t tmp=htonl(id1);
  530. memcpy(buf,&tmp,sizeof(tmp));
  531. tmp=htonl(id2);
  532. memcpy(buf+sizeof(tmp),&tmp,sizeof(tmp));
  533. tmp=htonl(id3);
  534. memcpy(buf+sizeof(tmp)*2,&tmp,sizeof(tmp));
  535. len=sizeof(id_t)*3;
  536. return 0;
  537. }
  538. int char_to_numbers(const char * data,int len,id_t &id1,id_t &id2,id_t &id3)
  539. {
  540. if(len<int(sizeof(id_t)*3)) return -1;
  541. //id1=ntohl( *((id_t*)(data+0)) );
  542. memcpy(&id1,data+0,sizeof(id1));
  543. id1=ntohl(id1);
  544. //id2=ntohl( *((id_t*)(data+sizeof(id_t))) );
  545. memcpy(&id2,data+sizeof(id_t),sizeof(id2));
  546. id2=ntohl(id2);
  547. //id3=ntohl( *((id_t*)(data+sizeof(id_t)*2)) );
  548. memcpy(&id3,data+sizeof(id_t)*2,sizeof(id3));
  549. id3=ntohl(id3);
  550. return 0;
  551. }
  552. int hex_to_u32(const string & a,u32_t &output)
  553. {
  554. //string b="0x";
  555. //b+=a;
  556. if(sscanf(a.c_str(),"%x",&output)==1)
  557. {
  558. //printf("%s %x\n",a.c_str(),output);
  559. return 0;
  560. }
  561. mylog(log_error,"<%s> doesnt contain a hex\n",a.c_str());
  562. return -1;
  563. }
  564. int hex_to_u32_with_endian(const string & a,u32_t &output)
  565. {
  566. //string b="0x";
  567. //b+=a;
  568. if(sscanf(a.c_str(),"%x",&output)==1)
  569. {
  570. output=htonl(output);
  571. //printf("%s %x\n",a.c_str(),output);
  572. return 0;
  573. }
  574. mylog(log_error,"<%s> doesnt contain a hex\n",a.c_str());
  575. return -1;
  576. }
  577. bool larger_than_u32(u32_t a,u32_t b)
  578. //TODO
  579. //looks like this can simply be done by return ((i32_t)(a-b) >0)
  580. {
  581. u32_t smaller,bigger;
  582. smaller=min(a,b);//smaller in normal sense
  583. bigger=max(a,b);
  584. u32_t distance=min(bigger-smaller,smaller+(0xffffffff-bigger+1));
  585. if(distance==bigger-smaller)
  586. {
  587. if(bigger==a)
  588. {
  589. return 1;
  590. }
  591. else
  592. {
  593. return 0;
  594. }
  595. }
  596. else
  597. {
  598. if(smaller==b)
  599. {
  600. return 0;
  601. }
  602. else
  603. {
  604. return 1;
  605. }
  606. }
  607. }
  608. bool larger_than_u16(uint16_t a,uint16_t b)
  609. {
  610. uint16_t smaller,bigger;
  611. smaller=min(a,b);//smaller in normal sense
  612. bigger=max(a,b);
  613. uint16_t distance=min(bigger-smaller,smaller+(0xffff-bigger+1));
  614. if(distance==bigger-smaller)
  615. {
  616. if(bigger==a)
  617. {
  618. return 1;
  619. }
  620. else
  621. {
  622. return 0;
  623. }
  624. }
  625. else
  626. {
  627. if(smaller==b)
  628. {
  629. return 0;
  630. }
  631. else
  632. {
  633. return 1;
  634. }
  635. }
  636. }
  637. void myexit(int a)
  638. {
  639. if(enable_log_color)
  640. printf("%s\n",RESET);
  641. if(keep_thread_running)
  642. {
  643. if(pthread_cancel(keep_thread))
  644. {
  645. mylog(log_warn,"pthread_cancel failed\n");
  646. }
  647. else
  648. {
  649. mylog(log_info,"pthread_cancel success\n");
  650. }
  651. }
  652. clear_iptables_rule();
  653. exit(a);
  654. }
  655. vector<string> string_to_vec(const char * s,const char * sp) {
  656. vector<string> res;
  657. string str=s;
  658. char *p = strtok ((char *)str.c_str(),sp);
  659. while (p != NULL)
  660. {
  661. res.push_back(p);
  662. //printf ("%s\n",p);
  663. p = strtok(NULL, sp);
  664. }
  665. /* for(int i=0;i<(int)res.size();i++)
  666. {
  667. printf("<<%s>>\n",res[i].c_str());
  668. }*/
  669. return res;
  670. }
  671. vector< vector <string> > string_to_vec2(const char * s)
  672. {
  673. vector< vector <string> > res;
  674. vector<string> lines=string_to_vec(s,"\n");
  675. for(int i=0;i<int(lines.size());i++)
  676. {
  677. vector<string> tmp;
  678. tmp=string_to_vec(lines[i].c_str(),"\t ");
  679. res.push_back(tmp);
  680. }
  681. return res;
  682. }
  683. int read_file(const char * file,string &output)
  684. {
  685. const int max_len=3*1024*1024;
  686. // static char buf[max_len+100];
  687. string buf0;
  688. buf0.reserve(max_len+200);
  689. char * buf=(char *)buf0.c_str();
  690. buf[max_len]=0;
  691. //buf[sizeof(buf)-1]=0;
  692. int fd=open(file,O_RDONLY);
  693. if(fd==-1)
  694. {
  695. mylog(log_error,"read_file %s fail\n",file);
  696. return -1;
  697. }
  698. int len=read(fd,buf,max_len);
  699. if(len==max_len)
  700. {
  701. buf[0]=0;
  702. mylog(log_error,"%s too long,buf not large enough\n",file);
  703. return -2;
  704. }
  705. else if(len<0)
  706. {
  707. buf[0]=0;
  708. mylog(log_error,"%s read fail %d\n",file,len);
  709. return -3;
  710. }
  711. else
  712. {
  713. buf[len]=0;
  714. output=buf;
  715. }
  716. return 0;
  717. }
  718. int run_command(string command0,char * &output,int flag) {
  719. FILE *in;
  720. if((flag&show_log)==0) command0+=" 2>&1 ";
  721. const char * command=command0.c_str();
  722. int level= (flag&show_log)?log_warn:log_debug;
  723. if(flag&show_command)
  724. {
  725. mylog(log_info,"run_command %s\n",command);
  726. }
  727. else
  728. {
  729. mylog(log_debug,"run_command %s\n",command);
  730. }
  731. static __thread char buf[1024*1024+100];
  732. buf[sizeof(buf)-1]=0;
  733. if(!(in = popen(command, "r"))){
  734. mylog(level,"command %s popen failed,errno %s\n",command,strerror(errno));
  735. return -1;
  736. }
  737. int len =fread(buf, 1024*1024, 1, in);
  738. if(len==1024*1024)
  739. {
  740. buf[0]=0;
  741. mylog(level,"too long,buf not larger enough\n");
  742. return -2;
  743. }
  744. else
  745. {
  746. buf[len]=0;
  747. }
  748. int ret;
  749. if(( ret=ferror(in) ))
  750. {
  751. mylog(level,"command %s fread failed,ferror return value %d \n",command,ret);
  752. return -3;
  753. }
  754. //if(output!=0)
  755. output=buf;
  756. ret= pclose(in);
  757. int ret2=WEXITSTATUS(ret);
  758. if(ret!=0||ret2!=0)
  759. {
  760. mylog(level,"commnad %s ,pclose returned %d ,WEXITSTATUS %d,errnor :%s \n",command,ret,ret2,strerror(errno));
  761. return -4;
  762. }
  763. return 0;
  764. }
  765. /*
  766. int run_command_no_log(string command0,char * &output) {
  767. FILE *in;
  768. command0+=" 2>&1 ";
  769. const char * command=command0.c_str();
  770. mylog(log_debug,"run_command_no_log %s\n",command);
  771. static char buf[1024*1024+100];
  772. buf[sizeof(buf)-1]=0;
  773. if(!(in = popen(command, "r"))){
  774. mylog(log_debug,"command %s popen failed,errno %s\n",command,strerror(errno));
  775. return -1;
  776. }
  777. int len =fread(buf, 1024*1024, 1, in);
  778. if(len==1024*1024)
  779. {
  780. buf[0]=0;
  781. mylog(log_debug,"too long,buf not larger enough\n");
  782. return -2;
  783. }
  784. else
  785. {
  786. buf[len]=0;
  787. }
  788. int ret;
  789. if(( ret=ferror(in) ))
  790. {
  791. mylog(log_debug,"command %s fread failed,ferror return value %d \n",command,ret);
  792. return -3;
  793. }
  794. //if(output!=0)
  795. output=buf;
  796. ret= pclose(in);
  797. int ret2=WEXITSTATUS(ret);
  798. if(ret!=0||ret2!=0)
  799. {
  800. mylog(log_debug,"commnad %s ,pclose returned %d ,WEXITSTATUS %d,errnor :%s \n",command,ret,ret2,strerror(errno));
  801. return -4;
  802. }
  803. return 0;
  804. }*/
  805. // Remove preceding and trailing characters
  806. string trim(const string& str, char c) {
  807. size_t first = str.find_first_not_of(c);
  808. if(string::npos==first)
  809. {
  810. return "";
  811. }
  812. size_t last = str.find_last_not_of(c);
  813. return str.substr(first,(last-first+1));
  814. }
  815. vector<string> parse_conf_line(const string& s0)
  816. {
  817. string s=s0;
  818. s.reserve(s.length()+200);
  819. char *buf=(char *)s.c_str();
  820. //char buf[s.length()+200];
  821. char *p=buf;
  822. int i=int(s.length())-1;
  823. int j;
  824. vector<string>res;
  825. strcpy(buf,(char *)s.c_str());
  826. while(i>=0)
  827. {
  828. if(buf[i]==' ' || buf[i]== '\t')
  829. buf[i]=0;
  830. else break;
  831. i--;
  832. }
  833. while(*p!=0)
  834. {
  835. if(*p==' ' || *p== '\t')
  836. {
  837. p++;
  838. }
  839. else break;
  840. }
  841. int new_len=strlen(p);
  842. if(new_len==0)return res;
  843. if(p[0]=='#') return res;
  844. if(p[0]!='-')
  845. {
  846. mylog(log_fatal,"line :<%s> not begin with '-' ",s.c_str());
  847. myexit(-1);
  848. }
  849. for(i=0;i<new_len;i++)
  850. {
  851. if(p[i]==' '||p[i]=='\t')
  852. {
  853. break;
  854. }
  855. }
  856. if(i==new_len)
  857. {
  858. res.push_back(p);
  859. return res;
  860. }
  861. j=i;
  862. while(p[j]==' '||p[j]=='\t')
  863. j++;
  864. p[i]=0;
  865. res.push_back(p);
  866. res.push_back(p+j);
  867. return res;
  868. }
  869. int create_fifo(char * file)
  870. {
  871. if(mkfifo (file, 0666)!=0)
  872. {
  873. if(errno==EEXIST)
  874. {
  875. mylog(log_warn,"warning fifo file %s exist\n",file);
  876. }
  877. else
  878. {
  879. mylog(log_fatal,"create fifo file %s failed\n",file);
  880. myexit(-1);
  881. }
  882. }
  883. int fifo_fd=open (file, O_RDWR);
  884. if(fifo_fd<0)
  885. {
  886. mylog(log_fatal,"create fifo file %s failed\n",file);
  887. myexit(-1);
  888. }
  889. struct stat st;
  890. if (fstat(fifo_fd, &st)!=0)
  891. {
  892. mylog(log_fatal,"fstat failed for fifo file %s\n",file);
  893. myexit(-1);
  894. }
  895. if(!S_ISFIFO(st.st_mode))
  896. {
  897. mylog(log_fatal,"%s is not a fifo\n",file);
  898. myexit(-1);
  899. }
  900. setnonblocking(fifo_fd);
  901. return fifo_fd;
  902. }
  903. /*
  904. void ip_port_t::from_u64(u64_t u64)
  905. {
  906. ip=get_u64_h(u64);
  907. port=get_u64_l(u64);
  908. }
  909. u64_t ip_port_t::to_u64()
  910. {
  911. return pack_u64(ip,port);
  912. }
  913. char * ip_port_t::to_s()
  914. {
  915. static char res[40];
  916. sprintf(res,"%s:%d",my_ntoa(ip),port);
  917. return res;
  918. }*/
  919. void print_binary_chars(const char * a,int len)
  920. {
  921. for(int i=0;i<len;i++)
  922. {
  923. unsigned char b=a[i];
  924. log_bare(log_debug,"<%02x>",(int)b);
  925. }
  926. log_bare(log_debug,"\n");
  927. }
  928. u32_t djb2(unsigned char *str,int len)
  929. {
  930. u32_t hash = 5381;
  931. int c;
  932. int i=0;
  933. while(c = *str++,i++!=len)
  934. {
  935. hash = ((hash << 5) + hash)^c; /* (hash * 33) ^ c */
  936. }
  937. hash=htonl(hash);
  938. return hash;
  939. }
  940. u32_t sdbm(unsigned char *str,int len)
  941. {
  942. u32_t hash = 0;
  943. int c;
  944. int i=0;
  945. while(c = *str++,i++!=len)
  946. {
  947. hash = c + (hash << 6) + (hash << 16) - hash;
  948. }
  949. //hash=htonl(hash);
  950. return hash;
  951. }