common.cpp 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128
  1. /*
  2. * comm.cpp
  3. *
  4. * Created on: Jul 29, 2017
  5. * Author: wangyu
  6. */
  7. #include "common.h"
  8. #include "log.h"
  9. #include "misc.h"
  10. //static int random_number_fd=-1;
  11. int force_socket_buf=0;
  12. int address_t::from_str(char *str)
  13. {
  14. clear();
  15. char ip_addr_str[100];u32_t port;
  16. mylog(log_info,"parsing address: %s\n",str);
  17. int is_ipv6=0;
  18. if(sscanf(str, "[%[^]]]:%u", ip_addr_str,&port)==2)
  19. {
  20. mylog(log_info,"its an ipv6 adress\n");
  21. inner.ipv6.sin6_family=AF_INET6;
  22. is_ipv6=1;
  23. }
  24. else if(sscanf(str, "%[^:]:%u", ip_addr_str,&port)==2)
  25. {
  26. mylog(log_info,"its an ipv4 adress\n");
  27. inner.ipv4.sin_family=AF_INET;
  28. }
  29. else
  30. {
  31. mylog(log_error,"failed to parse\n");
  32. myexit(-1);
  33. }
  34. mylog(log_info,"ip_address is {%s}, port is {%u}\n",ip_addr_str,port);
  35. if(port>65535)
  36. {
  37. mylog(log_error,"invalid port: %d\n",port);
  38. myexit(-1);
  39. }
  40. int ret=-100;
  41. if(is_ipv6)
  42. {
  43. ret=inet_pton(AF_INET6, ip_addr_str,&(inner.ipv6.sin6_addr));
  44. inner.ipv6.sin6_port=htons(port);
  45. if(ret==0) // 0 if address type doesnt match
  46. {
  47. mylog(log_error,"ip_addr %s is not an ipv6 address, %d\n",ip_addr_str,ret);
  48. myexit(-1);
  49. }
  50. else if(ret==1) // inet_pton returns 1 on success
  51. {
  52. //okay
  53. }
  54. else
  55. {
  56. mylog(log_error,"ip_addr %s is invalid, %d\n",ip_addr_str,ret);
  57. myexit(-1);
  58. }
  59. }
  60. else
  61. {
  62. ret=inet_pton(AF_INET, ip_addr_str,&(inner.ipv4.sin_addr));
  63. inner.ipv4.sin_port=htons(port);
  64. if(ret==0)
  65. {
  66. mylog(log_error,"ip_addr %s is not an ipv4 address, %d\n",ip_addr_str,ret);
  67. myexit(-1);
  68. }
  69. else if(ret==1)
  70. {
  71. //okay
  72. }
  73. else
  74. {
  75. mylog(log_error,"ip_addr %s is invalid, %d\n",ip_addr_str,ret);
  76. myexit(-1);
  77. }
  78. }
  79. return 0;
  80. }
  81. int address_t::from_str_ip_only(char * str)
  82. {
  83. clear();
  84. u32_t type;
  85. if(strchr(str,':')==NULL)
  86. type=AF_INET;
  87. else
  88. type=AF_INET6;
  89. ((sockaddr*)&inner)->sa_family=type;
  90. int ret;
  91. if(type==AF_INET)
  92. {
  93. ret=inet_pton(type, str,&inner.ipv4.sin_addr);
  94. }
  95. else
  96. {
  97. ret=inet_pton(type, str,&inner.ipv6.sin6_addr);
  98. }
  99. if(ret==0) // 0 if address type doesnt match
  100. {
  101. mylog(log_error,"confusion in parsing %s, %d\n",str,ret);
  102. myexit(-1);
  103. }
  104. else if(ret==1) // inet_pton returns 1 on success
  105. {
  106. //okay
  107. }
  108. else
  109. {
  110. mylog(log_error,"ip_addr %s is invalid, %d\n",str,ret);
  111. myexit(-1);
  112. }
  113. return 0;
  114. }
  115. char * address_t::get_str()
  116. {
  117. static char res[max_addr_len];
  118. to_str(res);
  119. return res;
  120. }
  121. void address_t::to_str(char * s)
  122. {
  123. //static char res[max_addr_len];
  124. char ip_addr[max_addr_len];
  125. u32_t port;
  126. const char * ret=0;
  127. if(get_type()==AF_INET6)
  128. {
  129. ret=inet_ntop(AF_INET6, &inner.ipv6.sin6_addr, ip_addr,max_addr_len);
  130. port=inner.ipv6.sin6_port;
  131. }
  132. else if(get_type()==AF_INET)
  133. {
  134. ret=inet_ntop(AF_INET, &inner.ipv4.sin_addr, ip_addr,max_addr_len);
  135. port=inner.ipv4.sin_port;
  136. }
  137. else
  138. {
  139. assert(0==1);
  140. }
  141. if(ret==0) //NULL on failure
  142. {
  143. mylog(log_error,"inet_ntop failed\n");
  144. myexit(-1);
  145. }
  146. port=ntohs(port);
  147. ip_addr[max_addr_len-1]=0;
  148. if(get_type()==AF_INET6)
  149. {
  150. sprintf(s,"[%s]:%u",ip_addr,(u32_t)port);
  151. }else
  152. {
  153. sprintf(s,"%s:%u",ip_addr,(u32_t)port);
  154. }
  155. //return res;
  156. }
  157. char* address_t::get_ip()
  158. {
  159. char ip_addr[max_addr_len];
  160. static char s[max_addr_len];
  161. const char * ret=0;
  162. if(get_type()==AF_INET6)
  163. {
  164. ret=inet_ntop(AF_INET6, &inner.ipv6.sin6_addr, ip_addr,max_addr_len);
  165. }
  166. else if(get_type()==AF_INET)
  167. {
  168. ret=inet_ntop(AF_INET, &inner.ipv4.sin_addr, ip_addr,max_addr_len);
  169. }
  170. else
  171. {
  172. assert(0==1);
  173. }
  174. if(ret==0) //NULL on failure
  175. {
  176. mylog(log_error,"inet_ntop failed\n");
  177. myexit(-1);
  178. }
  179. ip_addr[max_addr_len-1]=0;
  180. if(get_type()==AF_INET6)
  181. {
  182. sprintf(s,"%s",ip_addr);
  183. }else
  184. {
  185. sprintf(s,"%s",ip_addr);
  186. }
  187. return s;
  188. }
  189. int address_t::from_sockaddr(sockaddr * addr,socklen_t slen)
  190. {
  191. clear();
  192. //memset(&inner,0,sizeof(inner));
  193. if(addr->sa_family==AF_INET6)
  194. {
  195. assert(slen==sizeof(sockaddr_in6));
  196. //inner.ipv6= *( (sockaddr_in6*) addr );
  197. memcpy(&inner,addr,slen);
  198. }
  199. else if(addr->sa_family==AF_INET)
  200. {
  201. assert(slen==sizeof(sockaddr_in));
  202. //inner.ipv4= *( (sockaddr_in*) addr );
  203. memcpy(&inner,addr,slen);
  204. }
  205. else
  206. {
  207. assert(0==1);
  208. }
  209. return 0;
  210. }
  211. int address_t::new_connected_udp_fd()
  212. {
  213. int new_udp_fd;
  214. new_udp_fd = socket(get_type(), SOCK_DGRAM, IPPROTO_UDP);
  215. if (new_udp_fd < 0) {
  216. mylog(log_warn, "create udp_fd error\n");
  217. return -1;
  218. }
  219. setnonblocking(new_udp_fd);
  220. set_buf_size(new_udp_fd,socket_buf_size);
  221. mylog(log_debug, "created new udp_fd %d\n", new_udp_fd);
  222. int ret = connect(new_udp_fd, (struct sockaddr *) &inner, get_len());
  223. if (ret != 0) {
  224. mylog(log_warn, "udp fd connect fail %d %s\n",ret,strerror(errno) );
  225. //sock_close(new_udp_fd);
  226. close(new_udp_fd);
  227. return -1;
  228. }
  229. return new_udp_fd;
  230. }
  231. bool my_ip_t::equal (const my_ip_t &b) const
  232. {
  233. //extern int raw_ip_version;
  234. if(raw_ip_version==AF_INET)
  235. {
  236. return v4==b.v4;
  237. }else if(raw_ip_version==AF_INET6)
  238. {
  239. return memcmp(&v6,&b.v6,sizeof(v6))==0;
  240. }
  241. assert(0==1);
  242. return 0;
  243. }
  244. char * my_ip_t::get_str1() const
  245. {
  246. static char res[max_addr_len];
  247. if(raw_ip_version==AF_INET6)
  248. {
  249. assert(inet_ntop(AF_INET6, &v6, res,max_addr_len)!=0);
  250. }
  251. else
  252. {
  253. assert(raw_ip_version==AF_INET);
  254. assert(inet_ntop(AF_INET, &v4, res,max_addr_len)!=0);
  255. }
  256. return res;
  257. }
  258. char * my_ip_t::get_str2() const
  259. {
  260. static char res[max_addr_len];
  261. if(raw_ip_version==AF_INET6)
  262. {
  263. assert(inet_ntop(AF_INET6, &v6, res,max_addr_len)!=0);
  264. }
  265. else
  266. {
  267. assert(raw_ip_version==AF_INET);
  268. assert(inet_ntop(AF_INET, &v4, res,max_addr_len)!=0);
  269. }
  270. return res;
  271. }
  272. int my_ip_t::from_address_t(address_t tmp_addr)
  273. {
  274. if(tmp_addr.get_type()==raw_ip_version&&raw_ip_version==AF_INET)
  275. {
  276. v4=tmp_addr.inner.ipv4.sin_addr.s_addr;
  277. }
  278. else if(tmp_addr.get_type()==raw_ip_version&&raw_ip_version==AF_INET6)
  279. {
  280. v6=tmp_addr.inner.ipv6.sin6_addr;
  281. }
  282. else
  283. {
  284. assert(0==1);
  285. }
  286. return 0;
  287. }
  288. /*
  289. int my_ip_t::from_str(char * str)
  290. {
  291. u32_t type;
  292. if(strchr(str,':')==NULL)
  293. type=AF_INET;
  294. else
  295. type=AF_INET6;
  296. int ret;
  297. ret=inet_pton(type, str,this);
  298. if(ret==0) // 0 if address type doesnt match
  299. {
  300. mylog(log_error,"confusion in parsing %s, %d\n",str,ret);
  301. myexit(-1);
  302. }
  303. else if(ret==1) // inet_pton returns 1 on success
  304. {
  305. //okay
  306. }
  307. else
  308. {
  309. mylog(log_error,"ip_addr %s is invalid, %d\n",str,ret);
  310. myexit(-1);
  311. }
  312. return 0;
  313. }*/
  314. #if defined(__MINGW32__)
  315. char *get_sock_error()
  316. {
  317. static char buf[1000];
  318. int e=WSAGetLastError();
  319. wchar_t *s = NULL;
  320. FormatMessageW(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
  321. NULL, e,
  322. MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT),
  323. (LPWSTR)&s, 0, NULL);
  324. sprintf(buf, "%d:%S", e,s);
  325. int len=strlen(buf);
  326. if(len>0&&buf[len-1]=='\n') buf[len-1]=0;
  327. LocalFree(s);
  328. return buf;
  329. }
  330. int get_sock_errno()
  331. {
  332. return WSAGetLastError();
  333. }
  334. #else
  335. char *get_sock_error()
  336. {
  337. static char buf[1000];
  338. sprintf(buf, "%d:%s", errno,strerror(errno));
  339. return buf;
  340. }
  341. int get_sock_errno()
  342. {
  343. return errno;
  344. }
  345. #endif
  346. u64_t get_current_time()
  347. {
  348. timespec tmp_time;
  349. clock_gettime(CLOCK_MONOTONIC, &tmp_time);
  350. return ((u64_t)tmp_time.tv_sec)*1000llu+((u64_t)tmp_time.tv_nsec)/(1000*1000llu);
  351. //return (u64_t)(ev_time()*1000); //todo change to this later
  352. }
  353. u64_t pack_u64(u32_t a,u32_t b)
  354. {
  355. u64_t ret=a;
  356. ret<<=32u;
  357. ret+=b;
  358. return ret;
  359. }
  360. u32_t get_u64_h(u64_t a)
  361. {
  362. return a>>32u;
  363. }
  364. u32_t get_u64_l(u64_t a)
  365. {
  366. return (a<<32u)>>32u;
  367. }
  368. char * my_ntoa(u32_t ip)
  369. {
  370. in_addr a;
  371. a.s_addr=ip;
  372. return inet_ntoa(a);
  373. }
  374. /*
  375. void init_random_number_fd()
  376. {
  377. random_number_fd=open("/dev/urandom",O_RDONLY);
  378. if(random_number_fd==-1)
  379. {
  380. mylog(log_fatal,"error open /dev/urandom\n");
  381. myexit(-1);
  382. }
  383. setnonblocking(random_number_fd);
  384. }*/
  385. struct random_fd_t
  386. {
  387. int random_number_fd;
  388. random_fd_t()
  389. {
  390. random_number_fd=open("/dev/urandom",O_RDONLY);
  391. if(random_number_fd==-1)
  392. {
  393. mylog(log_fatal,"error open /dev/urandom\n");
  394. myexit(-1);
  395. }
  396. setnonblocking(random_number_fd);
  397. }
  398. int get_fd()
  399. {
  400. return random_number_fd;
  401. }
  402. }random_fd;
  403. u64_t get_true_random_number_64()
  404. {
  405. u64_t ret;
  406. int size=read(random_fd.get_fd(),&ret,sizeof(ret));
  407. if(size!=sizeof(ret))
  408. {
  409. mylog(log_fatal,"get random number failed %d\n",size);
  410. myexit(-1);
  411. }
  412. return ret;
  413. }
  414. u32_t get_true_random_number()
  415. {
  416. u32_t ret;
  417. int size=read(random_fd.get_fd(),&ret,sizeof(ret));
  418. if(size!=sizeof(ret))
  419. {
  420. mylog(log_fatal,"get random number failed %d\n",size);
  421. myexit(-1);
  422. }
  423. return ret;
  424. }
  425. u32_t get_true_random_number_nz() //nz for non-zero
  426. {
  427. u32_t ret=0;
  428. while(ret==0)
  429. {
  430. ret=get_true_random_number();
  431. }
  432. return ret;
  433. }
  434. u64_t ntoh64(u64_t a)
  435. {
  436. #ifdef UDP2RAW_LITTLE_ENDIAN
  437. u32_t h=get_u64_h(a);
  438. u32_t l=get_u64_l(a);
  439. return pack_u64(ntohl(l),ntohl(h));
  440. //return bswap_64( a);
  441. #else
  442. return a;
  443. #endif
  444. }
  445. u64_t hton64(u64_t a)
  446. {
  447. return ntoh64(a);
  448. }
  449. void write_u16(char * p,u16_t w)
  450. {
  451. *(unsigned char*)(p + 1) = (w & 0xff);
  452. *(unsigned char*)(p + 0) = (w >> 8);
  453. }
  454. u16_t read_u16(char * p)
  455. {
  456. u16_t res;
  457. res = *(const unsigned char*)(p + 0);
  458. res = *(const unsigned char*)(p + 1) + (res << 8);
  459. return res;
  460. }
  461. void write_u32(char * p,u32_t l)
  462. {
  463. *(unsigned char*)(p + 3) = (unsigned char)((l >> 0) & 0xff);
  464. *(unsigned char*)(p + 2) = (unsigned char)((l >> 8) & 0xff);
  465. *(unsigned char*)(p + 1) = (unsigned char)((l >> 16) & 0xff);
  466. *(unsigned char*)(p + 0) = (unsigned char)((l >> 24) & 0xff);
  467. }
  468. u32_t read_u32(char * p)
  469. {
  470. u32_t res;
  471. res = *(const unsigned char*)(p + 0);
  472. res = *(const unsigned char*)(p + 1) + (res << 8);
  473. res = *(const unsigned char*)(p + 2) + (res << 8);
  474. res = *(const unsigned char*)(p + 3) + (res << 8);
  475. return res;
  476. }
  477. void write_u64(char * s,u64_t a)
  478. {
  479. assert(0==1);
  480. }
  481. u64_t read_u64(char * s)
  482. {
  483. assert(0==1);
  484. return 0;
  485. }
  486. void setnonblocking(int sock) {
  487. #if !defined(__MINGW32__)
  488. int opts;
  489. opts = fcntl(sock, F_GETFL);
  490. if (opts < 0) {
  491. mylog(log_fatal,"fcntl(sock,GETFL)\n");
  492. //perror("fcntl(sock,GETFL)");
  493. myexit(1);
  494. }
  495. opts = opts | O_NONBLOCK;
  496. if (fcntl(sock, F_SETFL, opts) < 0) {
  497. mylog(log_fatal,"fcntl(sock,SETFL,opts)\n");
  498. //perror("fcntl(sock,SETFL,opts)");
  499. myexit(1);
  500. }
  501. #else
  502. int iResult;
  503. u_long iMode = 1;
  504. iResult = ioctlsocket(sock, FIONBIO, &iMode);
  505. if (iResult != NO_ERROR)
  506. printf("ioctlsocket failed with error: %d\n", iResult);
  507. #endif
  508. }
  509. /*
  510. Generic checksum calculation function
  511. */
  512. unsigned short csum(const unsigned short *ptr,int nbytes) {//works both for big and little endian
  513. long sum;
  514. unsigned short oddbyte;
  515. short answer;
  516. sum=0;
  517. while(nbytes>1) {
  518. sum+=*ptr++;
  519. nbytes-=2;
  520. }
  521. if(nbytes==1) {
  522. oddbyte=0;
  523. *((u_char*)&oddbyte)=*(u_char*)ptr;
  524. sum+=oddbyte;
  525. }
  526. sum = (sum>>16)+(sum & 0xffff);
  527. sum = sum + (sum>>16);
  528. answer=(short)~sum;
  529. return(answer);
  530. }
  531. unsigned short csum_with_header(char* header,int hlen,const unsigned short *ptr,int nbytes) {//works both for big and little endian
  532. long sum;
  533. unsigned short oddbyte;
  534. short answer;
  535. assert(hlen%2==0);
  536. sum=0;
  537. unsigned short * tmp= (unsigned short *)header;
  538. for(int i=0;i<hlen/2;i++)
  539. {
  540. sum+=*tmp++;
  541. }
  542. while(nbytes>1) {
  543. sum+=*ptr++;
  544. nbytes-=2;
  545. }
  546. if(nbytes==1) {
  547. oddbyte=0;
  548. *((u_char*)&oddbyte)=*(u_char*)ptr;
  549. sum+=oddbyte;
  550. }
  551. sum = (sum>>16)+(sum & 0xffff);
  552. sum = sum + (sum>>16);
  553. answer=(short)~sum;
  554. return(answer);
  555. }
  556. int set_buf_size(int fd,int socket_buf_size)
  557. {
  558. if(force_socket_buf)
  559. {
  560. if(setsockopt(fd, SOL_SOCKET, SO_SNDBUFFORCE, &socket_buf_size, sizeof(socket_buf_size))<0)
  561. {
  562. mylog(log_fatal,"SO_SNDBUFFORCE fail socket_buf_size=%d errno=%s\n",socket_buf_size,strerror(errno));
  563. myexit(1);
  564. }
  565. if(setsockopt(fd, SOL_SOCKET, SO_RCVBUFFORCE, &socket_buf_size, sizeof(socket_buf_size))<0)
  566. {
  567. mylog(log_fatal,"SO_RCVBUFFORCE fail socket_buf_size=%d errno=%s\n",socket_buf_size,strerror(errno));
  568. myexit(1);
  569. }
  570. }
  571. else
  572. {
  573. if(setsockopt(fd, SOL_SOCKET, SO_SNDBUF, &socket_buf_size, sizeof(socket_buf_size))<0)
  574. {
  575. mylog(log_fatal,"SO_SNDBUF fail socket_buf_size=%d errno=%s\n",socket_buf_size,strerror(errno));
  576. myexit(1);
  577. }
  578. if(setsockopt(fd, SOL_SOCKET, SO_RCVBUF, &socket_buf_size, sizeof(socket_buf_size))<0)
  579. {
  580. mylog(log_fatal,"SO_RCVBUF fail socket_buf_size=%d errno=%s\n",socket_buf_size,strerror(errno));
  581. myexit(1);
  582. }
  583. }
  584. return 0;
  585. }
  586. int numbers_to_char(my_id_t id1,my_id_t id2,my_id_t id3,char * &data,int &len)
  587. {
  588. static char buf[buf_len];
  589. data=buf;
  590. my_id_t tmp=htonl(id1);
  591. memcpy(buf,&tmp,sizeof(tmp));
  592. tmp=htonl(id2);
  593. memcpy(buf+sizeof(tmp),&tmp,sizeof(tmp));
  594. tmp=htonl(id3);
  595. memcpy(buf+sizeof(tmp)*2,&tmp,sizeof(tmp));
  596. len=sizeof(my_id_t)*3;
  597. return 0;
  598. }
  599. int char_to_numbers(const char * data,int len,my_id_t &id1,my_id_t &id2,my_id_t &id3)
  600. {
  601. if(len<int(sizeof(my_id_t)*3)) return -1;
  602. //id1=ntohl( *((id_t*)(data+0)) );
  603. memcpy(&id1,data+0,sizeof(id1));
  604. id1=ntohl(id1);
  605. //id2=ntohl( *((id_t*)(data+sizeof(id_t))) );
  606. memcpy(&id2,data+sizeof(my_id_t),sizeof(id2));
  607. id2=ntohl(id2);
  608. //id3=ntohl( *((id_t*)(data+sizeof(id_t)*2)) );
  609. memcpy(&id3,data+sizeof(my_id_t)*2,sizeof(id3));
  610. id3=ntohl(id3);
  611. return 0;
  612. }
  613. int hex_to_u32(const string & a,u32_t &output)
  614. {
  615. //string b="0x";
  616. //b+=a;
  617. if(sscanf(a.c_str(),"%x",&output)==1)
  618. {
  619. //printf("%s %x\n",a.c_str(),output);
  620. return 0;
  621. }
  622. mylog(log_error,"<%s> doesnt contain a hex\n",a.c_str());
  623. return -1;
  624. }
  625. int hex_to_u32_with_endian(const string & a,u32_t &output)
  626. {
  627. //string b="0x";
  628. //b+=a;
  629. if(sscanf(a.c_str(),"%x",&output)==1)
  630. {
  631. output=htonl(output);
  632. //printf("%s %x\n",a.c_str(),output);
  633. return 0;
  634. }
  635. mylog(log_error,"<%s> doesnt contain a hex\n",a.c_str());
  636. return -1;
  637. }
  638. bool larger_than_u32(u32_t a,u32_t b)
  639. {
  640. return ((i32_t(a-b)) >0);
  641. /*
  642. u32_t smaller,bigger;
  643. smaller=min(a,b);//smaller in normal sense
  644. bigger=max(a,b);
  645. u32_t distance=min(bigger-smaller,smaller+(0xffffffff-bigger+1));
  646. if(distance==bigger-smaller)
  647. {
  648. if(bigger==a)
  649. {
  650. return 1;
  651. }
  652. else
  653. {
  654. return 0;
  655. }
  656. }
  657. else
  658. {
  659. if(smaller==b)
  660. {
  661. return 0;
  662. }
  663. else
  664. {
  665. return 1;
  666. }
  667. }
  668. */
  669. }
  670. bool larger_than_u16(uint16_t a,uint16_t b)
  671. {
  672. return ((i16_t(a-b)) >0);
  673. /*
  674. uint16_t smaller,bigger;
  675. smaller=min(a,b);//smaller in normal sense
  676. bigger=max(a,b);
  677. uint16_t distance=min(bigger-smaller,smaller+(0xffff-bigger+1));
  678. if(distance==bigger-smaller)
  679. {
  680. if(bigger==a)
  681. {
  682. return 1;
  683. }
  684. else
  685. {
  686. return 0;
  687. }
  688. }
  689. else
  690. {
  691. if(smaller==b)
  692. {
  693. return 0;
  694. }
  695. else
  696. {
  697. return 1;
  698. }
  699. }*/
  700. }
  701. void myexit(int a)
  702. {
  703. if(enable_log_color)
  704. printf("%s\n",RESET);
  705. if(keep_thread_running)
  706. {
  707. if(pthread_cancel(keep_thread))
  708. {
  709. mylog(log_warn,"pthread_cancel failed\n");
  710. }
  711. else
  712. {
  713. mylog(log_info,"pthread_cancel success\n");
  714. }
  715. }
  716. clear_iptables_rule();
  717. exit(a);
  718. }
  719. vector<string> string_to_vec(const char * s,const char * sp) {
  720. vector<string> res;
  721. string str=s;
  722. char *p = strtok ((char *)str.c_str(),sp);
  723. while (p != NULL)
  724. {
  725. res.push_back(p);
  726. //printf ("%s\n",p);
  727. p = strtok(NULL, sp);
  728. }
  729. /* for(int i=0;i<(int)res.size();i++)
  730. {
  731. printf("<<%s>>\n",res[i].c_str());
  732. }*/
  733. return res;
  734. }
  735. vector< vector <string> > string_to_vec2(const char * s)
  736. {
  737. vector< vector <string> > res;
  738. vector<string> lines=string_to_vec(s,"\n");
  739. for(int i=0;i<int(lines.size());i++)
  740. {
  741. vector<string> tmp;
  742. tmp=string_to_vec(lines[i].c_str(),"\t ");
  743. res.push_back(tmp);
  744. }
  745. return res;
  746. }
  747. int read_file(const char * file,string &output)
  748. {
  749. const int max_len=3*1024*1024;
  750. // static char buf[max_len+100];
  751. string buf0;
  752. buf0.reserve(max_len+200);
  753. char * buf=(char *)buf0.c_str();
  754. buf[max_len]=0;
  755. //buf[sizeof(buf)-1]=0;
  756. int fd=open(file,O_RDONLY);
  757. if(fd==-1)
  758. {
  759. mylog(log_error,"read_file %s fail\n",file);
  760. return -1;
  761. }
  762. int len=read(fd,buf,max_len);
  763. if(len==max_len)
  764. {
  765. buf[0]=0;
  766. mylog(log_error,"%s too long,buf not large enough\n",file);
  767. return -2;
  768. }
  769. else if(len<0)
  770. {
  771. buf[0]=0;
  772. mylog(log_error,"%s read fail %d\n",file,len);
  773. return -3;
  774. }
  775. else
  776. {
  777. buf[len]=0;
  778. output=buf;
  779. }
  780. return 0;
  781. }
  782. int run_command(string command0,char * &output,int flag) {
  783. FILE *in;
  784. if((flag&show_log)==0) command0+=" 2>&1 ";
  785. const char * command=command0.c_str();
  786. int level= (flag&show_log)?log_warn:log_debug;
  787. if(flag&show_command)
  788. {
  789. mylog(log_info,"run_command %s\n",command);
  790. }
  791. else
  792. {
  793. mylog(log_debug,"run_command %s\n",command);
  794. }
  795. static __thread char buf[1024*1024+100];
  796. buf[sizeof(buf)-1]=0;
  797. if(!(in = popen(command, "r"))){
  798. mylog(level,"command %s popen failed,errno %s\n",command,strerror(errno));
  799. return -1;
  800. }
  801. int len =fread(buf, 1024*1024, 1, in);
  802. if(len==1024*1024)
  803. {
  804. buf[0]=0;
  805. mylog(level,"too long,buf not larger enough\n");
  806. return -2;
  807. }
  808. else
  809. {
  810. buf[len]=0;
  811. }
  812. int ret;
  813. if(( ret=ferror(in) ))
  814. {
  815. mylog(level,"command %s fread failed,ferror return value %d \n",command,ret);
  816. return -3;
  817. }
  818. //if(output!=0)
  819. output=buf;
  820. ret= pclose(in);
  821. int ret2=WEXITSTATUS(ret);
  822. if(ret!=0||ret2!=0)
  823. {
  824. mylog(level,"commnad %s ,pclose returned %d ,WEXITSTATUS %d,errnor :%s \n",command,ret,ret2,strerror(errno));
  825. return -4;
  826. }
  827. return 0;
  828. }
  829. /*
  830. int run_command_no_log(string command0,char * &output) {
  831. FILE *in;
  832. command0+=" 2>&1 ";
  833. const char * command=command0.c_str();
  834. mylog(log_debug,"run_command_no_log %s\n",command);
  835. static char buf[1024*1024+100];
  836. buf[sizeof(buf)-1]=0;
  837. if(!(in = popen(command, "r"))){
  838. mylog(log_debug,"command %s popen failed,errno %s\n",command,strerror(errno));
  839. return -1;
  840. }
  841. int len =fread(buf, 1024*1024, 1, in);
  842. if(len==1024*1024)
  843. {
  844. buf[0]=0;
  845. mylog(log_debug,"too long,buf not larger enough\n");
  846. return -2;
  847. }
  848. else
  849. {
  850. buf[len]=0;
  851. }
  852. int ret;
  853. if(( ret=ferror(in) ))
  854. {
  855. mylog(log_debug,"command %s fread failed,ferror return value %d \n",command,ret);
  856. return -3;
  857. }
  858. //if(output!=0)
  859. output=buf;
  860. ret= pclose(in);
  861. int ret2=WEXITSTATUS(ret);
  862. if(ret!=0||ret2!=0)
  863. {
  864. mylog(log_debug,"commnad %s ,pclose returned %d ,WEXITSTATUS %d,errnor :%s \n",command,ret,ret2,strerror(errno));
  865. return -4;
  866. }
  867. return 0;
  868. }*/
  869. // Remove preceding and trailing characters
  870. string trim(const string& str, char c) {
  871. size_t first = str.find_first_not_of(c);
  872. if(string::npos==first)
  873. {
  874. return "";
  875. }
  876. size_t last = str.find_last_not_of(c);
  877. return str.substr(first,(last-first+1));
  878. }
  879. vector<string> parse_conf_line(const string& s0)
  880. {
  881. string s=s0;
  882. s.reserve(s.length()+200);
  883. char *buf=(char *)s.c_str();
  884. //char buf[s.length()+200];
  885. char *p=buf;
  886. int i=int(s.length())-1;
  887. int j;
  888. vector<string>res;
  889. strcpy(buf,(char *)s.c_str());
  890. while(i>=0)
  891. {
  892. if(buf[i]==' ' || buf[i]== '\t')
  893. buf[i]=0;
  894. else break;
  895. i--;
  896. }
  897. while(*p!=0)
  898. {
  899. if(*p==' ' || *p== '\t')
  900. {
  901. p++;
  902. }
  903. else break;
  904. }
  905. int new_len=strlen(p);
  906. if(new_len==0)return res;
  907. if(p[0]=='#') return res;
  908. if(p[0]!='-')
  909. {
  910. mylog(log_fatal,"line :<%s> not begin with '-' ",s.c_str());
  911. myexit(-1);
  912. }
  913. for(i=0;i<new_len;i++)
  914. {
  915. if(p[i]==' '||p[i]=='\t')
  916. {
  917. break;
  918. }
  919. }
  920. if(i==new_len)
  921. {
  922. res.push_back(p);
  923. return res;
  924. }
  925. j=i;
  926. while(p[j]==' '||p[j]=='\t')
  927. j++;
  928. p[i]=0;
  929. res.push_back(p);
  930. res.push_back(p+j);
  931. return res;
  932. }
  933. int create_fifo(char * file)
  934. {
  935. if(mkfifo (file, 0666)!=0)
  936. {
  937. if(errno==EEXIST)
  938. {
  939. mylog(log_warn,"warning fifo file %s exist\n",file);
  940. }
  941. else
  942. {
  943. mylog(log_fatal,"create fifo file %s failed\n",file);
  944. myexit(-1);
  945. }
  946. }
  947. int fifo_fd=open (file, O_RDWR);
  948. if(fifo_fd<0)
  949. {
  950. mylog(log_fatal,"create fifo file %s failed\n",file);
  951. myexit(-1);
  952. }
  953. struct stat st;
  954. if (fstat(fifo_fd, &st)!=0)
  955. {
  956. mylog(log_fatal,"fstat failed for fifo file %s\n",file);
  957. myexit(-1);
  958. }
  959. if(!S_ISFIFO(st.st_mode))
  960. {
  961. mylog(log_fatal,"%s is not a fifo\n",file);
  962. myexit(-1);
  963. }
  964. setnonblocking(fifo_fd);
  965. return fifo_fd;
  966. }
  967. /*
  968. void ip_port_t::from_u64(u64_t u64)
  969. {
  970. ip=get_u64_h(u64);
  971. port=get_u64_l(u64);
  972. }
  973. u64_t ip_port_t::to_u64()
  974. {
  975. return pack_u64(ip,port);
  976. }
  977. char * ip_port_t::to_s()
  978. {
  979. static char res[40];
  980. sprintf(res,"%s:%d",my_ntoa(ip),port);
  981. return res;
  982. }*/
  983. void print_binary_chars(const char * a,int len)
  984. {
  985. for(int i=0;i<len;i++)
  986. {
  987. unsigned char b=a[i];
  988. log_bare(log_debug,"<%02x>",(int)b);
  989. }
  990. log_bare(log_debug,"\n");
  991. }
  992. u32_t djb2(unsigned char *str,int len)
  993. {
  994. u32_t hash = 5381;
  995. int c;
  996. int i=0;
  997. while(c = *str++,i++!=len)
  998. {
  999. hash = ((hash << 5) + hash)^c; /* (hash * 33) ^ c */
  1000. }
  1001. hash=htonl(hash);
  1002. return hash;
  1003. }
  1004. u32_t sdbm(unsigned char *str,int len)
  1005. {
  1006. u32_t hash = 0;
  1007. int c;
  1008. int i=0;
  1009. while(c = *str++,i++!=len)
  1010. {
  1011. hash = c + (hash << 6) + (hash << 16) - hash;
  1012. }
  1013. //hash=htonl(hash);
  1014. return hash;
  1015. }