common.cpp 22 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192
  1. /*
  2. * comm.cpp
  3. *
  4. * Created on: Jul 29, 2017
  5. * Author: wangyu
  6. */
  7. #include "common.h"
  8. #include "log.h"
  9. #include "misc.h"
  10. #include <random>
  11. #include <cmath>
  12. //static int random_number_fd=-1;
  13. int force_socket_buf=0;
  14. int address_t::from_str(char *str)
  15. {
  16. clear();
  17. char ip_addr_str[100];u32_t port;
  18. mylog(log_info,"parsing address: %s\n",str);
  19. int is_ipv6=0;
  20. if(sscanf(str, "[%[^]]]:%u", ip_addr_str,&port)==2)
  21. {
  22. mylog(log_info,"its an ipv6 adress\n");
  23. inner.ipv6.sin6_family=AF_INET6;
  24. is_ipv6=1;
  25. }
  26. else if(sscanf(str, "%[^:]:%u", ip_addr_str,&port)==2)
  27. {
  28. mylog(log_info,"its an ipv4 adress\n");
  29. inner.ipv4.sin_family=AF_INET;
  30. }
  31. else
  32. {
  33. mylog(log_error,"failed to parse\n");
  34. myexit(-1);
  35. }
  36. mylog(log_info,"ip_address is {%s}, port is {%u}\n",ip_addr_str,port);
  37. if(port>65535)
  38. {
  39. mylog(log_error,"invalid port: %d\n",port);
  40. myexit(-1);
  41. }
  42. int ret=-100;
  43. if(is_ipv6)
  44. {
  45. ret=inet_pton(AF_INET6, ip_addr_str,&(inner.ipv6.sin6_addr));
  46. inner.ipv6.sin6_port=htons(port);
  47. if(ret==0) // 0 if address type doesnt match
  48. {
  49. mylog(log_error,"ip_addr %s is not an ipv6 address, %d\n",ip_addr_str,ret);
  50. myexit(-1);
  51. }
  52. else if(ret==1) // inet_pton returns 1 on success
  53. {
  54. //okay
  55. }
  56. else
  57. {
  58. mylog(log_error,"ip_addr %s is invalid, %d\n",ip_addr_str,ret);
  59. myexit(-1);
  60. }
  61. }
  62. else
  63. {
  64. ret=inet_pton(AF_INET, ip_addr_str,&(inner.ipv4.sin_addr));
  65. inner.ipv4.sin_port=htons(port);
  66. if(ret==0)
  67. {
  68. mylog(log_error,"ip_addr %s is not an ipv4 address, %d\n",ip_addr_str,ret);
  69. myexit(-1);
  70. }
  71. else if(ret==1)
  72. {
  73. //okay
  74. }
  75. else
  76. {
  77. mylog(log_error,"ip_addr %s is invalid, %d\n",ip_addr_str,ret);
  78. myexit(-1);
  79. }
  80. }
  81. return 0;
  82. }
  83. int address_t::from_str_ip_only(char * str)
  84. {
  85. clear();
  86. u32_t type;
  87. if(strchr(str,':')==NULL)
  88. type=AF_INET;
  89. else
  90. type=AF_INET6;
  91. ((sockaddr*)&inner)->sa_family=type;
  92. int ret;
  93. if(type==AF_INET)
  94. {
  95. ret=inet_pton(type, str,&inner.ipv4.sin_addr);
  96. }
  97. else
  98. {
  99. ret=inet_pton(type, str,&inner.ipv6.sin6_addr);
  100. }
  101. if(ret==0) // 0 if address type doesnt match
  102. {
  103. mylog(log_error,"confusion in parsing %s, %d\n",str,ret);
  104. myexit(-1);
  105. }
  106. else if(ret==1) // inet_pton returns 1 on success
  107. {
  108. //okay
  109. }
  110. else
  111. {
  112. mylog(log_error,"ip_addr %s is invalid, %d\n",str,ret);
  113. myexit(-1);
  114. }
  115. return 0;
  116. }
  117. char * address_t::get_str()
  118. {
  119. static char res[max_addr_len];
  120. to_str(res);
  121. return res;
  122. }
  123. void address_t::to_str(char * s)
  124. {
  125. //static char res[max_addr_len];
  126. char ip_addr[max_addr_len];
  127. u32_t port;
  128. const char * ret=0;
  129. if(get_type()==AF_INET6)
  130. {
  131. ret=inet_ntop(AF_INET6, &inner.ipv6.sin6_addr, ip_addr,max_addr_len);
  132. port=inner.ipv6.sin6_port;
  133. }
  134. else if(get_type()==AF_INET)
  135. {
  136. ret=inet_ntop(AF_INET, &inner.ipv4.sin_addr, ip_addr,max_addr_len);
  137. port=inner.ipv4.sin_port;
  138. }
  139. else
  140. {
  141. assert(0==1);
  142. }
  143. if(ret==0) //NULL on failure
  144. {
  145. mylog(log_error,"inet_ntop failed\n");
  146. myexit(-1);
  147. }
  148. port=ntohs(port);
  149. ip_addr[max_addr_len-1]=0;
  150. if(get_type()==AF_INET6)
  151. {
  152. sprintf(s,"[%s]:%u",ip_addr,(u32_t)port);
  153. }else
  154. {
  155. sprintf(s,"%s:%u",ip_addr,(u32_t)port);
  156. }
  157. //return res;
  158. }
  159. char* address_t::get_ip()
  160. {
  161. char ip_addr[max_addr_len];
  162. static char s[max_addr_len];
  163. const char * ret=0;
  164. if(get_type()==AF_INET6)
  165. {
  166. ret=inet_ntop(AF_INET6, &inner.ipv6.sin6_addr, ip_addr,max_addr_len);
  167. }
  168. else if(get_type()==AF_INET)
  169. {
  170. ret=inet_ntop(AF_INET, &inner.ipv4.sin_addr, ip_addr,max_addr_len);
  171. }
  172. else
  173. {
  174. assert(0==1);
  175. }
  176. if(ret==0) //NULL on failure
  177. {
  178. mylog(log_error,"inet_ntop failed\n");
  179. myexit(-1);
  180. }
  181. ip_addr[max_addr_len-1]=0;
  182. if(get_type()==AF_INET6)
  183. {
  184. sprintf(s,"%s",ip_addr);
  185. }else
  186. {
  187. sprintf(s,"%s",ip_addr);
  188. }
  189. return s;
  190. }
  191. int address_t::from_sockaddr(sockaddr * addr,socklen_t slen)
  192. {
  193. clear();
  194. //memset(&inner,0,sizeof(inner));
  195. if(addr->sa_family==AF_INET6)
  196. {
  197. assert(slen==sizeof(sockaddr_in6));
  198. //inner.ipv6= *( (sockaddr_in6*) addr );
  199. memcpy(&inner,addr,slen);
  200. }
  201. else if(addr->sa_family==AF_INET)
  202. {
  203. assert(slen==sizeof(sockaddr_in));
  204. //inner.ipv4= *( (sockaddr_in*) addr );
  205. memcpy(&inner,addr,slen);
  206. }
  207. else
  208. {
  209. assert(0==1);
  210. }
  211. return 0;
  212. }
  213. int address_t::new_connected_udp_fd()
  214. {
  215. int new_udp_fd;
  216. new_udp_fd = socket(get_type(), SOCK_DGRAM, IPPROTO_UDP);
  217. if (new_udp_fd < 0) {
  218. mylog(log_warn, "create udp_fd error\n");
  219. return -1;
  220. }
  221. setnonblocking(new_udp_fd);
  222. set_buf_size(new_udp_fd,socket_buf_size);
  223. mylog(log_debug, "created new udp_fd %d\n", new_udp_fd);
  224. int ret = connect(new_udp_fd, (struct sockaddr *) &inner, get_len());
  225. if (ret != 0) {
  226. mylog(log_warn, "udp fd connect fail %d %s\n",ret,strerror(errno) );
  227. //sock_close(new_udp_fd);
  228. close(new_udp_fd);
  229. return -1;
  230. }
  231. return new_udp_fd;
  232. }
  233. bool my_ip_t::equal (const my_ip_t &b) const
  234. {
  235. //extern int raw_ip_version;
  236. if(raw_ip_version==AF_INET)
  237. {
  238. return v4==b.v4;
  239. }else if(raw_ip_version==AF_INET6)
  240. {
  241. return memcmp(&v6,&b.v6,sizeof(v6))==0;
  242. }
  243. assert(0==1);
  244. return 0;
  245. }
  246. char * my_ip_t::get_str1() const
  247. {
  248. static char res[max_addr_len];
  249. if(raw_ip_version==AF_INET6)
  250. {
  251. assert(inet_ntop(AF_INET6, &v6, res,max_addr_len)!=0);
  252. }
  253. else
  254. {
  255. assert(raw_ip_version==AF_INET);
  256. assert(inet_ntop(AF_INET, &v4, res,max_addr_len)!=0);
  257. }
  258. return res;
  259. }
  260. char * my_ip_t::get_str2() const
  261. {
  262. static char res[max_addr_len];
  263. if(raw_ip_version==AF_INET6)
  264. {
  265. assert(inet_ntop(AF_INET6, &v6, res,max_addr_len)!=0);
  266. }
  267. else
  268. {
  269. assert(raw_ip_version==AF_INET);
  270. assert(inet_ntop(AF_INET, &v4, res,max_addr_len)!=0);
  271. }
  272. return res;
  273. }
  274. int my_ip_t::from_address_t(address_t tmp_addr)
  275. {
  276. if(tmp_addr.get_type()==raw_ip_version&&raw_ip_version==AF_INET)
  277. {
  278. v4=tmp_addr.inner.ipv4.sin_addr.s_addr;
  279. }
  280. else if(tmp_addr.get_type()==raw_ip_version&&raw_ip_version==AF_INET6)
  281. {
  282. v6=tmp_addr.inner.ipv6.sin6_addr;
  283. }
  284. else
  285. {
  286. assert(0==1);
  287. }
  288. return 0;
  289. }
  290. /*
  291. int my_ip_t::from_str(char * str)
  292. {
  293. u32_t type;
  294. if(strchr(str,':')==NULL)
  295. type=AF_INET;
  296. else
  297. type=AF_INET6;
  298. int ret;
  299. ret=inet_pton(type, str,this);
  300. if(ret==0) // 0 if address type doesnt match
  301. {
  302. mylog(log_error,"confusion in parsing %s, %d\n",str,ret);
  303. myexit(-1);
  304. }
  305. else if(ret==1) // inet_pton returns 1 on success
  306. {
  307. //okay
  308. }
  309. else
  310. {
  311. mylog(log_error,"ip_addr %s is invalid, %d\n",str,ret);
  312. myexit(-1);
  313. }
  314. return 0;
  315. }*/
  316. #if defined(__MINGW32__)
  317. int inet_pton(int af, const char *src, void *dst)
  318. {
  319. struct sockaddr_storage ss;
  320. int size = sizeof(ss);
  321. char src_copy[max_addr_len+1];
  322. ZeroMemory(&ss, sizeof(ss));
  323. /* stupid non-const API */
  324. strncpy (src_copy, src, max_addr_len+1);
  325. src_copy[max_addr_len] = 0;
  326. if (WSAStringToAddress(src_copy, af, NULL, (struct sockaddr *)&ss, &size) == 0) {
  327. switch(af) {
  328. case AF_INET:
  329. *(struct in_addr *)dst = ((struct sockaddr_in *)&ss)->sin_addr;
  330. return 1;
  331. case AF_INET6:
  332. *(struct in6_addr *)dst = ((struct sockaddr_in6 *)&ss)->sin6_addr;
  333. return 1;
  334. }
  335. }
  336. return 0;
  337. }
  338. const char *inet_ntop(int af, const void *src, char *dst, socklen_t size)
  339. {
  340. struct sockaddr_storage ss;
  341. unsigned long s = size;
  342. ZeroMemory(&ss, sizeof(ss));
  343. ss.ss_family = af;
  344. switch(af) {
  345. case AF_INET:
  346. ((struct sockaddr_in *)&ss)->sin_addr = *(struct in_addr *)src;
  347. break;
  348. case AF_INET6:
  349. ((struct sockaddr_in6 *)&ss)->sin6_addr = *(struct in6_addr *)src;
  350. break;
  351. default:
  352. return NULL;
  353. }
  354. /* cannot direclty use &size because of strict aliasing rules */
  355. return (WSAAddressToString((struct sockaddr *)&ss, sizeof(ss), NULL, dst, &s) == 0)?
  356. dst : NULL;
  357. }
  358. char *get_sock_error()
  359. {
  360. static char buf[1000];
  361. int e=WSAGetLastError();
  362. wchar_t *s = NULL;
  363. FormatMessageW(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
  364. NULL, e,
  365. MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT),
  366. (LPWSTR)&s, 0, NULL);
  367. sprintf(buf, "%d:%S", e,s);
  368. int len=strlen(buf);
  369. while(len>0 && (buf[len-1]=='\r'||buf[len-1]=='\n' ))
  370. {
  371. len--;
  372. buf[len]=0;
  373. }
  374. LocalFree(s);
  375. return buf;
  376. }
  377. int get_sock_errno()
  378. {
  379. return WSAGetLastError();
  380. }
  381. #else
  382. char *get_sock_error()
  383. {
  384. static char buf[1000];
  385. sprintf(buf, "%d:%s", errno,strerror(errno));
  386. return buf;
  387. }
  388. int get_sock_errno()
  389. {
  390. return errno;
  391. }
  392. #endif
  393. u64_t get_current_time_us()
  394. {
  395. static u64_t value_fix=0;
  396. static u64_t largest_value=0;
  397. u64_t raw_value=(u64_t)(ev_time()*1000*1000);
  398. u64_t fixed_value=raw_value+value_fix;
  399. if(fixed_value< largest_value)
  400. {
  401. value_fix+= largest_value- fixed_value;
  402. }
  403. else
  404. {
  405. largest_value=fixed_value;
  406. }
  407. //printf("<%lld,%lld,%lld>\n",raw_value,value_fix,raw_value + value_fix);
  408. return raw_value + value_fix; //new fixed value
  409. }
  410. u64_t get_current_time()
  411. {
  412. return get_current_time_us()/1000;
  413. }
  414. u64_t pack_u64(u32_t a,u32_t b)
  415. {
  416. u64_t ret=a;
  417. ret<<=32u;
  418. ret+=b;
  419. return ret;
  420. }
  421. u32_t get_u64_h(u64_t a)
  422. {
  423. return a>>32u;
  424. }
  425. u32_t get_u64_l(u64_t a)
  426. {
  427. return (a<<32u)>>32u;
  428. }
  429. char * my_ntoa(u32_t ip)
  430. {
  431. in_addr a;
  432. a.s_addr=ip;
  433. return inet_ntoa(a);
  434. }
  435. /*
  436. void init_random_number_fd()
  437. {
  438. random_number_fd=open("/dev/urandom",O_RDONLY);
  439. if(random_number_fd==-1)
  440. {
  441. mylog(log_fatal,"error open /dev/urandom\n");
  442. myexit(-1);
  443. }
  444. setnonblocking(random_number_fd);
  445. }*/
  446. struct random_fd_t
  447. {
  448. int random_number_fd;
  449. random_fd_t()
  450. {
  451. random_number_fd=open("/dev/urandom",O_RDONLY);
  452. if(random_number_fd==-1)
  453. {
  454. mylog(log_fatal,"error open /dev/urandom\n");
  455. myexit(-1);
  456. }
  457. setnonblocking(random_number_fd);
  458. }
  459. int get_fd()
  460. {
  461. return random_number_fd;
  462. }
  463. }random_fd;
  464. u64_t get_true_random_number_64()
  465. {
  466. u64_t ret;
  467. int size=read(random_fd.get_fd(),&ret,sizeof(ret));
  468. if(size!=sizeof(ret))
  469. {
  470. mylog(log_fatal,"get random number failed %d\n",size);
  471. myexit(-1);
  472. }
  473. return ret;
  474. }
  475. u32_t get_true_random_number()
  476. {
  477. u32_t ret;
  478. int size=read(random_fd.get_fd(),&ret,sizeof(ret));
  479. if(size!=sizeof(ret))
  480. {
  481. mylog(log_fatal,"get random number failed %d\n",size);
  482. myexit(-1);
  483. }
  484. return ret;
  485. }
  486. u32_t get_true_random_number_nz() //nz for non-zero
  487. {
  488. u32_t ret=0;
  489. while(ret==0)
  490. {
  491. ret=get_true_random_number();
  492. }
  493. return ret;
  494. }
  495. inline int is_big_endian()
  496. {
  497. int i=1;
  498. return ! *((char *)&i);
  499. }
  500. u64_t ntoh64(u64_t a)
  501. {
  502. #ifdef UDP2RAW_LITTLE_ENDIAN
  503. u32_t h=get_u64_h(a);
  504. u32_t l=get_u64_l(a);
  505. return pack_u64(ntohl(l),ntohl(h));
  506. //return bswap_64( a);
  507. #else
  508. return a;
  509. #endif
  510. }
  511. u64_t hton64(u64_t a)
  512. {
  513. return ntoh64(a);
  514. }
  515. void write_u16(char * p,u16_t w)
  516. {
  517. *(unsigned char*)(p + 1) = (w & 0xff);
  518. *(unsigned char*)(p + 0) = (w >> 8);
  519. }
  520. u16_t read_u16(char * p)
  521. {
  522. u16_t res;
  523. res = *(const unsigned char*)(p + 0);
  524. res = *(const unsigned char*)(p + 1) + (res << 8);
  525. return res;
  526. }
  527. void write_u32(char * p,u32_t l)
  528. {
  529. *(unsigned char*)(p + 3) = (unsigned char)((l >> 0) & 0xff);
  530. *(unsigned char*)(p + 2) = (unsigned char)((l >> 8) & 0xff);
  531. *(unsigned char*)(p + 1) = (unsigned char)((l >> 16) & 0xff);
  532. *(unsigned char*)(p + 0) = (unsigned char)((l >> 24) & 0xff);
  533. }
  534. u32_t read_u32(char * p)
  535. {
  536. u32_t res;
  537. res = *(const unsigned char*)(p + 0);
  538. res = *(const unsigned char*)(p + 1) + (res << 8);
  539. res = *(const unsigned char*)(p + 2) + (res << 8);
  540. res = *(const unsigned char*)(p + 3) + (res << 8);
  541. return res;
  542. }
  543. void write_u64(char * s,u64_t a)
  544. {
  545. assert(0==1);
  546. }
  547. u64_t read_u64(char * s)
  548. {
  549. assert(0==1);
  550. return 0;
  551. }
  552. void setnonblocking(int sock) {
  553. #if !defined(__MINGW32__)
  554. int opts;
  555. opts = fcntl(sock, F_GETFL);
  556. if (opts < 0) {
  557. mylog(log_fatal,"fcntl(sock,GETFL)\n");
  558. //perror("fcntl(sock,GETFL)");
  559. myexit(1);
  560. }
  561. opts = opts | O_NONBLOCK;
  562. if (fcntl(sock, F_SETFL, opts) < 0) {
  563. mylog(log_fatal,"fcntl(sock,SETFL,opts)\n");
  564. //perror("fcntl(sock,SETFL,opts)");
  565. myexit(1);
  566. }
  567. #else
  568. int iResult;
  569. u_long iMode = 1;
  570. iResult = ioctlsocket(sock, FIONBIO, &iMode);
  571. if (iResult != NO_ERROR)
  572. printf("ioctlsocket failed with error: %d\n", iResult);
  573. #endif
  574. }
  575. /*
  576. Generic checksum calculation function
  577. */
  578. unsigned short csum(const unsigned short *ptr,int nbytes) {//works both for big and little endian
  579. long sum;
  580. unsigned short oddbyte;
  581. short answer;
  582. sum=0;
  583. while(nbytes>1) {
  584. sum+=*ptr++;
  585. nbytes-=2;
  586. }
  587. if(nbytes==1) {
  588. oddbyte=0;
  589. *((u_char*)&oddbyte)=*(u_char*)ptr;
  590. sum+=oddbyte;
  591. }
  592. sum = (sum>>16)+(sum & 0xffff);
  593. sum = sum + (sum>>16);
  594. answer=(short)~sum;
  595. return(answer);
  596. }
  597. unsigned short csum_with_header(char* header,int hlen,const unsigned short *ptr,int nbytes) {//works both for big and little endian
  598. long sum;
  599. unsigned short oddbyte;
  600. short answer;
  601. assert(hlen%2==0);
  602. sum=0;
  603. unsigned short * tmp= (unsigned short *)header;
  604. for(int i=0;i<hlen/2;i++)
  605. {
  606. sum+=*tmp++;
  607. }
  608. while(nbytes>1) {
  609. sum+=*ptr++;
  610. nbytes-=2;
  611. }
  612. if(nbytes==1) {
  613. oddbyte=0;
  614. *((u_char*)&oddbyte)=*(u_char*)ptr;
  615. sum+=oddbyte;
  616. }
  617. sum = (sum>>16)+(sum & 0xffff);
  618. sum = sum + (sum>>16);
  619. answer=(short)~sum;
  620. return(answer);
  621. }
  622. int set_buf_size(int fd,int socket_buf_size)
  623. {
  624. if(force_socket_buf)
  625. {
  626. if(setsockopt(fd, SOL_SOCKET, SO_SNDBUFFORCE, &socket_buf_size, sizeof(socket_buf_size))<0)
  627. {
  628. mylog(log_fatal,"SO_SNDBUFFORCE fail socket_buf_size=%d errno=%s\n",socket_buf_size,strerror(errno));
  629. myexit(1);
  630. }
  631. if(setsockopt(fd, SOL_SOCKET, SO_RCVBUFFORCE, &socket_buf_size, sizeof(socket_buf_size))<0)
  632. {
  633. mylog(log_fatal,"SO_RCVBUFFORCE fail socket_buf_size=%d errno=%s\n",socket_buf_size,strerror(errno));
  634. myexit(1);
  635. }
  636. }
  637. else
  638. {
  639. if(setsockopt(fd, SOL_SOCKET, SO_SNDBUF, &socket_buf_size, sizeof(socket_buf_size))<0)
  640. {
  641. mylog(log_fatal,"SO_SNDBUF fail socket_buf_size=%d errno=%s\n",socket_buf_size,get_sock_error());
  642. myexit(1);
  643. }
  644. if(setsockopt(fd, SOL_SOCKET, SO_RCVBUF, &socket_buf_size, sizeof(socket_buf_size))<0)
  645. {
  646. mylog(log_fatal,"SO_RCVBUF fail socket_buf_size=%d errno=%s\n",socket_buf_size,get_sock_error());
  647. myexit(1);
  648. }
  649. }
  650. return 0;
  651. }
  652. int numbers_to_char(my_id_t id1,my_id_t id2,my_id_t id3,char * &data,int &len)
  653. {
  654. static char buf[buf_len];
  655. data=buf;
  656. my_id_t tmp=htonl(id1);
  657. memcpy(buf,&tmp,sizeof(tmp));
  658. tmp=htonl(id2);
  659. memcpy(buf+sizeof(tmp),&tmp,sizeof(tmp));
  660. tmp=htonl(id3);
  661. memcpy(buf+sizeof(tmp)*2,&tmp,sizeof(tmp));
  662. len=sizeof(my_id_t)*3;
  663. return 0;
  664. }
  665. int char_to_numbers(const char * data,int len,my_id_t &id1,my_id_t &id2,my_id_t &id3)
  666. {
  667. if(len<int(sizeof(my_id_t)*3)) return -1;
  668. //id1=ntohl( *((id_t*)(data+0)) );
  669. memcpy(&id1,data+0,sizeof(id1));
  670. id1=ntohl(id1);
  671. //id2=ntohl( *((id_t*)(data+sizeof(id_t))) );
  672. memcpy(&id2,data+sizeof(my_id_t),sizeof(id2));
  673. id2=ntohl(id2);
  674. //id3=ntohl( *((id_t*)(data+sizeof(id_t)*2)) );
  675. memcpy(&id3,data+sizeof(my_id_t)*2,sizeof(id3));
  676. id3=ntohl(id3);
  677. return 0;
  678. }
  679. int hex_to_u32(const string & a,u32_t &output)
  680. {
  681. //string b="0x";
  682. //b+=a;
  683. if(sscanf(a.c_str(),"%x",&output)==1)
  684. {
  685. //printf("%s %x\n",a.c_str(),output);
  686. return 0;
  687. }
  688. mylog(log_error,"<%s> doesnt contain a hex\n",a.c_str());
  689. return -1;
  690. }
  691. int hex_to_u32_with_endian(const string & a,u32_t &output)
  692. {
  693. //string b="0x";
  694. //b+=a;
  695. if(sscanf(a.c_str(),"%x",&output)==1)
  696. {
  697. output=htonl(output);
  698. //printf("%s %x\n",a.c_str(),output);
  699. return 0;
  700. }
  701. mylog(log_error,"<%s> doesnt contain a hex\n",a.c_str());
  702. return -1;
  703. }
  704. bool larger_than_u32(u32_t a,u32_t b)
  705. {
  706. return ((i32_t(a-b)) >0);
  707. /*
  708. u32_t smaller,bigger;
  709. smaller=min(a,b);//smaller in normal sense
  710. bigger=max(a,b);
  711. u32_t distance=min(bigger-smaller,smaller+(0xffffffff-bigger+1));
  712. if(distance==bigger-smaller)
  713. {
  714. if(bigger==a)
  715. {
  716. return 1;
  717. }
  718. else
  719. {
  720. return 0;
  721. }
  722. }
  723. else
  724. {
  725. if(smaller==b)
  726. {
  727. return 0;
  728. }
  729. else
  730. {
  731. return 1;
  732. }
  733. }
  734. */
  735. }
  736. bool larger_than_u16(uint16_t a,uint16_t b)
  737. {
  738. return ((i16_t(a-b)) >0);
  739. /*
  740. uint16_t smaller,bigger;
  741. smaller=min(a,b);//smaller in normal sense
  742. bigger=max(a,b);
  743. uint16_t distance=min(bigger-smaller,smaller+(0xffff-bigger+1));
  744. if(distance==bigger-smaller)
  745. {
  746. if(bigger==a)
  747. {
  748. return 1;
  749. }
  750. else
  751. {
  752. return 0;
  753. }
  754. }
  755. else
  756. {
  757. if(smaller==b)
  758. {
  759. return 0;
  760. }
  761. else
  762. {
  763. return 1;
  764. }
  765. }*/
  766. }
  767. void myexit(int a)
  768. {
  769. if(enable_log_color)
  770. printf("%s\n",RESET);
  771. if(keep_thread_running)
  772. {
  773. if(pthread_cancel(keep_thread))
  774. {
  775. mylog(log_warn,"pthread_cancel failed\n");
  776. }
  777. else
  778. {
  779. mylog(log_info,"pthread_cancel success\n");
  780. }
  781. }
  782. clear_iptables_rule();
  783. exit(a);
  784. }
  785. vector<string> string_to_vec(const char * s,const char * sp) {
  786. vector<string> res;
  787. string str=s;
  788. char *p = strtok ((char *)str.c_str(),sp);
  789. while (p != NULL)
  790. {
  791. res.push_back(p);
  792. //printf ("%s\n",p);
  793. p = strtok(NULL, sp);
  794. }
  795. /* for(int i=0;i<(int)res.size();i++)
  796. {
  797. printf("<<%s>>\n",res[i].c_str());
  798. }*/
  799. return res;
  800. }
  801. vector< vector <string> > string_to_vec2(const char * s)
  802. {
  803. vector< vector <string> > res;
  804. vector<string> lines=string_to_vec(s,"\n");
  805. for(int i=0;i<int(lines.size());i++)
  806. {
  807. vector<string> tmp;
  808. tmp=string_to_vec(lines[i].c_str(),"\t ");
  809. res.push_back(tmp);
  810. }
  811. return res;
  812. }
  813. int read_file(const char * file,string &output)
  814. {
  815. const int max_len=3*1024*1024;
  816. // static char buf[max_len+100];
  817. string buf0;
  818. buf0.reserve(max_len+200);
  819. char * buf=(char *)buf0.c_str();
  820. buf[max_len]=0;
  821. //buf[sizeof(buf)-1]=0;
  822. int fd=open(file,O_RDONLY);
  823. if(fd==-1)
  824. {
  825. mylog(log_error,"read_file %s fail\n",file);
  826. return -1;
  827. }
  828. int len=read(fd,buf,max_len);
  829. if(len==max_len)
  830. {
  831. buf[0]=0;
  832. mylog(log_error,"%s too long,buf not large enough\n",file);
  833. return -2;
  834. }
  835. else if(len<0)
  836. {
  837. buf[0]=0;
  838. mylog(log_error,"%s read fail %d\n",file,len);
  839. return -3;
  840. }
  841. else
  842. {
  843. buf[len]=0;
  844. output=buf;
  845. }
  846. return 0;
  847. }
  848. int run_command(string command0,char * &output,int flag) {
  849. FILE *in;
  850. if((flag&show_log)==0) command0+=" 2>&1 ";
  851. const char * command=command0.c_str();
  852. int level= (flag&show_log)?log_warn:log_debug;
  853. if(flag&show_command)
  854. {
  855. mylog(log_info,"run_command %s\n",command);
  856. }
  857. else
  858. {
  859. mylog(log_debug,"run_command %s\n",command);
  860. }
  861. static __thread char buf[1024*1024+100];
  862. buf[sizeof(buf)-1]=0;
  863. if(!(in = popen(command, "r"))){
  864. mylog(level,"command %s popen failed,errno %s\n",command,strerror(errno));
  865. return -1;
  866. }
  867. int len =fread(buf, 1024*1024, 1, in);
  868. if(len==1024*1024)
  869. {
  870. buf[0]=0;
  871. mylog(level,"too long,buf not larger enough\n");
  872. return -2;
  873. }
  874. else
  875. {
  876. buf[len]=0;
  877. }
  878. int ret;
  879. if(( ret=ferror(in) ))
  880. {
  881. mylog(level,"command %s fread failed,ferror return value %d \n",command,ret);
  882. return -3;
  883. }
  884. //if(output!=0)
  885. output=buf;
  886. ret= pclose(in);
  887. int ret2=WEXITSTATUS(ret);
  888. if(ret!=0||ret2!=0)
  889. {
  890. mylog(level,"commnad %s ,pclose returned %d ,WEXITSTATUS %d,errnor :%s \n",command,ret,ret2,strerror(errno));
  891. return -4;
  892. }
  893. return 0;
  894. }
  895. /*
  896. int run_command_no_log(string command0,char * &output) {
  897. FILE *in;
  898. command0+=" 2>&1 ";
  899. const char * command=command0.c_str();
  900. mylog(log_debug,"run_command_no_log %s\n",command);
  901. static char buf[1024*1024+100];
  902. buf[sizeof(buf)-1]=0;
  903. if(!(in = popen(command, "r"))){
  904. mylog(log_debug,"command %s popen failed,errno %s\n",command,strerror(errno));
  905. return -1;
  906. }
  907. int len =fread(buf, 1024*1024, 1, in);
  908. if(len==1024*1024)
  909. {
  910. buf[0]=0;
  911. mylog(log_debug,"too long,buf not larger enough\n");
  912. return -2;
  913. }
  914. else
  915. {
  916. buf[len]=0;
  917. }
  918. int ret;
  919. if(( ret=ferror(in) ))
  920. {
  921. mylog(log_debug,"command %s fread failed,ferror return value %d \n",command,ret);
  922. return -3;
  923. }
  924. //if(output!=0)
  925. output=buf;
  926. ret= pclose(in);
  927. int ret2=WEXITSTATUS(ret);
  928. if(ret!=0||ret2!=0)
  929. {
  930. mylog(log_debug,"commnad %s ,pclose returned %d ,WEXITSTATUS %d,errnor :%s \n",command,ret,ret2,strerror(errno));
  931. return -4;
  932. }
  933. return 0;
  934. }*/
  935. // Remove preceding and trailing characters
  936. string trim(const string& str, char c) {
  937. size_t first = str.find_first_not_of(c);
  938. if(string::npos==first)
  939. {
  940. return "";
  941. }
  942. size_t last = str.find_last_not_of(c);
  943. return str.substr(first,(last-first+1));
  944. }
  945. vector<string> parse_conf_line(const string& s0)
  946. {
  947. string s=s0;
  948. s.reserve(s.length()+200);
  949. char *buf=(char *)s.c_str();
  950. //char buf[s.length()+200];
  951. char *p=buf;
  952. int i=int(s.length())-1;
  953. int j;
  954. vector<string>res;
  955. strcpy(buf,(char *)s.c_str());
  956. while(i>=0)
  957. {
  958. if(buf[i]==' ' || buf[i]== '\t')
  959. buf[i]=0;
  960. else break;
  961. i--;
  962. }
  963. while(*p!=0)
  964. {
  965. if(*p==' ' || *p== '\t')
  966. {
  967. p++;
  968. }
  969. else break;
  970. }
  971. int new_len=strlen(p);
  972. if(new_len==0)return res;
  973. if(p[0]=='#') return res;
  974. if(p[0]!='-')
  975. {
  976. mylog(log_fatal,"line :<%s> not begin with '-' ",s.c_str());
  977. myexit(-1);
  978. }
  979. for(i=0;i<new_len;i++)
  980. {
  981. if(p[i]==' '||p[i]=='\t')
  982. {
  983. break;
  984. }
  985. }
  986. if(i==new_len)
  987. {
  988. res.push_back(p);
  989. return res;
  990. }
  991. j=i;
  992. while(p[j]==' '||p[j]=='\t')
  993. j++;
  994. p[i]=0;
  995. res.push_back(p);
  996. res.push_back(p+j);
  997. return res;
  998. }
  999. int create_fifo(char * file)
  1000. {
  1001. if(mkfifo (file, 0666)!=0)
  1002. {
  1003. if(errno==EEXIST)
  1004. {
  1005. mylog(log_warn,"warning fifo file %s exist\n",file);
  1006. }
  1007. else
  1008. {
  1009. mylog(log_fatal,"create fifo file %s failed\n",file);
  1010. myexit(-1);
  1011. }
  1012. }
  1013. int fifo_fd=open (file, O_RDWR);
  1014. if(fifo_fd<0)
  1015. {
  1016. mylog(log_fatal,"create fifo file %s failed\n",file);
  1017. myexit(-1);
  1018. }
  1019. struct stat st;
  1020. if (fstat(fifo_fd, &st)!=0)
  1021. {
  1022. mylog(log_fatal,"fstat failed for fifo file %s\n",file);
  1023. myexit(-1);
  1024. }
  1025. if(!S_ISFIFO(st.st_mode))
  1026. {
  1027. mylog(log_fatal,"%s is not a fifo\n",file);
  1028. myexit(-1);
  1029. }
  1030. setnonblocking(fifo_fd);
  1031. return fifo_fd;
  1032. }
  1033. /*
  1034. void ip_port_t::from_u64(u64_t u64)
  1035. {
  1036. ip=get_u64_h(u64);
  1037. port=get_u64_l(u64);
  1038. }
  1039. u64_t ip_port_t::to_u64()
  1040. {
  1041. return pack_u64(ip,port);
  1042. }
  1043. char * ip_port_t::to_s()
  1044. {
  1045. static char res[40];
  1046. sprintf(res,"%s:%d",my_ntoa(ip),port);
  1047. return res;
  1048. }*/
  1049. void print_binary_chars(const char * a,int len)
  1050. {
  1051. for(int i=0;i<len;i++)
  1052. {
  1053. unsigned char b=a[i];
  1054. log_bare(log_debug,"<%02x>",(int)b);
  1055. }
  1056. log_bare(log_debug,"\n");
  1057. }
  1058. u32_t djb2(unsigned char *str,int len)
  1059. {
  1060. u32_t hash = 5381;
  1061. int c;
  1062. int i=0;
  1063. while(c = *str++,i++!=len)
  1064. {
  1065. hash = ((hash << 5) + hash)^c; /* (hash * 33) ^ c */
  1066. }
  1067. hash=htonl(hash);
  1068. return hash;
  1069. }
  1070. u32_t sdbm(unsigned char *str,int len)
  1071. {
  1072. u32_t hash = 0;
  1073. int c;
  1074. int i=0;
  1075. while(c = *str++,i++!=len)
  1076. {
  1077. hash = c + (hash << 6) + (hash << 16) - hash;
  1078. }
  1079. //hash=htonl(hash);
  1080. return hash;
  1081. }