aes.cpp 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600
  1. /*
  2. * this file comes from https://github.com/kokke/tiny-AES128-C
  3. */
  4. /*
  5. This is an implementation of the AES algorithm, specifically ECB and CBC mode.
  6. Block size can be chosen in aes.h - available choices are AES128, AES192, AES256.
  7. The implementation is verified against the test vectors in:
  8. National Institute of Standards and Technology Special Publication 800-38A 2001 ED
  9. ECB-AES128
  10. ----------
  11. plain-text:
  12. 6bc1bee22e409f96e93d7e117393172a
  13. ae2d8a571e03ac9c9eb76fac45af8e51
  14. 30c81c46a35ce411e5fbc1191a0a52ef
  15. f69f2445df4f9b17ad2b417be66c3710
  16. key:
  17. 2b7e151628aed2a6abf7158809cf4f3c
  18. resulting cipher
  19. 3ad77bb40d7a3660a89ecaf32466ef97
  20. f5d3d58503b9699de785895a96fdbaaf
  21. 43b1cd7f598ece23881b00e3ed030688
  22. 7b0c785e27e8ad3f8223207104725dd4
  23. NOTE: String length must be evenly divisible by 16byte (str_len % 16 == 0)
  24. You should pad the end of the string with zeros if this is not the case.
  25. For AES192/256 the block size is proportionally larger.
  26. */
  27. /*****************************************************************************/
  28. /* Includes: */
  29. /*****************************************************************************/
  30. #include <stdint.h>
  31. #include <string.h> // CBC mode, for memset
  32. #include "aes.h"
  33. /*****************************************************************************/
  34. /* Defines: */
  35. /*****************************************************************************/
  36. // The number of columns comprising a state in AES. This is a constant in AES. Value=4
  37. #define Nb 4
  38. #define BLOCKLEN 16 //Block length in bytes AES is 128b block only
  39. #if defined(AES256) && (AES256 == 1)
  40. #define Nk 8
  41. #define KEYLEN 32
  42. #define Nr 14
  43. #define keyExpSize 240
  44. #elif defined(AES192) && (AES192 == 1)
  45. #define Nk 6
  46. #define KEYLEN 24
  47. #define Nr 12
  48. #define keyExpSize 208
  49. #else
  50. #define Nk 4 // The number of 32 bit words in a key.
  51. #define KEYLEN 16 // Key length in bytes
  52. #define Nr 10 // The number of rounds in AES Cipher.
  53. #define keyExpSize 176
  54. #endif
  55. // jcallan@github points out that declaring Multiply as a function
  56. // reduces code size considerably with the Keil ARM compiler.
  57. // See this link for more information: https://github.com/kokke/tiny-AES128-C/pull/3
  58. #ifndef MULTIPLY_AS_A_FUNCTION
  59. #define MULTIPLY_AS_A_FUNCTION 0
  60. #endif
  61. /*****************************************************************************/
  62. /* Private variables: */
  63. /*****************************************************************************/
  64. // state - array holding the intermediate results during decryption.
  65. typedef uint8_t state_t[4][4];
  66. static state_t* state;
  67. // The array that stores the round keys.
  68. static uint8_t RoundKey[keyExpSize];
  69. // The Key input to the AES Program
  70. static const uint8_t* Key;
  71. #if defined(CBC) && CBC
  72. // Initial Vector used only for CBC mode
  73. static uint8_t* Iv;
  74. #endif
  75. // The lookup-tables are marked const so they can be placed in read-only storage instead of RAM
  76. // The numbers below can be computed dynamically trading ROM for RAM -
  77. // This can be useful in (embedded) bootloader applications, where ROM is often limited.
  78. static const uint8_t sbox[256] = {
  79. //0 1 2 3 4 5 6 7 8 9 A B C D E F
  80. 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
  81. 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
  82. 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
  83. 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
  84. 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
  85. 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
  86. 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
  87. 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
  88. 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
  89. 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
  90. 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
  91. 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
  92. 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
  93. 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
  94. 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
  95. 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 };
  96. static const uint8_t rsbox[256] = {
  97. 0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb,
  98. 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb,
  99. 0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e,
  100. 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25,
  101. 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92,
  102. 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84,
  103. 0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06,
  104. 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b,
  105. 0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73,
  106. 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e,
  107. 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b,
  108. 0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4,
  109. 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f,
  110. 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef,
  111. 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61,
  112. 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d };
  113. // The round constant word array, Rcon[i], contains the values given by
  114. // x to th e power (i-1) being powers of x (x is denoted as {02}) in the field GF(2^8)
  115. static const uint8_t Rcon[11] = {
  116. 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36 };
  117. /*
  118. * Jordan Goulder points out in PR #12 (https://github.com/kokke/tiny-AES128-C/pull/12),
  119. * that you can remove most of the elements in the Rcon array, because they are unused.
  120. *
  121. * From Wikipedia's article on the Rijndael key schedule @ https://en.wikipedia.org/wiki/Rijndael_key_schedule#Rcon
  122. *
  123. * "Only the first some of these constants are actually used – up to rcon[10] for AES-128 (as 11 round keys are needed),
  124. * up to rcon[8] for AES-192, up to rcon[7] for AES-256. rcon[0] is not used in AES algorithm."
  125. *
  126. * ... which is why the full array below has been 'disabled' below.
  127. */
  128. #if 0
  129. static const uint8_t Rcon[256] = {
  130. 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a,
  131. 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39,
  132. 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a,
  133. 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8,
  134. 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef,
  135. 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc,
  136. 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b,
  137. 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3,
  138. 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94,
  139. 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20,
  140. 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35,
  141. 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f,
  142. 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04,
  143. 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63,
  144. 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd,
  145. 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d };
  146. #endif
  147. /*****************************************************************************/
  148. /* Private functions: */
  149. /*****************************************************************************/
  150. static uint8_t getSBoxValue(uint8_t num)
  151. {
  152. return sbox[num];
  153. }
  154. static uint8_t getSBoxInvert(uint8_t num)
  155. {
  156. return rsbox[num];
  157. }
  158. // This function produces Nb(Nr+1) round keys. The round keys are used in each round to decrypt the states.
  159. static void KeyExpansion(void)
  160. {
  161. uint32_t i, k;
  162. uint8_t tempa[4]; // Used for the column/row operations
  163. // The first round key is the key itself.
  164. for (i = 0; i < Nk; ++i)
  165. {
  166. RoundKey[(i * 4) + 0] = Key[(i * 4) + 0];
  167. RoundKey[(i * 4) + 1] = Key[(i * 4) + 1];
  168. RoundKey[(i * 4) + 2] = Key[(i * 4) + 2];
  169. RoundKey[(i * 4) + 3] = Key[(i * 4) + 3];
  170. }
  171. // All other round keys are found from the previous round keys.
  172. //i == Nk
  173. for (; i < Nb * (Nr + 1); ++i)
  174. {
  175. {
  176. tempa[0]=RoundKey[(i-1) * 4 + 0];
  177. tempa[1]=RoundKey[(i-1) * 4 + 1];
  178. tempa[2]=RoundKey[(i-1) * 4 + 2];
  179. tempa[3]=RoundKey[(i-1) * 4 + 3];
  180. }
  181. if (i % Nk == 0)
  182. {
  183. // This function shifts the 4 bytes in a word to the left once.
  184. // [a0,a1,a2,a3] becomes [a1,a2,a3,a0]
  185. // Function RotWord()
  186. {
  187. k = tempa[0];
  188. tempa[0] = tempa[1];
  189. tempa[1] = tempa[2];
  190. tempa[2] = tempa[3];
  191. tempa[3] = k;
  192. }
  193. // SubWord() is a function that takes a four-byte input word and
  194. // applies the S-box to each of the four bytes to produce an output word.
  195. // Function Subword()
  196. {
  197. tempa[0] = getSBoxValue(tempa[0]);
  198. tempa[1] = getSBoxValue(tempa[1]);
  199. tempa[2] = getSBoxValue(tempa[2]);
  200. tempa[3] = getSBoxValue(tempa[3]);
  201. }
  202. tempa[0] = tempa[0] ^ Rcon[i/Nk];
  203. }
  204. #if defined(AES256) && (AES256 == 1)
  205. if (i % Nk == 4)
  206. {
  207. // Function Subword()
  208. {
  209. tempa[0] = getSBoxValue(tempa[0]);
  210. tempa[1] = getSBoxValue(tempa[1]);
  211. tempa[2] = getSBoxValue(tempa[2]);
  212. tempa[3] = getSBoxValue(tempa[3]);
  213. }
  214. }
  215. #endif
  216. RoundKey[i * 4 + 0] = RoundKey[(i - Nk) * 4 + 0] ^ tempa[0];
  217. RoundKey[i * 4 + 1] = RoundKey[(i - Nk) * 4 + 1] ^ tempa[1];
  218. RoundKey[i * 4 + 2] = RoundKey[(i - Nk) * 4 + 2] ^ tempa[2];
  219. RoundKey[i * 4 + 3] = RoundKey[(i - Nk) * 4 + 3] ^ tempa[3];
  220. }
  221. }
  222. // This function adds the round key to state.
  223. // The round key is added to the state by an XOR function.
  224. static void AddRoundKey(uint8_t round)
  225. {
  226. uint8_t i,j;
  227. for (i=0;i<4;++i)
  228. {
  229. for (j = 0; j < 4; ++j)
  230. {
  231. (*state)[i][j] ^= RoundKey[round * Nb * 4 + i * Nb + j];
  232. }
  233. }
  234. }
  235. // The SubBytes Function Substitutes the values in the
  236. // state matrix with values in an S-box.
  237. static void SubBytes(void)
  238. {
  239. uint8_t i, j;
  240. for (i = 0; i < 4; ++i)
  241. {
  242. for (j = 0; j < 4; ++j)
  243. {
  244. (*state)[j][i] = getSBoxValue((*state)[j][i]);
  245. }
  246. }
  247. }
  248. // The ShiftRows() function shifts the rows in the state to the left.
  249. // Each row is shifted with different offset.
  250. // Offset = Row number. So the first row is not shifted.
  251. static void ShiftRows(void)
  252. {
  253. uint8_t temp;
  254. // Rotate first row 1 columns to left
  255. temp = (*state)[0][1];
  256. (*state)[0][1] = (*state)[1][1];
  257. (*state)[1][1] = (*state)[2][1];
  258. (*state)[2][1] = (*state)[3][1];
  259. (*state)[3][1] = temp;
  260. // Rotate second row 2 columns to left
  261. temp = (*state)[0][2];
  262. (*state)[0][2] = (*state)[2][2];
  263. (*state)[2][2] = temp;
  264. temp = (*state)[1][2];
  265. (*state)[1][2] = (*state)[3][2];
  266. (*state)[3][2] = temp;
  267. // Rotate third row 3 columns to left
  268. temp = (*state)[0][3];
  269. (*state)[0][3] = (*state)[3][3];
  270. (*state)[3][3] = (*state)[2][3];
  271. (*state)[2][3] = (*state)[1][3];
  272. (*state)[1][3] = temp;
  273. }
  274. static uint8_t xtime(uint8_t x)
  275. {
  276. return ((x<<1) ^ (((x>>7) & 1) * 0x1b));
  277. }
  278. // MixColumns function mixes the columns of the state matrix
  279. static void MixColumns(void)
  280. {
  281. uint8_t i;
  282. uint8_t Tmp,Tm,t;
  283. for (i = 0; i < 4; ++i)
  284. {
  285. t = (*state)[i][0];
  286. Tmp = (*state)[i][0] ^ (*state)[i][1] ^ (*state)[i][2] ^ (*state)[i][3] ;
  287. Tm = (*state)[i][0] ^ (*state)[i][1] ; Tm = xtime(Tm); (*state)[i][0] ^= Tm ^ Tmp ;
  288. Tm = (*state)[i][1] ^ (*state)[i][2] ; Tm = xtime(Tm); (*state)[i][1] ^= Tm ^ Tmp ;
  289. Tm = (*state)[i][2] ^ (*state)[i][3] ; Tm = xtime(Tm); (*state)[i][2] ^= Tm ^ Tmp ;
  290. Tm = (*state)[i][3] ^ t ; Tm = xtime(Tm); (*state)[i][3] ^= Tm ^ Tmp ;
  291. }
  292. }
  293. // Multiply is used to multiply numbers in the field GF(2^8)
  294. #if MULTIPLY_AS_A_FUNCTION
  295. static uint8_t Multiply(uint8_t x, uint8_t y)
  296. {
  297. return (((y & 1) * x) ^
  298. ((y>>1 & 1) * xtime(x)) ^
  299. ((y>>2 & 1) * xtime(xtime(x))) ^
  300. ((y>>3 & 1) * xtime(xtime(xtime(x)))) ^
  301. ((y>>4 & 1) * xtime(xtime(xtime(xtime(x))))));
  302. }
  303. #else
  304. #define Multiply(x, y) \
  305. ( ((y & 1) * x) ^ \
  306. ((y>>1 & 1) * xtime(x)) ^ \
  307. ((y>>2 & 1) * xtime(xtime(x))) ^ \
  308. ((y>>3 & 1) * xtime(xtime(xtime(x)))) ^ \
  309. ((y>>4 & 1) * xtime(xtime(xtime(xtime(x)))))) \
  310. #endif
  311. // MixColumns function mixes the columns of the state matrix.
  312. // The method used to multiply may be difficult to understand for the inexperienced.
  313. // Please use the references to gain more information.
  314. static void InvMixColumns(void)
  315. {
  316. int i;
  317. uint8_t a, b, c, d;
  318. for (i = 0; i < 4; ++i)
  319. {
  320. a = (*state)[i][0];
  321. b = (*state)[i][1];
  322. c = (*state)[i][2];
  323. d = (*state)[i][3];
  324. (*state)[i][0] = Multiply(a, 0x0e) ^ Multiply(b, 0x0b) ^ Multiply(c, 0x0d) ^ Multiply(d, 0x09);
  325. (*state)[i][1] = Multiply(a, 0x09) ^ Multiply(b, 0x0e) ^ Multiply(c, 0x0b) ^ Multiply(d, 0x0d);
  326. (*state)[i][2] = Multiply(a, 0x0d) ^ Multiply(b, 0x09) ^ Multiply(c, 0x0e) ^ Multiply(d, 0x0b);
  327. (*state)[i][3] = Multiply(a, 0x0b) ^ Multiply(b, 0x0d) ^ Multiply(c, 0x09) ^ Multiply(d, 0x0e);
  328. }
  329. }
  330. // The SubBytes Function Substitutes the values in the
  331. // state matrix with values in an S-box.
  332. static void InvSubBytes(void)
  333. {
  334. uint8_t i,j;
  335. for (i = 0; i < 4; ++i)
  336. {
  337. for (j = 0; j < 4; ++j)
  338. {
  339. (*state)[j][i] = getSBoxInvert((*state)[j][i]);
  340. }
  341. }
  342. }
  343. static void InvShiftRows(void)
  344. {
  345. uint8_t temp;
  346. // Rotate first row 1 columns to right
  347. temp = (*state)[3][1];
  348. (*state)[3][1] = (*state)[2][1];
  349. (*state)[2][1] = (*state)[1][1];
  350. (*state)[1][1] = (*state)[0][1];
  351. (*state)[0][1] = temp;
  352. // Rotate second row 2 columns to right
  353. temp = (*state)[0][2];
  354. (*state)[0][2] = (*state)[2][2];
  355. (*state)[2][2] = temp;
  356. temp = (*state)[1][2];
  357. (*state)[1][2] = (*state)[3][2];
  358. (*state)[3][2] = temp;
  359. // Rotate third row 3 columns to right
  360. temp = (*state)[0][3];
  361. (*state)[0][3] = (*state)[1][3];
  362. (*state)[1][3] = (*state)[2][3];
  363. (*state)[2][3] = (*state)[3][3];
  364. (*state)[3][3] = temp;
  365. }
  366. // Cipher is the main function that encrypts the PlainText.
  367. static void Cipher(void)
  368. {
  369. uint8_t round = 0;
  370. // Add the First round key to the state before starting the rounds.
  371. AddRoundKey(0);
  372. // There will be Nr rounds.
  373. // The first Nr-1 rounds are identical.
  374. // These Nr-1 rounds are executed in the loop below.
  375. for (round = 1; round < Nr; ++round)
  376. {
  377. SubBytes();
  378. ShiftRows();
  379. MixColumns();
  380. AddRoundKey(round);
  381. }
  382. // The last round is given below.
  383. // The MixColumns function is not here in the last round.
  384. SubBytes();
  385. ShiftRows();
  386. AddRoundKey(Nr);
  387. }
  388. static void InvCipher(void)
  389. {
  390. uint8_t round=0;
  391. // Add the First round key to the state before starting the rounds.
  392. AddRoundKey(Nr);
  393. // There will be Nr rounds.
  394. // The first Nr-1 rounds are identical.
  395. // These Nr-1 rounds are executed in the loop below.
  396. for (round = (Nr - 1); round > 0; --round)
  397. {
  398. InvShiftRows();
  399. InvSubBytes();
  400. AddRoundKey(round);
  401. InvMixColumns();
  402. }
  403. // The last round is given below.
  404. // The MixColumns function is not here in the last round.
  405. InvShiftRows();
  406. InvSubBytes();
  407. AddRoundKey(0);
  408. }
  409. /*****************************************************************************/
  410. /* Public functions: */
  411. /*****************************************************************************/
  412. #if defined(ECB) && (ECB == 1)
  413. void AES_ECB_encrypt(const uint8_t* input, const uint8_t* key, uint8_t* output, const uint32_t length)
  414. {
  415. // Copy input to output, and work in-memory on output
  416. memcpy(output, input, length);
  417. state = (state_t*)output;
  418. Key = key;
  419. KeyExpansion();
  420. // The next function call encrypts the PlainText with the Key using AES algorithm.
  421. Cipher();
  422. }
  423. void AES_ECB_decrypt(const uint8_t* input, const uint8_t* key, uint8_t *output, const uint32_t length)
  424. {
  425. // Copy input to output, and work in-memory on output
  426. memcpy(output, input, length);
  427. state = (state_t*)output;
  428. // The KeyExpansion routine must be called before encryption.
  429. Key = key;
  430. KeyExpansion();
  431. InvCipher();
  432. }
  433. #endif // #if defined(ECB) && (ECB == 1)
  434. #if defined(CBC) && (CBC == 1)
  435. static void XorWithIv(uint8_t* buf)
  436. {
  437. uint8_t i;
  438. for (i = 0; i < BLOCKLEN; ++i) //WAS for(i = 0; i < KEYLEN; ++i) but the block in AES is always 128bit so 16 bytes!
  439. {
  440. buf[i] ^= Iv[i];
  441. }
  442. }
  443. void AES_CBC_encrypt_buffer(uint8_t* output, uint8_t* input, uint32_t length, const uint8_t* key, const uint8_t* iv)
  444. {
  445. uintptr_t i;
  446. uint8_t extra = length % BLOCKLEN; /* Remaining bytes in the last non-full block */
  447. // Skip the key expansion if key is passed as 0
  448. if (0 != key)
  449. {
  450. Key = key;
  451. KeyExpansion();
  452. }
  453. if (iv != 0)
  454. {
  455. Iv = (uint8_t*)iv;
  456. }
  457. for (i = 0; i < length; i += BLOCKLEN)
  458. {
  459. XorWithIv(input);
  460. memcpy(output, input, BLOCKLEN);
  461. state = (state_t*)output;
  462. Cipher();
  463. Iv = output;
  464. input += BLOCKLEN;
  465. output += BLOCKLEN;
  466. //printf("Step %d - %d", i/16, i);
  467. }
  468. if (extra)
  469. {
  470. memcpy(output, input, extra);
  471. state = (state_t*)output;
  472. Cipher();
  473. }
  474. }
  475. void AES_CBC_decrypt_buffer(uint8_t* output, uint8_t* input, uint32_t length, const uint8_t* key, const uint8_t* iv)
  476. {
  477. uintptr_t i;
  478. uint8_t extra = length % BLOCKLEN; /* Remaining bytes in the last non-full block */
  479. // Skip the key expansion if key is passed as 0
  480. if (0 != key)
  481. {
  482. Key = key;
  483. KeyExpansion();
  484. }
  485. // If iv is passed as 0, we continue to encrypt without re-setting the Iv
  486. if (iv != 0)
  487. {
  488. Iv = (uint8_t*)iv;
  489. }
  490. for (i = 0; i < length; i += BLOCKLEN)
  491. {
  492. memcpy(output, input, BLOCKLEN);
  493. state = (state_t*)output;
  494. InvCipher();
  495. XorWithIv(output);
  496. Iv = input;
  497. input += BLOCKLEN;
  498. output += BLOCKLEN;
  499. }
  500. if (extra)
  501. {
  502. memcpy(output, input, extra);
  503. state = (state_t*)output;
  504. InvCipher();
  505. }
  506. }
  507. #endif // #if defined(CBC) && (CBC == 1)