common.cpp 25 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328
  1. /*
  2. * comm.cpp
  3. *
  4. * Created on: Jul 29, 2017
  5. * Author: wangyu
  6. */
  7. #include "common.h"
  8. #include "log.h"
  9. #include "misc.h"
  10. #include <random>
  11. #include <cmath>
  12. //static int random_number_fd=-1;
  13. int force_socket_buf=0;
  14. int address_t::from_str(char *str)
  15. {
  16. clear();
  17. char ip_addr_str[100];u32_t port;
  18. mylog(log_info,"parsing address: %s\n",str);
  19. int is_ipv6=0;
  20. if(sscanf(str, "[%[^]]]:%u", ip_addr_str,&port)==2)
  21. {
  22. mylog(log_info,"its an ipv6 adress\n");
  23. inner.ipv6.sin6_family=AF_INET6;
  24. is_ipv6=1;
  25. }
  26. else if(sscanf(str, "%[^:]:%u", ip_addr_str,&port)==2)
  27. {
  28. mylog(log_info,"its an ipv4 adress\n");
  29. inner.ipv4.sin_family=AF_INET;
  30. }
  31. else
  32. {
  33. mylog(log_error,"failed to parse\n");
  34. myexit(-1);
  35. }
  36. mylog(log_info,"ip_address is {%s}, port is {%u}\n",ip_addr_str,port);
  37. if(port>65535)
  38. {
  39. mylog(log_error,"invalid port: %d\n",port);
  40. myexit(-1);
  41. }
  42. int ret=-100;
  43. if(is_ipv6)
  44. {
  45. ret=inet_pton(AF_INET6, ip_addr_str,&(inner.ipv6.sin6_addr));
  46. inner.ipv6.sin6_port=htons(port);
  47. if(ret==0) // 0 if address type doesnt match
  48. {
  49. mylog(log_error,"ip_addr %s is not an ipv6 address, %d\n",ip_addr_str,ret);
  50. myexit(-1);
  51. }
  52. else if(ret==1) // inet_pton returns 1 on success
  53. {
  54. //okay
  55. }
  56. else
  57. {
  58. mylog(log_error,"ip_addr %s is invalid, %d\n",ip_addr_str,ret);
  59. myexit(-1);
  60. }
  61. }
  62. else
  63. {
  64. ret=inet_pton(AF_INET, ip_addr_str,&(inner.ipv4.sin_addr));
  65. inner.ipv4.sin_port=htons(port);
  66. if(ret==0)
  67. {
  68. mylog(log_error,"ip_addr %s is not an ipv4 address, %d\n",ip_addr_str,ret);
  69. myexit(-1);
  70. }
  71. else if(ret==1)
  72. {
  73. //okay
  74. }
  75. else
  76. {
  77. mylog(log_error,"ip_addr %s is invalid, %d\n",ip_addr_str,ret);
  78. myexit(-1);
  79. }
  80. }
  81. return 0;
  82. }
  83. int address_t::from_str_ip_only(char * str)
  84. {
  85. clear();
  86. u32_t type;
  87. if(strchr(str,':')==NULL)
  88. type=AF_INET;
  89. else
  90. type=AF_INET6;
  91. ((sockaddr*)&inner)->sa_family=type;
  92. int ret;
  93. if(type==AF_INET)
  94. {
  95. ret=inet_pton(type, str,&inner.ipv4.sin_addr);
  96. }
  97. else
  98. {
  99. ret=inet_pton(type, str,&inner.ipv6.sin6_addr);
  100. }
  101. if(ret==0) // 0 if address type doesnt match
  102. {
  103. mylog(log_error,"confusion in parsing %s, %d\n",str,ret);
  104. myexit(-1);
  105. }
  106. else if(ret==1) // inet_pton returns 1 on success
  107. {
  108. //okay
  109. }
  110. else
  111. {
  112. mylog(log_error,"ip_addr %s is invalid, %d\n",str,ret);
  113. myexit(-1);
  114. }
  115. return 0;
  116. }
  117. char * address_t::get_str()
  118. {
  119. static char res[max_addr_len];
  120. to_str(res);
  121. return res;
  122. }
  123. void address_t::to_str(char * s)
  124. {
  125. //static char res[max_addr_len];
  126. char ip_addr[max_addr_len];
  127. u32_t port;
  128. const char * ret=0;
  129. if(get_type()==AF_INET6)
  130. {
  131. ret=inet_ntop(AF_INET6, &inner.ipv6.sin6_addr, ip_addr,max_addr_len);
  132. port=inner.ipv6.sin6_port;
  133. }
  134. else if(get_type()==AF_INET)
  135. {
  136. ret=inet_ntop(AF_INET, &inner.ipv4.sin_addr, ip_addr,max_addr_len);
  137. port=inner.ipv4.sin_port;
  138. }
  139. else
  140. {
  141. assert(0==1);
  142. }
  143. if(ret==0) //NULL on failure
  144. {
  145. mylog(log_error,"inet_ntop failed\n");
  146. myexit(-1);
  147. }
  148. port=ntohs(port);
  149. ip_addr[max_addr_len-1]=0;
  150. if(get_type()==AF_INET6)
  151. {
  152. sprintf(s,"[%s]:%u",ip_addr,(u32_t)port);
  153. }else
  154. {
  155. sprintf(s,"%s:%u",ip_addr,(u32_t)port);
  156. }
  157. //return res;
  158. }
  159. char* address_t::get_ip()
  160. {
  161. char ip_addr[max_addr_len];
  162. static char s[max_addr_len];
  163. const char * ret=0;
  164. if(get_type()==AF_INET6)
  165. {
  166. ret=inet_ntop(AF_INET6, &inner.ipv6.sin6_addr, ip_addr,max_addr_len);
  167. }
  168. else if(get_type()==AF_INET)
  169. {
  170. ret=inet_ntop(AF_INET, &inner.ipv4.sin_addr, ip_addr,max_addr_len);
  171. }
  172. else
  173. {
  174. assert(0==1);
  175. }
  176. if(ret==0) //NULL on failure
  177. {
  178. mylog(log_error,"inet_ntop failed\n");
  179. myexit(-1);
  180. }
  181. ip_addr[max_addr_len-1]=0;
  182. if(get_type()==AF_INET6)
  183. {
  184. sprintf(s,"%s",ip_addr);
  185. }else
  186. {
  187. sprintf(s,"%s",ip_addr);
  188. }
  189. return s;
  190. }
  191. int address_t::from_sockaddr(sockaddr * addr,socklen_t slen)
  192. {
  193. clear();
  194. //memset(&inner,0,sizeof(inner));
  195. if(addr->sa_family==AF_INET6)
  196. {
  197. assert(slen==sizeof(sockaddr_in6));
  198. //inner.ipv6= *( (sockaddr_in6*) addr );
  199. memcpy(&inner,addr,slen);
  200. }
  201. else if(addr->sa_family==AF_INET)
  202. {
  203. assert(slen==sizeof(sockaddr_in));
  204. //inner.ipv4= *( (sockaddr_in*) addr );
  205. memcpy(&inner,addr,slen);
  206. }
  207. else
  208. {
  209. assert(0==1);
  210. }
  211. return 0;
  212. }
  213. int address_t::new_connected_udp_fd()
  214. {
  215. int new_udp_fd;
  216. new_udp_fd = socket(get_type(), SOCK_DGRAM, IPPROTO_UDP);
  217. if (new_udp_fd < 0) {
  218. mylog(log_warn, "create udp_fd error\n");
  219. return -1;
  220. }
  221. setnonblocking(new_udp_fd);
  222. set_buf_size(new_udp_fd,socket_buf_size);
  223. mylog(log_debug, "created new udp_fd %d\n", new_udp_fd);
  224. int ret = connect(new_udp_fd, (struct sockaddr *) &inner, get_len());
  225. if (ret != 0) {
  226. mylog(log_warn, "udp fd connect fail %d %s\n",ret,strerror(errno) );
  227. //sock_close(new_udp_fd);
  228. close(new_udp_fd);
  229. return -1;
  230. }
  231. return new_udp_fd;
  232. }
  233. bool my_ip_t::equal (const my_ip_t &b) const
  234. {
  235. //extern int raw_ip_version;
  236. if(raw_ip_version==AF_INET)
  237. {
  238. return v4==b.v4;
  239. }else if(raw_ip_version==AF_INET6)
  240. {
  241. return memcmp(&v6,&b.v6,sizeof(v6))==0;
  242. }
  243. assert(0==1);
  244. return 0;
  245. }
  246. char * my_ip_t::get_str1() const
  247. {
  248. static char res[max_addr_len];
  249. if(raw_ip_version==AF_INET6)
  250. {
  251. assert(inet_ntop(AF_INET6, &v6, res,max_addr_len)!=0);
  252. }
  253. else
  254. {
  255. assert(raw_ip_version==AF_INET);
  256. assert(inet_ntop(AF_INET, &v4, res,max_addr_len)!=0);
  257. }
  258. return res;
  259. }
  260. char * my_ip_t::get_str2() const
  261. {
  262. static char res[max_addr_len];
  263. if(raw_ip_version==AF_INET6)
  264. {
  265. assert(inet_ntop(AF_INET6, &v6, res,max_addr_len)!=0);
  266. }
  267. else
  268. {
  269. assert(raw_ip_version==AF_INET);
  270. assert(inet_ntop(AF_INET, &v4, res,max_addr_len)!=0);
  271. }
  272. return res;
  273. }
  274. int my_ip_t::from_address_t(address_t tmp_addr)
  275. {
  276. if(tmp_addr.get_type()==raw_ip_version&&raw_ip_version==AF_INET)
  277. {
  278. v4=tmp_addr.inner.ipv4.sin_addr.s_addr;
  279. }
  280. else if(tmp_addr.get_type()==raw_ip_version&&raw_ip_version==AF_INET6)
  281. {
  282. v6=tmp_addr.inner.ipv6.sin6_addr;
  283. }
  284. else
  285. {
  286. assert(0==1);
  287. }
  288. return 0;
  289. }
  290. /*
  291. int my_ip_t::from_str(char * str)
  292. {
  293. u32_t type;
  294. if(strchr(str,':')==NULL)
  295. type=AF_INET;
  296. else
  297. type=AF_INET6;
  298. int ret;
  299. ret=inet_pton(type, str,this);
  300. if(ret==0) // 0 if address type doesnt match
  301. {
  302. mylog(log_error,"confusion in parsing %s, %d\n",str,ret);
  303. myexit(-1);
  304. }
  305. else if(ret==1) // inet_pton returns 1 on success
  306. {
  307. //okay
  308. }
  309. else
  310. {
  311. mylog(log_error,"ip_addr %s is invalid, %d\n",str,ret);
  312. myexit(-1);
  313. }
  314. return 0;
  315. }*/
  316. #ifdef UDP2RAW_MP
  317. int init_ws()
  318. {
  319. #if defined(__MINGW32__)
  320. WORD wVersionRequested;
  321. WSADATA wsaData;
  322. int err;
  323. /* Use the MAKEWORD(lowbyte, highbyte) macro declared in Windef.h */
  324. wVersionRequested = MAKEWORD(2, 2);
  325. err = WSAStartup(wVersionRequested, &wsaData);
  326. if (err != 0) {
  327. /* Tell the user that we could not find a usable */
  328. /* Winsock DLL. */
  329. printf("WSAStartup failed with error: %d\n", err);
  330. exit(-1);
  331. }
  332. /* Confirm that the WinSock DLL supports 2.2.*/
  333. /* Note that if the DLL supports versions greater */
  334. /* than 2.2 in addition to 2.2, it will still return */
  335. /* 2.2 in wVersion since that is the version we */
  336. /* requested. */
  337. if (LOBYTE(wsaData.wVersion) != 2 || HIBYTE(wsaData.wVersion) != 2) {
  338. /* Tell the user that we could not find a usable */
  339. /* WinSock DLL. */
  340. printf("Could not find a usable version of Winsock.dll\n");
  341. WSACleanup();
  342. exit(-1);
  343. }
  344. else
  345. {
  346. printf("The Winsock 2.2 dll was found okay");
  347. }
  348. int tmp[]={0,100,200,300,500,800,1000,2000,3000,4000,-1};
  349. int succ=0;
  350. for(int i=1;tmp[i]!=-1;i++)
  351. {
  352. if(_setmaxstdio(100)==-1) break;
  353. else succ=i;
  354. }
  355. printf(", _setmaxstdio() was set to %d\n",tmp[succ]);
  356. #endif
  357. return 0;
  358. }
  359. #endif
  360. #if defined(__MINGW32__)
  361. int inet_pton(int af, const char *src, void *dst)
  362. {
  363. struct sockaddr_storage ss;
  364. int size = sizeof(ss);
  365. char src_copy[max_addr_len+1];
  366. ZeroMemory(&ss, sizeof(ss));
  367. /* stupid non-const API */
  368. strncpy (src_copy, src, max_addr_len+1);
  369. src_copy[max_addr_len] = 0;
  370. if (WSAStringToAddress(src_copy, af, NULL, (struct sockaddr *)&ss, &size) == 0) {
  371. switch(af) {
  372. case AF_INET:
  373. *(struct in_addr *)dst = ((struct sockaddr_in *)&ss)->sin_addr;
  374. return 1;
  375. case AF_INET6:
  376. *(struct in6_addr *)dst = ((struct sockaddr_in6 *)&ss)->sin6_addr;
  377. return 1;
  378. }
  379. }
  380. return 0;
  381. }
  382. const char *inet_ntop(int af, const void *src, char *dst, socklen_t size)
  383. {
  384. struct sockaddr_storage ss;
  385. unsigned long s = size;
  386. ZeroMemory(&ss, sizeof(ss));
  387. ss.ss_family = af;
  388. switch(af) {
  389. case AF_INET:
  390. ((struct sockaddr_in *)&ss)->sin_addr = *(struct in_addr *)src;
  391. break;
  392. case AF_INET6:
  393. ((struct sockaddr_in6 *)&ss)->sin6_addr = *(struct in6_addr *)src;
  394. break;
  395. default:
  396. return NULL;
  397. }
  398. /* cannot direclty use &size because of strict aliasing rules */
  399. return (WSAAddressToString((struct sockaddr *)&ss, sizeof(ss), NULL, dst, &s) == 0)?
  400. dst : NULL;
  401. }
  402. char *get_sock_error()
  403. {
  404. static char buf[1000];
  405. int e=WSAGetLastError();
  406. wchar_t *s = NULL;
  407. FormatMessageW(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
  408. NULL, e,
  409. MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT),
  410. (LPWSTR)&s, 0, NULL);
  411. sprintf(buf, "%d:%S", e,s);
  412. int len=strlen(buf);
  413. while(len>0 && (buf[len-1]=='\r'||buf[len-1]=='\n' ))
  414. {
  415. len--;
  416. buf[len]=0;
  417. }
  418. LocalFree(s);
  419. return buf;
  420. }
  421. int get_sock_errno()
  422. {
  423. return WSAGetLastError();
  424. }
  425. #else
  426. char *get_sock_error()
  427. {
  428. static char buf[1000];
  429. sprintf(buf, "%d:%s", errno,strerror(errno));
  430. return buf;
  431. }
  432. int get_sock_errno()
  433. {
  434. return errno;
  435. }
  436. #endif
  437. u64_t get_current_time_us()
  438. {
  439. static u64_t value_fix=0;
  440. static u64_t largest_value=0;
  441. u64_t raw_value=(u64_t)(ev_time()*1000*1000);
  442. u64_t fixed_value=raw_value+value_fix;
  443. if(fixed_value< largest_value)
  444. {
  445. value_fix+= largest_value- fixed_value;
  446. }
  447. else
  448. {
  449. largest_value=fixed_value;
  450. }
  451. //printf("<%lld,%lld,%lld>\n",raw_value,value_fix,raw_value + value_fix);
  452. return raw_value + value_fix; //new fixed value
  453. }
  454. u64_t get_current_time()
  455. {
  456. return get_current_time_us()/1000;
  457. }
  458. u64_t pack_u64(u32_t a,u32_t b)
  459. {
  460. u64_t ret=a;
  461. ret<<=32u;
  462. ret+=b;
  463. return ret;
  464. }
  465. u32_t get_u64_h(u64_t a)
  466. {
  467. return a>>32u;
  468. }
  469. u32_t get_u64_l(u64_t a)
  470. {
  471. return (a<<32u)>>32u;
  472. }
  473. char * my_ntoa(u32_t ip)
  474. {
  475. in_addr a;
  476. a.s_addr=ip;
  477. return inet_ntoa(a);
  478. }
  479. /*
  480. void init_random_number_fd()
  481. {
  482. random_number_fd=open("/dev/urandom",O_RDONLY);
  483. if(random_number_fd==-1)
  484. {
  485. mylog(log_fatal,"error open /dev/urandom\n");
  486. myexit(-1);
  487. }
  488. setnonblocking(random_number_fd);
  489. }*/
  490. #if !defined(__MINGW32__)
  491. struct random_fd_t
  492. {
  493. int random_number_fd;
  494. random_fd_t()
  495. {
  496. random_number_fd=open("/dev/urandom",O_RDONLY);
  497. if(random_number_fd==-1)
  498. {
  499. mylog(log_fatal,"error open /dev/urandom\n");
  500. myexit(-1);
  501. }
  502. setnonblocking(random_number_fd);
  503. }
  504. int get_fd()
  505. {
  506. return random_number_fd;
  507. }
  508. }random_fd;
  509. #else
  510. struct my_random_t
  511. {
  512. std::random_device rd;
  513. std::mt19937 gen;
  514. std::uniform_int_distribution<u64_t> dis64;
  515. std::uniform_int_distribution<u32_t> dis32;
  516. std::uniform_int_distribution<unsigned char> dis8;
  517. my_random_t()
  518. {
  519. //std::mt19937 gen_tmp(rd()); //random device is broken on mingw
  520. timespec tmp_time;
  521. clock_gettime(CLOCK_MONOTONIC, &tmp_time);
  522. long long a=((u64_t)tmp_time.tv_sec)*1000000000llu+((u64_t)tmp_time.tv_nsec);
  523. std::mt19937 gen_tmp(a);
  524. gen=gen_tmp;
  525. gen.discard(700000); //magic
  526. }
  527. u64_t gen64()
  528. {
  529. return dis64(gen);
  530. }
  531. u32_t gen32()
  532. {
  533. return dis32(gen);
  534. }
  535. unsigned char gen8()
  536. {
  537. return dis8(gen);
  538. }
  539. /*int random_number_fd;
  540. random_fd_t()
  541. {
  542. random_number_fd=open("/dev/urandom",O_RDONLY);
  543. if(random_number_fd==-1)
  544. {
  545. mylog(log_fatal,"error open /dev/urandom\n");
  546. myexit(-1);
  547. }
  548. setnonblocking(random_number_fd);
  549. }
  550. int get_fd()
  551. {
  552. return random_number_fd;
  553. }*/
  554. }my_random;
  555. #endif
  556. u64_t get_true_random_number_64()
  557. {
  558. #if !defined(__MINGW32__)
  559. u64_t ret;
  560. int size=read(random_fd.get_fd(),&ret,sizeof(ret));
  561. if(size!=sizeof(ret))
  562. {
  563. mylog(log_fatal,"get random number failed %d\n",size);
  564. myexit(-1);
  565. }
  566. return ret;
  567. #else
  568. return my_random.gen64(); //fake random number
  569. #endif
  570. }
  571. u32_t get_true_random_number()
  572. {
  573. #if !defined(__MINGW32__)
  574. u32_t ret;
  575. int size=read(random_fd.get_fd(),&ret,sizeof(ret));
  576. if(size!=sizeof(ret))
  577. {
  578. mylog(log_fatal,"get random number failed %d\n",size);
  579. myexit(-1);
  580. }
  581. return ret;
  582. #else
  583. return my_random.gen32(); //fake random number
  584. #endif
  585. }
  586. u32_t get_true_random_number_nz() //nz for non-zero
  587. {
  588. u32_t ret=0;
  589. while(ret==0)
  590. {
  591. ret=get_true_random_number();
  592. }
  593. return ret;
  594. }
  595. inline int is_big_endian()
  596. {
  597. int i=1;
  598. return ! *((char *)&i);
  599. }
  600. u64_t ntoh64(u64_t a)
  601. {
  602. #ifdef UDP2RAW_LITTLE_ENDIAN
  603. u32_t h=get_u64_h(a);
  604. u32_t l=get_u64_l(a);
  605. return pack_u64(ntohl(l),ntohl(h));
  606. //return bswap_64( a);
  607. #else
  608. return a;
  609. #endif
  610. }
  611. u64_t hton64(u64_t a)
  612. {
  613. return ntoh64(a);
  614. }
  615. void write_u16(char * p,u16_t w)
  616. {
  617. *(unsigned char*)(p + 1) = (w & 0xff);
  618. *(unsigned char*)(p + 0) = (w >> 8);
  619. }
  620. u16_t read_u16(char * p)
  621. {
  622. u16_t res;
  623. res = *(const unsigned char*)(p + 0);
  624. res = *(const unsigned char*)(p + 1) + (res << 8);
  625. return res;
  626. }
  627. void write_u32(char * p,u32_t l)
  628. {
  629. *(unsigned char*)(p + 3) = (unsigned char)((l >> 0) & 0xff);
  630. *(unsigned char*)(p + 2) = (unsigned char)((l >> 8) & 0xff);
  631. *(unsigned char*)(p + 1) = (unsigned char)((l >> 16) & 0xff);
  632. *(unsigned char*)(p + 0) = (unsigned char)((l >> 24) & 0xff);
  633. }
  634. u32_t read_u32(char * p)
  635. {
  636. u32_t res;
  637. res = *(const unsigned char*)(p + 0);
  638. res = *(const unsigned char*)(p + 1) + (res << 8);
  639. res = *(const unsigned char*)(p + 2) + (res << 8);
  640. res = *(const unsigned char*)(p + 3) + (res << 8);
  641. return res;
  642. }
  643. void write_u64(char * s,u64_t a)
  644. {
  645. assert(0==1);
  646. }
  647. u64_t read_u64(char * s)
  648. {
  649. assert(0==1);
  650. return 0;
  651. }
  652. void setnonblocking(int sock) {
  653. #if !defined(__MINGW32__)
  654. int opts;
  655. opts = fcntl(sock, F_GETFL);
  656. if (opts < 0) {
  657. mylog(log_fatal,"fcntl(sock,GETFL)\n");
  658. //perror("fcntl(sock,GETFL)");
  659. myexit(1);
  660. }
  661. opts = opts | O_NONBLOCK;
  662. if (fcntl(sock, F_SETFL, opts) < 0) {
  663. mylog(log_fatal,"fcntl(sock,SETFL,opts)\n");
  664. //perror("fcntl(sock,SETFL,opts)");
  665. myexit(1);
  666. }
  667. #else
  668. int iResult;
  669. u_long iMode = 1;
  670. iResult = ioctlsocket(sock, FIONBIO, &iMode);
  671. if (iResult != NO_ERROR)
  672. printf("ioctlsocket failed with error: %d\n", iResult);
  673. #endif
  674. }
  675. /*
  676. Generic checksum calculation function
  677. */
  678. unsigned short csum(const unsigned short *ptr,int nbytes) {//works both for big and little endian
  679. long sum;
  680. unsigned short oddbyte;
  681. short answer;
  682. sum=0;
  683. while(nbytes>1) {
  684. sum+=*ptr++;
  685. nbytes-=2;
  686. }
  687. if(nbytes==1) {
  688. oddbyte=0;
  689. *((u_char*)&oddbyte)=*(u_char*)ptr;
  690. sum+=oddbyte;
  691. }
  692. sum = (sum>>16)+(sum & 0xffff);
  693. sum = sum + (sum>>16);
  694. answer=(short)~sum;
  695. return(answer);
  696. }
  697. unsigned short csum_with_header(char* header,int hlen,const unsigned short *ptr,int nbytes) {//works both for big and little endian
  698. long sum;
  699. unsigned short oddbyte;
  700. short answer;
  701. assert(hlen%2==0);
  702. sum=0;
  703. unsigned short * tmp= (unsigned short *)header;
  704. for(int i=0;i<hlen/2;i++)
  705. {
  706. sum+=*tmp++;
  707. }
  708. while(nbytes>1) {
  709. sum+=*ptr++;
  710. nbytes-=2;
  711. }
  712. if(nbytes==1) {
  713. oddbyte=0;
  714. *((u_char*)&oddbyte)=*(u_char*)ptr;
  715. sum+=oddbyte;
  716. }
  717. sum = (sum>>16)+(sum & 0xffff);
  718. sum = sum + (sum>>16);
  719. answer=(short)~sum;
  720. return(answer);
  721. }
  722. int set_buf_size(int fd,int socket_buf_size)
  723. {
  724. if(force_socket_buf)
  725. {
  726. if(is_udp2raw_mp)
  727. {
  728. mylog(log_fatal,"force_socket_buf not supported in this verion\n");
  729. myexit(-1);
  730. }
  731. //assert(0==1);
  732. #ifdef UDP2RAW_LINUX
  733. if(setsockopt(fd, SOL_SOCKET, SO_SNDBUFFORCE, &socket_buf_size, sizeof(socket_buf_size))<0)
  734. {
  735. mylog(log_fatal,"SO_SNDBUFFORCE fail socket_buf_size=%d errno=%s\n",socket_buf_size,strerror(errno));
  736. myexit(1);
  737. }
  738. if(setsockopt(fd, SOL_SOCKET, SO_RCVBUFFORCE, &socket_buf_size, sizeof(socket_buf_size))<0)
  739. {
  740. mylog(log_fatal,"SO_RCVBUFFORCE fail socket_buf_size=%d errno=%s\n",socket_buf_size,strerror(errno));
  741. myexit(1);
  742. }
  743. #endif
  744. }
  745. else
  746. {
  747. if(setsockopt(fd, SOL_SOCKET, SO_SNDBUF, &socket_buf_size, sizeof(socket_buf_size))<0)
  748. {
  749. mylog(log_fatal,"SO_SNDBUF fail socket_buf_size=%d errno=%s\n",socket_buf_size,get_sock_error());
  750. myexit(1);
  751. }
  752. if(setsockopt(fd, SOL_SOCKET, SO_RCVBUF, &socket_buf_size, sizeof(socket_buf_size))<0)
  753. {
  754. mylog(log_fatal,"SO_RCVBUF fail socket_buf_size=%d errno=%s\n",socket_buf_size,get_sock_error());
  755. myexit(1);
  756. }
  757. }
  758. return 0;
  759. }
  760. int numbers_to_char(my_id_t id1,my_id_t id2,my_id_t id3,char * &data,int &len)
  761. {
  762. static char buf[buf_len];
  763. data=buf;
  764. my_id_t tmp=htonl(id1);
  765. memcpy(buf,&tmp,sizeof(tmp));
  766. tmp=htonl(id2);
  767. memcpy(buf+sizeof(tmp),&tmp,sizeof(tmp));
  768. tmp=htonl(id3);
  769. memcpy(buf+sizeof(tmp)*2,&tmp,sizeof(tmp));
  770. len=sizeof(my_id_t)*3;
  771. return 0;
  772. }
  773. int char_to_numbers(const char * data,int len,my_id_t &id1,my_id_t &id2,my_id_t &id3)
  774. {
  775. if(len<int(sizeof(my_id_t)*3)) return -1;
  776. //id1=ntohl( *((id_t*)(data+0)) );
  777. memcpy(&id1,data+0,sizeof(id1));
  778. id1=ntohl(id1);
  779. //id2=ntohl( *((id_t*)(data+sizeof(id_t))) );
  780. memcpy(&id2,data+sizeof(my_id_t),sizeof(id2));
  781. id2=ntohl(id2);
  782. //id3=ntohl( *((id_t*)(data+sizeof(id_t)*2)) );
  783. memcpy(&id3,data+sizeof(my_id_t)*2,sizeof(id3));
  784. id3=ntohl(id3);
  785. return 0;
  786. }
  787. int hex_to_u32(const string & a,u32_t &output)
  788. {
  789. //string b="0x";
  790. //b+=a;
  791. if(sscanf(a.c_str(),"%x",&output)==1)
  792. {
  793. //printf("%s %x\n",a.c_str(),output);
  794. return 0;
  795. }
  796. mylog(log_error,"<%s> doesnt contain a hex\n",a.c_str());
  797. return -1;
  798. }
  799. int hex_to_u32_with_endian(const string & a,u32_t &output)
  800. {
  801. //string b="0x";
  802. //b+=a;
  803. if(sscanf(a.c_str(),"%x",&output)==1)
  804. {
  805. output=htonl(output);
  806. //printf("%s %x\n",a.c_str(),output);
  807. return 0;
  808. }
  809. mylog(log_error,"<%s> doesnt contain a hex\n",a.c_str());
  810. return -1;
  811. }
  812. bool larger_than_u32(u32_t a,u32_t b)
  813. {
  814. return ((i32_t(a-b)) >0);
  815. /*
  816. u32_t smaller,bigger;
  817. smaller=min(a,b);//smaller in normal sense
  818. bigger=max(a,b);
  819. u32_t distance=min(bigger-smaller,smaller+(0xffffffff-bigger+1));
  820. if(distance==bigger-smaller)
  821. {
  822. if(bigger==a)
  823. {
  824. return 1;
  825. }
  826. else
  827. {
  828. return 0;
  829. }
  830. }
  831. else
  832. {
  833. if(smaller==b)
  834. {
  835. return 0;
  836. }
  837. else
  838. {
  839. return 1;
  840. }
  841. }
  842. */
  843. }
  844. bool larger_than_u16(uint16_t a,uint16_t b)
  845. {
  846. return ((i16_t(a-b)) >0);
  847. /*
  848. uint16_t smaller,bigger;
  849. smaller=min(a,b);//smaller in normal sense
  850. bigger=max(a,b);
  851. uint16_t distance=min(bigger-smaller,smaller+(0xffff-bigger+1));
  852. if(distance==bigger-smaller)
  853. {
  854. if(bigger==a)
  855. {
  856. return 1;
  857. }
  858. else
  859. {
  860. return 0;
  861. }
  862. }
  863. else
  864. {
  865. if(smaller==b)
  866. {
  867. return 0;
  868. }
  869. else
  870. {
  871. return 1;
  872. }
  873. }*/
  874. }
  875. void myexit(int a)
  876. {
  877. if(enable_log_color)
  878. printf("%s\n",RESET);
  879. #ifdef UDP2RAW_LINUX
  880. if(keep_thread_running)
  881. {
  882. if(pthread_cancel(keep_thread))
  883. {
  884. mylog(log_warn,"pthread_cancel failed\n");
  885. }
  886. else
  887. {
  888. mylog(log_info,"pthread_cancel success\n");
  889. }
  890. }
  891. clear_iptables_rule();
  892. #endif
  893. exit(a);
  894. }
  895. vector<string> string_to_vec(const char * s,const char * sp) {
  896. vector<string> res;
  897. string str=s;
  898. char *p = strtok ((char *)str.c_str(),sp);
  899. while (p != NULL)
  900. {
  901. res.push_back(p);
  902. //printf ("%s\n",p);
  903. p = strtok(NULL, sp);
  904. }
  905. /* for(int i=0;i<(int)res.size();i++)
  906. {
  907. printf("<<%s>>\n",res[i].c_str());
  908. }*/
  909. return res;
  910. }
  911. vector< vector <string> > string_to_vec2(const char * s)
  912. {
  913. vector< vector <string> > res;
  914. vector<string> lines=string_to_vec(s,"\n");
  915. for(int i=0;i<int(lines.size());i++)
  916. {
  917. vector<string> tmp;
  918. tmp=string_to_vec(lines[i].c_str(),"\t ");
  919. res.push_back(tmp);
  920. }
  921. return res;
  922. }
  923. int read_file(const char * file,string &output)
  924. {
  925. const int max_len=3*1024*1024;
  926. // static char buf[max_len+100];
  927. string buf0;
  928. buf0.reserve(max_len+200);
  929. char * buf=(char *)buf0.c_str();
  930. buf[max_len]=0;
  931. //buf[sizeof(buf)-1]=0;
  932. int fd=open(file,O_RDONLY);
  933. if(fd==-1)
  934. {
  935. mylog(log_error,"read_file %s fail\n",file);
  936. return -1;
  937. }
  938. int len=read(fd,buf,max_len);
  939. if(len==max_len)
  940. {
  941. buf[0]=0;
  942. mylog(log_error,"%s too long,buf not large enough\n",file);
  943. return -2;
  944. }
  945. else if(len<0)
  946. {
  947. buf[0]=0;
  948. mylog(log_error,"%s read fail %d\n",file,len);
  949. return -3;
  950. }
  951. else
  952. {
  953. buf[len]=0;
  954. output=buf;
  955. }
  956. return 0;
  957. }
  958. int run_command(string command0,char * &output,int flag) {
  959. if(is_udp2raw_mp)
  960. {
  961. mylog(log_fatal,"run_command not supported in this version\n");
  962. myexit(-1);
  963. }
  964. #ifdef UDP2RAW_LINUX
  965. FILE *in;
  966. if((flag&show_log)==0) command0+=" 2>&1 ";
  967. const char * command=command0.c_str();
  968. int level= (flag&show_log)?log_warn:log_debug;
  969. if(flag&show_command)
  970. {
  971. mylog(log_info,"run_command %s\n",command);
  972. }
  973. else
  974. {
  975. mylog(log_debug,"run_command %s\n",command);
  976. }
  977. static __thread char buf[1024*1024+100];
  978. buf[sizeof(buf)-1]=0;
  979. if(!(in = popen(command, "r"))){
  980. mylog(level,"command %s popen failed,errno %s\n",command,strerror(errno));
  981. return -1;
  982. }
  983. int len =fread(buf, 1024*1024, 1, in);
  984. if(len==1024*1024)
  985. {
  986. buf[0]=0;
  987. mylog(level,"too long,buf not larger enough\n");
  988. return -2;
  989. }
  990. else
  991. {
  992. buf[len]=0;
  993. }
  994. int ret;
  995. if(( ret=ferror(in) ))
  996. {
  997. mylog(level,"command %s fread failed,ferror return value %d \n",command,ret);
  998. return -3;
  999. }
  1000. //if(output!=0)
  1001. output=buf;
  1002. ret= pclose(in);
  1003. int ret2=WEXITSTATUS(ret);
  1004. if(ret!=0||ret2!=0)
  1005. {
  1006. mylog(level,"commnad %s ,pclose returned %d ,WEXITSTATUS %d,errnor :%s \n",command,ret,ret2,strerror(errno));
  1007. return -4;
  1008. }
  1009. #endif
  1010. return 0;
  1011. }
  1012. /*
  1013. int run_command_no_log(string command0,char * &output) {
  1014. FILE *in;
  1015. command0+=" 2>&1 ";
  1016. const char * command=command0.c_str();
  1017. mylog(log_debug,"run_command_no_log %s\n",command);
  1018. static char buf[1024*1024+100];
  1019. buf[sizeof(buf)-1]=0;
  1020. if(!(in = popen(command, "r"))){
  1021. mylog(log_debug,"command %s popen failed,errno %s\n",command,strerror(errno));
  1022. return -1;
  1023. }
  1024. int len =fread(buf, 1024*1024, 1, in);
  1025. if(len==1024*1024)
  1026. {
  1027. buf[0]=0;
  1028. mylog(log_debug,"too long,buf not larger enough\n");
  1029. return -2;
  1030. }
  1031. else
  1032. {
  1033. buf[len]=0;
  1034. }
  1035. int ret;
  1036. if(( ret=ferror(in) ))
  1037. {
  1038. mylog(log_debug,"command %s fread failed,ferror return value %d \n",command,ret);
  1039. return -3;
  1040. }
  1041. //if(output!=0)
  1042. output=buf;
  1043. ret= pclose(in);
  1044. int ret2=WEXITSTATUS(ret);
  1045. if(ret!=0||ret2!=0)
  1046. {
  1047. mylog(log_debug,"commnad %s ,pclose returned %d ,WEXITSTATUS %d,errnor :%s \n",command,ret,ret2,strerror(errno));
  1048. return -4;
  1049. }
  1050. return 0;
  1051. }*/
  1052. // Remove preceding and trailing characters
  1053. string trim(const string& str, char c) {
  1054. size_t first = str.find_first_not_of(c);
  1055. if(string::npos==first)
  1056. {
  1057. return "";
  1058. }
  1059. size_t last = str.find_last_not_of(c);
  1060. return str.substr(first,(last-first+1));
  1061. }
  1062. vector<string> parse_conf_line(const string& s0)
  1063. {
  1064. string s=s0;
  1065. s.reserve(s.length()+200);
  1066. char *buf=(char *)s.c_str();
  1067. //char buf[s.length()+200];
  1068. char *p=buf;
  1069. int i=int(s.length())-1;
  1070. int j;
  1071. vector<string>res;
  1072. //strcpy(buf,(char *)s.c_str());
  1073. while(i>=0)
  1074. {
  1075. if(buf[i]==' ' || buf[i]== '\t')
  1076. buf[i]=0;
  1077. else break;
  1078. i--;
  1079. }
  1080. while(*p!=0)
  1081. {
  1082. if(*p==' ' || *p== '\t')
  1083. {
  1084. p++;
  1085. }
  1086. else break;
  1087. }
  1088. int new_len=strlen(p);
  1089. if(new_len==0)return res;
  1090. if(p[0]=='#') return res;
  1091. if(p[0]!='-')
  1092. {
  1093. mylog(log_fatal,"line :<%s> not begin with '-' ",s.c_str());
  1094. myexit(-1);
  1095. }
  1096. for(i=0;i<new_len;i++)
  1097. {
  1098. if(p[i]==' '||p[i]=='\t')
  1099. {
  1100. break;
  1101. }
  1102. }
  1103. if(i==new_len)
  1104. {
  1105. res.push_back(p);
  1106. return res;
  1107. }
  1108. j=i;
  1109. while(p[j]==' '||p[j]=='\t')
  1110. j++;
  1111. p[i]=0;
  1112. res.push_back(p);
  1113. res.push_back(p+j);
  1114. return res;
  1115. }
  1116. int create_fifo(char * file)
  1117. {
  1118. #if !defined(__MINGW32__)
  1119. if(mkfifo (file, 0666)!=0)
  1120. {
  1121. if(errno==EEXIST)
  1122. {
  1123. mylog(log_warn,"warning fifo file %s exist\n",file);
  1124. }
  1125. else
  1126. {
  1127. mylog(log_fatal,"create fifo file %s failed\n",file);
  1128. myexit(-1);
  1129. }
  1130. }
  1131. int fifo_fd=open (file, O_RDWR);
  1132. if(fifo_fd<0)
  1133. {
  1134. mylog(log_fatal,"create fifo file %s failed\n",file);
  1135. myexit(-1);
  1136. }
  1137. struct stat st;
  1138. if (fstat(fifo_fd, &st)!=0)
  1139. {
  1140. mylog(log_fatal,"fstat failed for fifo file %s\n",file);
  1141. myexit(-1);
  1142. }
  1143. if(!S_ISFIFO(st.st_mode))
  1144. {
  1145. mylog(log_fatal,"%s is not a fifo\n",file);
  1146. myexit(-1);
  1147. }
  1148. setnonblocking(fifo_fd);
  1149. return fifo_fd;
  1150. #else
  1151. mylog(log_fatal,"--fifo not supported in this version\n");
  1152. myexit(-1);
  1153. return 0;
  1154. #endif
  1155. }
  1156. /*
  1157. void ip_port_t::from_u64(u64_t u64)
  1158. {
  1159. ip=get_u64_h(u64);
  1160. port=get_u64_l(u64);
  1161. }
  1162. u64_t ip_port_t::to_u64()
  1163. {
  1164. return pack_u64(ip,port);
  1165. }
  1166. char * ip_port_t::to_s()
  1167. {
  1168. static char res[40];
  1169. sprintf(res,"%s:%d",my_ntoa(ip),port);
  1170. return res;
  1171. }*/
  1172. void print_binary_chars(const char * a,int len)
  1173. {
  1174. for(int i=0;i<len;i++)
  1175. {
  1176. unsigned char b=a[i];
  1177. log_bare(log_debug,"<%02x>",(int)b);
  1178. }
  1179. log_bare(log_debug,"\n");
  1180. }
  1181. u32_t djb2(unsigned char *str,int len)
  1182. {
  1183. u32_t hash = 5381;
  1184. int c;
  1185. int i=0;
  1186. while(c = *str++,i++!=len)
  1187. {
  1188. hash = ((hash << 5) + hash)^c; /* (hash * 33) ^ c */
  1189. }
  1190. hash=htonl(hash);
  1191. return hash;
  1192. }
  1193. u32_t sdbm(unsigned char *str,int len)
  1194. {
  1195. u32_t hash = 0;
  1196. int c;
  1197. int i=0;
  1198. while(c = *str++,i++!=len)
  1199. {
  1200. hash = c + (hash << 6) + (hash << 16) - hash;
  1201. }
  1202. //hash=htonl(hash);
  1203. return hash;
  1204. }