aes.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595
  1. /*
  2. This is an implementation of the AES algorithm, specifically ECB and CBC mode.
  3. Block size can be chosen in aes.h - available choices are AES128, AES192, AES256.
  4. The implementation is verified against the test vectors in:
  5. National Institute of Standards and Technology Special Publication 800-38A 2001 ED
  6. ECB-AES128
  7. ----------
  8. plain-text:
  9. 6bc1bee22e409f96e93d7e117393172a
  10. ae2d8a571e03ac9c9eb76fac45af8e51
  11. 30c81c46a35ce411e5fbc1191a0a52ef
  12. f69f2445df4f9b17ad2b417be66c3710
  13. key:
  14. 2b7e151628aed2a6abf7158809cf4f3c
  15. resulting cipher
  16. 3ad77bb40d7a3660a89ecaf32466ef97
  17. f5d3d58503b9699de785895a96fdbaaf
  18. 43b1cd7f598ece23881b00e3ed030688
  19. 7b0c785e27e8ad3f8223207104725dd4
  20. NOTE: String length must be evenly divisible by 16byte (str_len % 16 == 0)
  21. You should pad the end of the string with zeros if this is not the case.
  22. For AES192/256 the block size is proportionally larger.
  23. */
  24. /*****************************************************************************/
  25. /* Includes: */
  26. /*****************************************************************************/
  27. #include <stdint.h>
  28. #include <string.h> // CBC mode, for memset
  29. #include "aes.h"
  30. /*****************************************************************************/
  31. /* Defines: */
  32. /*****************************************************************************/
  33. // The number of columns comprising a state in AES. This is a constant in AES. Value=4
  34. #define Nb 4
  35. #define BLOCKLEN 16 //Block length in bytes AES is 128b block only
  36. #if defined(AES256) && (AES256 == 1)
  37. #define Nk 8
  38. #define KEYLEN 32
  39. #define Nr 14
  40. #define keyExpSize 240
  41. #elif defined(AES192) && (AES192 == 1)
  42. #define Nk 6
  43. #define KEYLEN 24
  44. #define Nr 12
  45. #define keyExpSize 208
  46. #else
  47. #define Nk 4 // The number of 32 bit words in a key.
  48. #define KEYLEN 16 // Key length in bytes
  49. #define Nr 10 // The number of rounds in AES Cipher.
  50. #define keyExpSize 176
  51. #endif
  52. // jcallan@github points out that declaring Multiply as a function
  53. // reduces code size considerably with the Keil ARM compiler.
  54. // See this link for more information: https://github.com/kokke/tiny-AES128-C/pull/3
  55. #ifndef MULTIPLY_AS_A_FUNCTION
  56. #define MULTIPLY_AS_A_FUNCTION 0
  57. #endif
  58. /*****************************************************************************/
  59. /* Private variables: */
  60. /*****************************************************************************/
  61. // state - array holding the intermediate results during decryption.
  62. typedef uint8_t state_t[4][4];
  63. static state_t* state;
  64. // The array that stores the round keys.
  65. static uint8_t RoundKey[keyExpSize];
  66. // The Key input to the AES Program
  67. static const uint8_t* Key;
  68. #if defined(CBC) && CBC
  69. // Initial Vector used only for CBC mode
  70. static uint8_t* Iv;
  71. #endif
  72. // The lookup-tables are marked const so they can be placed in read-only storage instead of RAM
  73. // The numbers below can be computed dynamically trading ROM for RAM -
  74. // This can be useful in (embedded) bootloader applications, where ROM is often limited.
  75. static const uint8_t sbox[256] = {
  76. //0 1 2 3 4 5 6 7 8 9 A B C D E F
  77. 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
  78. 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
  79. 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
  80. 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
  81. 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
  82. 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
  83. 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
  84. 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
  85. 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
  86. 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
  87. 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
  88. 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
  89. 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
  90. 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
  91. 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
  92. 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 };
  93. static const uint8_t rsbox[256] = {
  94. 0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb,
  95. 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb,
  96. 0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e,
  97. 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25,
  98. 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92,
  99. 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84,
  100. 0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06,
  101. 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b,
  102. 0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73,
  103. 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e,
  104. 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b,
  105. 0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4,
  106. 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f,
  107. 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef,
  108. 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61,
  109. 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d };
  110. // The round constant word array, Rcon[i], contains the values given by
  111. // x to th e power (i-1) being powers of x (x is denoted as {02}) in the field GF(2^8)
  112. static const uint8_t Rcon[11] = {
  113. 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36 };
  114. /*
  115. * Jordan Goulder points out in PR #12 (https://github.com/kokke/tiny-AES128-C/pull/12),
  116. * that you can remove most of the elements in the Rcon array, because they are unused.
  117. *
  118. * From Wikipedia's article on the Rijndael key schedule @ https://en.wikipedia.org/wiki/Rijndael_key_schedule#Rcon
  119. *
  120. * "Only the first some of these constants are actually used – up to rcon[10] for AES-128 (as 11 round keys are needed),
  121. * up to rcon[8] for AES-192, up to rcon[7] for AES-256. rcon[0] is not used in AES algorithm."
  122. *
  123. * ... which is why the full array below has been 'disabled' below.
  124. */
  125. #if 0
  126. static const uint8_t Rcon[256] = {
  127. 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a,
  128. 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39,
  129. 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a,
  130. 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8,
  131. 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef,
  132. 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc,
  133. 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b,
  134. 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3,
  135. 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94,
  136. 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20,
  137. 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35,
  138. 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f,
  139. 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04,
  140. 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63,
  141. 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd,
  142. 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d };
  143. #endif
  144. /*****************************************************************************/
  145. /* Private functions: */
  146. /*****************************************************************************/
  147. static uint8_t getSBoxValue(uint8_t num)
  148. {
  149. return sbox[num];
  150. }
  151. static uint8_t getSBoxInvert(uint8_t num)
  152. {
  153. return rsbox[num];
  154. }
  155. // This function produces Nb(Nr+1) round keys. The round keys are used in each round to decrypt the states.
  156. static void KeyExpansion(void)
  157. {
  158. uint32_t i, k;
  159. uint8_t tempa[4]; // Used for the column/row operations
  160. // The first round key is the key itself.
  161. for (i = 0; i < Nk; ++i)
  162. {
  163. RoundKey[(i * 4) + 0] = Key[(i * 4) + 0];
  164. RoundKey[(i * 4) + 1] = Key[(i * 4) + 1];
  165. RoundKey[(i * 4) + 2] = Key[(i * 4) + 2];
  166. RoundKey[(i * 4) + 3] = Key[(i * 4) + 3];
  167. }
  168. // All other round keys are found from the previous round keys.
  169. //i == Nk
  170. for (; i < Nb * (Nr + 1); ++i)
  171. {
  172. {
  173. tempa[0]=RoundKey[(i-1) * 4 + 0];
  174. tempa[1]=RoundKey[(i-1) * 4 + 1];
  175. tempa[2]=RoundKey[(i-1) * 4 + 2];
  176. tempa[3]=RoundKey[(i-1) * 4 + 3];
  177. }
  178. if (i % Nk == 0)
  179. {
  180. // This function shifts the 4 bytes in a word to the left once.
  181. // [a0,a1,a2,a3] becomes [a1,a2,a3,a0]
  182. // Function RotWord()
  183. {
  184. k = tempa[0];
  185. tempa[0] = tempa[1];
  186. tempa[1] = tempa[2];
  187. tempa[2] = tempa[3];
  188. tempa[3] = k;
  189. }
  190. // SubWord() is a function that takes a four-byte input word and
  191. // applies the S-box to each of the four bytes to produce an output word.
  192. // Function Subword()
  193. {
  194. tempa[0] = getSBoxValue(tempa[0]);
  195. tempa[1] = getSBoxValue(tempa[1]);
  196. tempa[2] = getSBoxValue(tempa[2]);
  197. tempa[3] = getSBoxValue(tempa[3]);
  198. }
  199. tempa[0] = tempa[0] ^ Rcon[i/Nk];
  200. }
  201. #if defined(AES256) && (AES256 == 1)
  202. if (i % Nk == 4)
  203. {
  204. // Function Subword()
  205. {
  206. tempa[0] = getSBoxValue(tempa[0]);
  207. tempa[1] = getSBoxValue(tempa[1]);
  208. tempa[2] = getSBoxValue(tempa[2]);
  209. tempa[3] = getSBoxValue(tempa[3]);
  210. }
  211. }
  212. #endif
  213. RoundKey[i * 4 + 0] = RoundKey[(i - Nk) * 4 + 0] ^ tempa[0];
  214. RoundKey[i * 4 + 1] = RoundKey[(i - Nk) * 4 + 1] ^ tempa[1];
  215. RoundKey[i * 4 + 2] = RoundKey[(i - Nk) * 4 + 2] ^ tempa[2];
  216. RoundKey[i * 4 + 3] = RoundKey[(i - Nk) * 4 + 3] ^ tempa[3];
  217. }
  218. }
  219. // This function adds the round key to state.
  220. // The round key is added to the state by an XOR function.
  221. static void AddRoundKey(uint8_t round)
  222. {
  223. uint8_t i,j;
  224. for (i=0;i<4;++i)
  225. {
  226. for (j = 0; j < 4; ++j)
  227. {
  228. (*state)[i][j] ^= RoundKey[round * Nb * 4 + i * Nb + j];
  229. }
  230. }
  231. }
  232. // The SubBytes Function Substitutes the values in the
  233. // state matrix with values in an S-box.
  234. static void SubBytes(void)
  235. {
  236. uint8_t i, j;
  237. for (i = 0; i < 4; ++i)
  238. {
  239. for (j = 0; j < 4; ++j)
  240. {
  241. (*state)[j][i] = getSBoxValue((*state)[j][i]);
  242. }
  243. }
  244. }
  245. // The ShiftRows() function shifts the rows in the state to the left.
  246. // Each row is shifted with different offset.
  247. // Offset = Row number. So the first row is not shifted.
  248. static void ShiftRows(void)
  249. {
  250. uint8_t temp;
  251. // Rotate first row 1 columns to left
  252. temp = (*state)[0][1];
  253. (*state)[0][1] = (*state)[1][1];
  254. (*state)[1][1] = (*state)[2][1];
  255. (*state)[2][1] = (*state)[3][1];
  256. (*state)[3][1] = temp;
  257. // Rotate second row 2 columns to left
  258. temp = (*state)[0][2];
  259. (*state)[0][2] = (*state)[2][2];
  260. (*state)[2][2] = temp;
  261. temp = (*state)[1][2];
  262. (*state)[1][2] = (*state)[3][2];
  263. (*state)[3][2] = temp;
  264. // Rotate third row 3 columns to left
  265. temp = (*state)[0][3];
  266. (*state)[0][3] = (*state)[3][3];
  267. (*state)[3][3] = (*state)[2][3];
  268. (*state)[2][3] = (*state)[1][3];
  269. (*state)[1][3] = temp;
  270. }
  271. static uint8_t xtime(uint8_t x)
  272. {
  273. return ((x<<1) ^ (((x>>7) & 1) * 0x1b));
  274. }
  275. // MixColumns function mixes the columns of the state matrix
  276. static void MixColumns(void)
  277. {
  278. uint8_t i;
  279. uint8_t Tmp,Tm,t;
  280. for (i = 0; i < 4; ++i)
  281. {
  282. t = (*state)[i][0];
  283. Tmp = (*state)[i][0] ^ (*state)[i][1] ^ (*state)[i][2] ^ (*state)[i][3] ;
  284. Tm = (*state)[i][0] ^ (*state)[i][1] ; Tm = xtime(Tm); (*state)[i][0] ^= Tm ^ Tmp ;
  285. Tm = (*state)[i][1] ^ (*state)[i][2] ; Tm = xtime(Tm); (*state)[i][1] ^= Tm ^ Tmp ;
  286. Tm = (*state)[i][2] ^ (*state)[i][3] ; Tm = xtime(Tm); (*state)[i][2] ^= Tm ^ Tmp ;
  287. Tm = (*state)[i][3] ^ t ; Tm = xtime(Tm); (*state)[i][3] ^= Tm ^ Tmp ;
  288. }
  289. }
  290. // Multiply is used to multiply numbers in the field GF(2^8)
  291. #if MULTIPLY_AS_A_FUNCTION
  292. static uint8_t Multiply(uint8_t x, uint8_t y)
  293. {
  294. return (((y & 1) * x) ^
  295. ((y>>1 & 1) * xtime(x)) ^
  296. ((y>>2 & 1) * xtime(xtime(x))) ^
  297. ((y>>3 & 1) * xtime(xtime(xtime(x)))) ^
  298. ((y>>4 & 1) * xtime(xtime(xtime(xtime(x))))));
  299. }
  300. #else
  301. #define Multiply(x, y) \
  302. ( ((y & 1) * x) ^ \
  303. ((y>>1 & 1) * xtime(x)) ^ \
  304. ((y>>2 & 1) * xtime(xtime(x))) ^ \
  305. ((y>>3 & 1) * xtime(xtime(xtime(x)))) ^ \
  306. ((y>>4 & 1) * xtime(xtime(xtime(xtime(x)))))) \
  307. #endif
  308. // MixColumns function mixes the columns of the state matrix.
  309. // The method used to multiply may be difficult to understand for the inexperienced.
  310. // Please use the references to gain more information.
  311. static void InvMixColumns(void)
  312. {
  313. int i;
  314. uint8_t a, b, c, d;
  315. for (i = 0; i < 4; ++i)
  316. {
  317. a = (*state)[i][0];
  318. b = (*state)[i][1];
  319. c = (*state)[i][2];
  320. d = (*state)[i][3];
  321. (*state)[i][0] = Multiply(a, 0x0e) ^ Multiply(b, 0x0b) ^ Multiply(c, 0x0d) ^ Multiply(d, 0x09);
  322. (*state)[i][1] = Multiply(a, 0x09) ^ Multiply(b, 0x0e) ^ Multiply(c, 0x0b) ^ Multiply(d, 0x0d);
  323. (*state)[i][2] = Multiply(a, 0x0d) ^ Multiply(b, 0x09) ^ Multiply(c, 0x0e) ^ Multiply(d, 0x0b);
  324. (*state)[i][3] = Multiply(a, 0x0b) ^ Multiply(b, 0x0d) ^ Multiply(c, 0x09) ^ Multiply(d, 0x0e);
  325. }
  326. }
  327. // The SubBytes Function Substitutes the values in the
  328. // state matrix with values in an S-box.
  329. static void InvSubBytes(void)
  330. {
  331. uint8_t i,j;
  332. for (i = 0; i < 4; ++i)
  333. {
  334. for (j = 0; j < 4; ++j)
  335. {
  336. (*state)[j][i] = getSBoxInvert((*state)[j][i]);
  337. }
  338. }
  339. }
  340. static void InvShiftRows(void)
  341. {
  342. uint8_t temp;
  343. // Rotate first row 1 columns to right
  344. temp = (*state)[3][1];
  345. (*state)[3][1] = (*state)[2][1];
  346. (*state)[2][1] = (*state)[1][1];
  347. (*state)[1][1] = (*state)[0][1];
  348. (*state)[0][1] = temp;
  349. // Rotate second row 2 columns to right
  350. temp = (*state)[0][2];
  351. (*state)[0][2] = (*state)[2][2];
  352. (*state)[2][2] = temp;
  353. temp = (*state)[1][2];
  354. (*state)[1][2] = (*state)[3][2];
  355. (*state)[3][2] = temp;
  356. // Rotate third row 3 columns to right
  357. temp = (*state)[0][3];
  358. (*state)[0][3] = (*state)[1][3];
  359. (*state)[1][3] = (*state)[2][3];
  360. (*state)[2][3] = (*state)[3][3];
  361. (*state)[3][3] = temp;
  362. }
  363. // Cipher is the main function that encrypts the PlainText.
  364. static void Cipher(void)
  365. {
  366. uint8_t round = 0;
  367. // Add the First round key to the state before starting the rounds.
  368. AddRoundKey(0);
  369. // There will be Nr rounds.
  370. // The first Nr-1 rounds are identical.
  371. // These Nr-1 rounds are executed in the loop below.
  372. for (round = 1; round < Nr; ++round)
  373. {
  374. SubBytes();
  375. ShiftRows();
  376. MixColumns();
  377. AddRoundKey(round);
  378. }
  379. // The last round is given below.
  380. // The MixColumns function is not here in the last round.
  381. SubBytes();
  382. ShiftRows();
  383. AddRoundKey(Nr);
  384. }
  385. static void InvCipher(void)
  386. {
  387. uint8_t round=0;
  388. // Add the First round key to the state before starting the rounds.
  389. AddRoundKey(Nr);
  390. // There will be Nr rounds.
  391. // The first Nr-1 rounds are identical.
  392. // These Nr-1 rounds are executed in the loop below.
  393. for (round = (Nr - 1); round > 0; --round)
  394. {
  395. InvShiftRows();
  396. InvSubBytes();
  397. AddRoundKey(round);
  398. InvMixColumns();
  399. }
  400. // The last round is given below.
  401. // The MixColumns function is not here in the last round.
  402. InvShiftRows();
  403. InvSubBytes();
  404. AddRoundKey(0);
  405. }
  406. /*****************************************************************************/
  407. /* Public functions: */
  408. /*****************************************************************************/
  409. #if defined(ECB) && (ECB == 1)
  410. void AES_ECB_encrypt(const uint8_t* input, const uint8_t* key, uint8_t* output, const uint32_t length)
  411. {
  412. // Copy input to output, and work in-memory on output
  413. memcpy(output, input, length);
  414. state = (state_t*)output;
  415. Key = key;
  416. KeyExpansion();
  417. // The next function call encrypts the PlainText with the Key using AES algorithm.
  418. Cipher();
  419. }
  420. void AES_ECB_decrypt(const uint8_t* input, const uint8_t* key, uint8_t *output, const uint32_t length)
  421. {
  422. // Copy input to output, and work in-memory on output
  423. memcpy(output, input, length);
  424. state = (state_t*)output;
  425. // The KeyExpansion routine must be called before encryption.
  426. Key = key;
  427. KeyExpansion();
  428. InvCipher();
  429. }
  430. #endif // #if defined(ECB) && (ECB == 1)
  431. #if defined(CBC) && (CBC == 1)
  432. static void XorWithIv(uint8_t* buf)
  433. {
  434. uint8_t i;
  435. for (i = 0; i < BLOCKLEN; ++i) //WAS for(i = 0; i < KEYLEN; ++i) but the block in AES is always 128bit so 16 bytes!
  436. {
  437. buf[i] ^= Iv[i];
  438. }
  439. }
  440. void AES_CBC_encrypt_buffer(uint8_t* output, uint8_t* input, uint32_t length, const uint8_t* key, const uint8_t* iv)
  441. {
  442. uintptr_t i;
  443. uint8_t extra = length % BLOCKLEN; /* Remaining bytes in the last non-full block */
  444. // Skip the key expansion if key is passed as 0
  445. if (0 != key)
  446. {
  447. Key = key;
  448. KeyExpansion();
  449. }
  450. if (iv != 0)
  451. {
  452. Iv = (uint8_t*)iv;
  453. }
  454. for (i = 0; i < length; i += BLOCKLEN)
  455. {
  456. XorWithIv(input);
  457. memcpy(output, input, BLOCKLEN);
  458. state = (state_t*)output;
  459. Cipher();
  460. Iv = output;
  461. input += BLOCKLEN;
  462. output += BLOCKLEN;
  463. //printf("Step %d - %d", i/16, i);
  464. }
  465. if (extra)
  466. {
  467. memcpy(output, input, extra);
  468. state = (state_t*)output;
  469. Cipher();
  470. }
  471. }
  472. void AES_CBC_decrypt_buffer(uint8_t* output, uint8_t* input, uint32_t length, const uint8_t* key, const uint8_t* iv)
  473. {
  474. uintptr_t i;
  475. uint8_t extra = length % BLOCKLEN; /* Remaining bytes in the last non-full block */
  476. // Skip the key expansion if key is passed as 0
  477. if (0 != key)
  478. {
  479. Key = key;
  480. KeyExpansion();
  481. }
  482. // If iv is passed as 0, we continue to encrypt without re-setting the Iv
  483. if (iv != 0)
  484. {
  485. Iv = (uint8_t*)iv;
  486. }
  487. for (i = 0; i < length; i += BLOCKLEN)
  488. {
  489. memcpy(output, input, BLOCKLEN);
  490. state = (state_t*)output;
  491. InvCipher();
  492. XorWithIv(output);
  493. Iv = input;
  494. input += BLOCKLEN;
  495. output += BLOCKLEN;
  496. }
  497. if (extra)
  498. {
  499. memcpy(output, input, extra);
  500. state = (state_t*)output;
  501. InvCipher();
  502. }
  503. }
  504. #endif // #if defined(CBC) && (CBC == 1)