connection.cpp 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657
  1. /*
  2. * connection.cpp
  3. *
  4. * Created on: Sep 23, 2017
  5. * Author: root
  6. */
  7. #include "connection.h"
  8. #include "encrypt.h"
  9. #include "fd_manager.h"
  10. int disable_anti_replay = 0; // if anti_replay windows is diabled
  11. const int disable_conn_clear = 0; // a raw connection is called conn.
  12. conn_manager_t conn_manager;
  13. anti_replay_seq_t anti_replay_t::get_new_seq_for_send() {
  14. return anti_replay_seq++;
  15. }
  16. anti_replay_t::anti_replay_t() {
  17. max_packet_received = 0;
  18. anti_replay_seq = get_true_random_number_64() / 10; // random first seq
  19. // memset(window,0,sizeof(window)); //not necessary
  20. }
  21. void anti_replay_t::re_init() {
  22. max_packet_received = 0;
  23. // memset(window,0,sizeof(window));
  24. }
  25. int anti_replay_t::is_vaild(u64_t seq) {
  26. if (disable_anti_replay) return 1;
  27. // if(disabled) return 0;
  28. if (seq == max_packet_received)
  29. return 0;
  30. else if (seq > max_packet_received) {
  31. if (seq - max_packet_received >= anti_replay_window_size) {
  32. memset(window, 0, sizeof(window));
  33. window[seq % anti_replay_window_size] = 1;
  34. } else {
  35. for (u64_t i = max_packet_received + 1; i < seq; i++)
  36. window[i % anti_replay_window_size] = 0;
  37. window[seq % anti_replay_window_size] = 1;
  38. }
  39. max_packet_received = seq;
  40. return 1;
  41. } else if (seq < max_packet_received) {
  42. if (max_packet_received - seq >= anti_replay_window_size)
  43. return 0;
  44. else {
  45. if (window[seq % anti_replay_window_size] == 1)
  46. return 0;
  47. else {
  48. window[seq % anti_replay_window_size] = 1;
  49. return 1;
  50. }
  51. }
  52. }
  53. return 0; // for complier check
  54. }
  55. void conn_info_t::recover(const conn_info_t &conn_info) {
  56. raw_info = conn_info.raw_info;
  57. raw_info.rst_received = 0;
  58. raw_info.disabled = 0;
  59. last_state_time = conn_info.last_state_time;
  60. last_hb_recv_time = conn_info.last_hb_recv_time;
  61. last_hb_sent_time = conn_info.last_hb_sent_time;
  62. my_id = conn_info.my_id;
  63. oppsite_id = conn_info.oppsite_id;
  64. blob->anti_replay.re_init();
  65. my_roller = 0; // no need to set,but for easier debug,set it to zero
  66. oppsite_roller = 0; // same as above
  67. last_oppsite_roller_time = 0;
  68. }
  69. void conn_info_t::re_init() {
  70. // send_packet_info.protocol=g_packet_info_send.protocol;
  71. if (program_mode == server_mode)
  72. state.server_current_state = server_idle;
  73. else
  74. state.client_current_state = client_idle;
  75. last_state_time = 0;
  76. oppsite_const_id = 0;
  77. timer_fd64 = 0;
  78. my_roller = 0;
  79. oppsite_roller = 0;
  80. last_oppsite_roller_time = 0;
  81. }
  82. conn_info_t::conn_info_t() {
  83. blob = 0;
  84. re_init();
  85. }
  86. void conn_info_t::prepare() {
  87. assert(blob == 0);
  88. blob = new blob_t;
  89. if (program_mode == server_mode) {
  90. blob->conv_manager.s.additional_clear_function = server_clear_function;
  91. } else {
  92. assert(program_mode == client_mode);
  93. }
  94. }
  95. conn_info_t::conn_info_t(const conn_info_t &b) {
  96. assert(0 == 1);
  97. // mylog(log_error,"called!!!!!!!!!!!!!\n");
  98. }
  99. conn_info_t &conn_info_t::operator=(const conn_info_t &b) {
  100. mylog(log_fatal, "not allowed\n");
  101. myexit(-1);
  102. return *this;
  103. }
  104. conn_info_t::~conn_info_t() {
  105. if (program_mode == server_mode) {
  106. if (state.server_current_state == server_ready) {
  107. assert(blob != 0);
  108. assert(oppsite_const_id != 0);
  109. // assert(conn_manager.const_id_mp.find(oppsite_const_id)!=conn_manager.const_id_mp.end()); // conn_manager 's deconstuction function erases it
  110. } else {
  111. assert(blob == 0);
  112. assert(oppsite_const_id == 0);
  113. }
  114. }
  115. assert(timer_fd64 == 0);
  116. // if(oppsite_const_id!=0) //do this at conn_manager 's deconstuction function
  117. // conn_manager.const_id_mp.erase(oppsite_const_id);
  118. if (blob != 0)
  119. delete blob;
  120. // send_packet_info.protocol=g_packet_info_send.protocol;
  121. }
  122. conn_manager_t::conn_manager_t() {
  123. ready_num = 0;
  124. mp.reserve(10007);
  125. // clear_it=mp.begin();
  126. // timer_fd_mp.reserve(10007);
  127. const_id_mp.reserve(10007);
  128. // udp_fd_mp.reserve(100007);
  129. last_clear_time = 0;
  130. // current_ready_ip=0;
  131. // current_ready_port=0;
  132. }
  133. int conn_manager_t::exist(address_t addr) {
  134. // u64_t u64=0;
  135. // u64=ip;
  136. // u64<<=32u;
  137. // u64|=port;
  138. if (mp.find(addr) != mp.end()) {
  139. return 1;
  140. }
  141. return 0;
  142. }
  143. /*
  144. int insert(uint32_t ip,uint16_t port)
  145. {
  146. uint64_t u64=0;
  147. u64=ip;
  148. u64<<=32u;
  149. u64|=port;
  150. mp[u64];
  151. return 0;
  152. }*/
  153. conn_info_t *&conn_manager_t::find_insert_p(address_t addr) // be aware,the adress may change after rehash
  154. {
  155. // u64_t u64=0;
  156. // u64=ip;
  157. // u64<<=32u;
  158. // u64|=port;
  159. unordered_map<address_t, conn_info_t *>::iterator it = mp.find(addr);
  160. if (it == mp.end()) {
  161. mp[addr] = new conn_info_t;
  162. // lru.new_key(addr);
  163. } else {
  164. // lru.update(addr);
  165. }
  166. return mp[addr];
  167. }
  168. conn_info_t &conn_manager_t::find_insert(address_t addr) // be aware,the adress may change after rehash
  169. {
  170. // u64_t u64=0;
  171. // u64=ip;
  172. // u64<<=32u;
  173. // u64|=port;
  174. unordered_map<address_t, conn_info_t *>::iterator it = mp.find(addr);
  175. if (it == mp.end()) {
  176. mp[addr] = new conn_info_t;
  177. // lru.new_key(addr);
  178. } else {
  179. // lru.update(addr);
  180. }
  181. return *mp[addr];
  182. }
  183. int conn_manager_t::erase(unordered_map<address_t, conn_info_t *>::iterator erase_it) {
  184. if (erase_it->second->state.server_current_state == server_ready) {
  185. ready_num--;
  186. assert(i32_t(ready_num) != -1);
  187. assert(erase_it->second != 0);
  188. assert(erase_it->second->timer_fd64 != 0);
  189. assert(fd_manager.exist(erase_it->second->timer_fd64));
  190. assert(erase_it->second->oppsite_const_id != 0);
  191. assert(const_id_mp.find(erase_it->second->oppsite_const_id) != const_id_mp.end());
  192. // assert(timer_fd_mp.find(erase_it->second->timer_fd)!=timer_fd_mp.end());
  193. const_id_mp.erase(erase_it->second->oppsite_const_id);
  194. fd_manager.fd64_close(erase_it->second->timer_fd64);
  195. erase_it->second->timer_fd64 = 0;
  196. // timer_fd_mp.erase(erase_it->second->timer_fd);
  197. // close(erase_it->second->timer_fd);// close will auto delte it from epoll
  198. delete (erase_it->second);
  199. mp.erase(erase_it->first);
  200. } else {
  201. assert(erase_it->second->blob == 0);
  202. assert(erase_it->second->timer_fd64 == 0);
  203. assert(erase_it->second->oppsite_const_id == 0);
  204. delete (erase_it->second);
  205. mp.erase(erase_it->first);
  206. }
  207. return 0;
  208. }
  209. int conn_manager_t::clear_inactive() {
  210. if (get_current_time() - last_clear_time > conn_clear_interval) {
  211. last_clear_time = get_current_time();
  212. return clear_inactive0();
  213. }
  214. return 0;
  215. }
  216. int conn_manager_t::clear_inactive0() {
  217. unordered_map<address_t, conn_info_t *>::iterator it;
  218. unordered_map<address_t, conn_info_t *>::iterator old_it;
  219. if (disable_conn_clear) return 0;
  220. // map<uint32_t,uint64_t>::iterator it;
  221. int cnt = 0;
  222. it = clear_it;
  223. int size = mp.size();
  224. int num_to_clean = size / conn_clear_ratio + conn_clear_min; // clear 1/10 each time,to avoid latency glitch
  225. mylog(log_trace, "mp.size() %d\n", size);
  226. num_to_clean = min(num_to_clean, (int)mp.size());
  227. u64_t current_time = get_current_time();
  228. for (;;) {
  229. if (cnt >= num_to_clean) break;
  230. if (mp.begin() == mp.end()) break;
  231. if (it == mp.end()) {
  232. it = mp.begin();
  233. }
  234. if (it->second->state.server_current_state == server_ready && current_time - it->second->last_hb_recv_time <= server_conn_timeout) {
  235. it++;
  236. } else if (it->second->state.server_current_state != server_ready && current_time - it->second->last_state_time <= server_handshake_timeout) {
  237. it++;
  238. } else if (it->second->blob != 0 && it->second->blob->conv_manager.s.get_size() > 0) {
  239. assert(it->second->state.server_current_state == server_ready);
  240. it++;
  241. } else {
  242. mylog(log_info, "[%s:%d]inactive conn cleared \n", it->second->raw_info.recv_info.new_src_ip.get_str1(), it->second->raw_info.recv_info.src_port);
  243. old_it = it;
  244. it++;
  245. erase(old_it);
  246. }
  247. cnt++;
  248. }
  249. clear_it = it;
  250. return 0;
  251. }
  252. int send_bare(raw_info_t &raw_info, const char *data, int len) // send function with encryption but no anti replay,this is used when client and server verifys each other
  253. // you have to design the protocol carefully, so that you wont be affect by relay attack
  254. {
  255. if (len < 0) {
  256. mylog(log_debug, "input_len <0\n");
  257. return -1;
  258. }
  259. packet_info_t &send_info = raw_info.send_info;
  260. packet_info_t &recv_info = raw_info.recv_info;
  261. char send_data_buf[buf_len]; // buf for send data and send hb
  262. char send_data_buf2[buf_len];
  263. // static send_bare[buf_len];
  264. iv_t iv = get_true_random_number_64();
  265. padding_t padding = get_true_random_number_64();
  266. memcpy(send_data_buf, &iv, sizeof(iv));
  267. memcpy(send_data_buf + sizeof(iv), &padding, sizeof(padding));
  268. send_data_buf[sizeof(iv) + sizeof(padding)] = 'b';
  269. memcpy(send_data_buf + sizeof(iv) + sizeof(padding) + 1, data, len);
  270. int new_len = len + sizeof(iv) + sizeof(padding) + 1;
  271. if (my_encrypt(send_data_buf, send_data_buf2, new_len) != 0) {
  272. return -1;
  273. }
  274. send_raw0(raw_info, send_data_buf2, new_len);
  275. return 0;
  276. }
  277. int reserved_parse_bare(const char *input, int input_len, char *&data, int &len) // a sub function used in recv_bare
  278. {
  279. static char recv_data_buf[buf_len];
  280. if (input_len < 0) {
  281. mylog(log_debug, "input_len <0\n");
  282. return -1;
  283. }
  284. if (my_decrypt(input, recv_data_buf, input_len) != 0) {
  285. mylog(log_debug, "decrypt_fail in recv bare\n");
  286. return -1;
  287. }
  288. if (recv_data_buf[sizeof(iv_t) + sizeof(padding_t)] != 'b') {
  289. mylog(log_debug, "not a bare packet\n");
  290. return -1;
  291. }
  292. len = input_len;
  293. data = recv_data_buf + sizeof(iv_t) + sizeof(padding_t) + 1;
  294. len -= sizeof(iv_t) + sizeof(padding_t) + 1;
  295. if (len < 0) {
  296. mylog(log_debug, "len <0\n");
  297. return -1;
  298. }
  299. return 0;
  300. }
  301. int recv_bare(raw_info_t &raw_info, char *&data, int &len) // recv function with encryption but no anti replay,this is used when client and server verifys each other
  302. // you have to design the protocol carefully, so that you wont be affect by relay attack
  303. {
  304. packet_info_t &send_info = raw_info.send_info;
  305. packet_info_t &recv_info = raw_info.recv_info;
  306. if (recv_raw0(raw_info, data, len) < 0) {
  307. // printf("recv_raw_fail in recv bare\n");
  308. return -1;
  309. }
  310. if (len >= max_data_len + 1) {
  311. mylog(log_debug, "data_len=%d >= max_data_len+1,ignored", len);
  312. return -1;
  313. }
  314. mylog(log_trace, "data len=%d\n", len);
  315. if ((raw_mode == mode_faketcp && (recv_info.syn == 1 || recv_info.ack != 1))) {
  316. mylog(log_debug, "unexpect packet type recv_info.syn=%d recv_info.ack=%d \n", recv_info.syn, recv_info.ack);
  317. return -1;
  318. }
  319. return reserved_parse_bare(data, len, data, len);
  320. }
  321. int send_handshake(raw_info_t &raw_info, my_id_t id1, my_id_t id2, my_id_t id3) // a warp for send_bare for sending handshake(this is not tcp handshake) easily
  322. {
  323. packet_info_t &send_info = raw_info.send_info;
  324. packet_info_t &recv_info = raw_info.recv_info;
  325. char *data;
  326. int len;
  327. // len=sizeof(id_t)*3;
  328. if (numbers_to_char(id1, id2, id3, data, len) != 0) return -1;
  329. if (send_bare(raw_info, data, len) != 0) {
  330. mylog(log_warn, "send bare fail\n");
  331. return -1;
  332. }
  333. return 0;
  334. }
  335. /*
  336. int recv_handshake(packet_info_t &info,id_t &id1,id_t &id2,id_t &id3)
  337. {
  338. char * data;int len;
  339. if(recv_bare(info,data,len)!=0) return -1;
  340. if(char_to_numbers(data,len,id1,id2,id3)!=0) return -1;
  341. return 0;
  342. }*/
  343. int send_safer(conn_info_t &conn_info, char type, const char *data, int len) // safer transfer function with anti-replay,when mutually verification is done.
  344. {
  345. packet_info_t &send_info = conn_info.raw_info.send_info;
  346. packet_info_t &recv_info = conn_info.raw_info.recv_info;
  347. if (type != 'h' && type != 'd') {
  348. mylog(log_warn, "first byte is not h or d ,%x\n", type);
  349. return -1;
  350. }
  351. char send_data_buf[buf_len]; // buf for send data and send hb
  352. char send_data_buf2[buf_len];
  353. my_id_t n_tmp_id = htonl(conn_info.my_id);
  354. memcpy(send_data_buf, &n_tmp_id, sizeof(n_tmp_id));
  355. n_tmp_id = htonl(conn_info.oppsite_id);
  356. memcpy(send_data_buf + sizeof(n_tmp_id), &n_tmp_id, sizeof(n_tmp_id));
  357. anti_replay_seq_t n_seq = hton64(conn_info.blob->anti_replay.get_new_seq_for_send());
  358. memcpy(send_data_buf + sizeof(n_tmp_id) * 2, &n_seq, sizeof(n_seq));
  359. send_data_buf[sizeof(n_tmp_id) * 2 + sizeof(n_seq)] = type;
  360. send_data_buf[sizeof(n_tmp_id) * 2 + sizeof(n_seq) + 1] = conn_info.my_roller;
  361. memcpy(send_data_buf + 2 + sizeof(n_tmp_id) * 2 + sizeof(n_seq), data, len); // data;
  362. int new_len = len + sizeof(n_seq) + sizeof(n_tmp_id) * 2 + 2;
  363. if (g_fix_gro == 0) {
  364. if (my_encrypt(send_data_buf, send_data_buf2, new_len) != 0) {
  365. return -1;
  366. }
  367. } else {
  368. if (my_encrypt(send_data_buf, send_data_buf2 + 2, new_len) != 0) {
  369. return -1;
  370. }
  371. write_u16(send_data_buf2, new_len);
  372. new_len += 2;
  373. if (cipher_mode == cipher_xor) {
  374. send_data_buf2[0] ^= gro_xor[0];
  375. send_data_buf2[1] ^= gro_xor[1];
  376. } else if (cipher_mode == cipher_aes128cbc || cipher_mode == cipher_aes128cbc) {
  377. aes_ecb_encrypt1(send_data_buf2);
  378. }
  379. }
  380. if (send_raw0(conn_info.raw_info, send_data_buf2, new_len) != 0) return -1;
  381. if (after_send_raw0(conn_info.raw_info) != 0) return -1;
  382. return 0;
  383. }
  384. int send_data_safer(conn_info_t &conn_info, const char *data, int len, u32_t conv_num) // a wrap for send_safer for transfer data.
  385. {
  386. packet_info_t &send_info = conn_info.raw_info.send_info;
  387. packet_info_t &recv_info = conn_info.raw_info.recv_info;
  388. char send_data_buf[buf_len];
  389. // send_data_buf[0]='d';
  390. u32_t n_conv_num = htonl(conv_num);
  391. memcpy(send_data_buf, &n_conv_num, sizeof(n_conv_num));
  392. memcpy(send_data_buf + sizeof(n_conv_num), data, len);
  393. int new_len = len + sizeof(n_conv_num);
  394. send_safer(conn_info, 'd', send_data_buf, new_len);
  395. return 0;
  396. }
  397. int reserved_parse_safer(conn_info_t &conn_info, const char *input, int input_len, char &type, char *&data, int &len) // subfunction for recv_safer,allow overlap
  398. {
  399. static char recv_data_buf[buf_len];
  400. // char *recv_data_buf=recv_data_buf0; //fix strict alias warning
  401. if (my_decrypt(input, recv_data_buf, input_len) != 0) {
  402. // printf("decrypt fail\n");
  403. return -1;
  404. }
  405. // char *a=recv_data_buf;
  406. // id_t h_oppiste_id= ntohl ( *((id_t * )(recv_data_buf)) );
  407. my_id_t h_oppsite_id;
  408. memcpy(&h_oppsite_id, recv_data_buf, sizeof(h_oppsite_id));
  409. h_oppsite_id = ntohl(h_oppsite_id);
  410. // id_t h_my_id= ntohl ( *((id_t * )(recv_data_buf+sizeof(id_t))) );
  411. my_id_t h_my_id;
  412. memcpy(&h_my_id, recv_data_buf + sizeof(my_id_t), sizeof(h_my_id));
  413. h_my_id = ntohl(h_my_id);
  414. // anti_replay_seq_t h_seq= ntoh64 ( *((anti_replay_seq_t * )(recv_data_buf +sizeof(id_t) *2 )) );
  415. anti_replay_seq_t h_seq;
  416. memcpy(&h_seq, recv_data_buf + sizeof(my_id_t) * 2, sizeof(h_seq));
  417. h_seq = ntoh64(h_seq);
  418. if (h_oppsite_id != conn_info.oppsite_id || h_my_id != conn_info.my_id) {
  419. mylog(log_debug, "id and oppsite_id verification failed %x %x %x %x \n", h_oppsite_id, conn_info.oppsite_id, h_my_id, conn_info.my_id);
  420. return -1;
  421. }
  422. if (conn_info.blob->anti_replay.is_vaild(h_seq) != 1) {
  423. mylog(log_debug, "dropped replay packet\n");
  424. return -1;
  425. }
  426. // printf("recv _len %d\n ",recv_len);
  427. data = recv_data_buf + sizeof(anti_replay_seq_t) + sizeof(my_id_t) * 2;
  428. len = input_len - (sizeof(anti_replay_seq_t) + sizeof(my_id_t) * 2);
  429. if (data[0] != 'h' && data[0] != 'd') {
  430. mylog(log_debug, "first byte is not h or d ,%x\n", data[0]);
  431. return -1;
  432. }
  433. uint8_t roller = data[1];
  434. type = data[0];
  435. data += 2;
  436. len -= 2;
  437. if (len < 0) {
  438. mylog(log_debug, "len <0 ,%d\n", len);
  439. return -1;
  440. }
  441. if (roller != conn_info.oppsite_roller) {
  442. conn_info.oppsite_roller = roller;
  443. conn_info.last_oppsite_roller_time = get_current_time();
  444. }
  445. if (hb_mode == 0)
  446. conn_info.my_roller++; // increase on a successful recv
  447. else if (hb_mode == 1) {
  448. if (type == 'h')
  449. conn_info.my_roller++;
  450. } else {
  451. mylog(log_fatal, "unknow hb_mode\n");
  452. myexit(-1);
  453. }
  454. if (after_recv_raw0(conn_info.raw_info) != 0) return -1; // TODO might need to move this function to somewhere else after --fix-gro is introduced
  455. return 0;
  456. }
  457. int recv_safer_notused(conn_info_t &conn_info, char &type, char *&data, int &len) /// safer transfer function with anti-replay,when mutually verification is done.
  458. {
  459. packet_info_t &send_info = conn_info.raw_info.send_info;
  460. packet_info_t &recv_info = conn_info.raw_info.recv_info;
  461. char *recv_data;
  462. int recv_len;
  463. // static char recv_data_buf[buf_len];
  464. if (recv_raw0(conn_info.raw_info, recv_data, recv_len) != 0) return -1;
  465. return reserved_parse_safer(conn_info, recv_data, recv_len, type, data, len);
  466. }
  467. int recv_safer_multi(conn_info_t &conn_info, vector<char> &type_arr, vector<string> &data_arr) /// safer transfer function with anti-replay,when mutually verification is done.
  468. {
  469. packet_info_t &send_info = conn_info.raw_info.send_info;
  470. packet_info_t &recv_info = conn_info.raw_info.recv_info;
  471. char *recv_data;
  472. int recv_len;
  473. assert(type_arr.empty());
  474. assert(data_arr.empty());
  475. if (recv_raw0(conn_info.raw_info, recv_data, recv_len) != 0) return -1;
  476. char type;
  477. char *data;
  478. int len;
  479. if (g_fix_gro == 0) {
  480. int ret = reserved_parse_safer(conn_info, recv_data, recv_len, type, data, len);
  481. if (ret == 0) {
  482. type_arr.push_back(type);
  483. data_arr.emplace_back(data, data + len);
  484. // std::copy(data,data+len,data_arr[0]);
  485. }
  486. return 0;
  487. } else {
  488. char *ori_recv_data = recv_data;
  489. int ori_recv_len = recv_len;
  490. // mylog(log_debug,"recv_len:%d\n",recv_len);
  491. int cnt = 0;
  492. while (recv_len >= 16) {
  493. cnt++;
  494. int single_len_no_xor;
  495. single_len_no_xor = read_u16(recv_data);
  496. int single_len;
  497. if (cipher_mode == cipher_xor) {
  498. recv_data[0] ^= gro_xor[0];
  499. recv_data[1] ^= gro_xor[1];
  500. } else if (cipher_mode == cipher_aes128cbc || cipher_mode == cipher_aes128cbc) {
  501. aes_ecb_decrypt1(recv_data);
  502. }
  503. single_len = read_u16(recv_data);
  504. recv_len -= 2;
  505. recv_data += 2;
  506. if (single_len > recv_len) {
  507. mylog(log_debug, "illegal single_len %d(%d), recv_len %d left,dropped\n", single_len, single_len_no_xor, recv_len);
  508. break;
  509. }
  510. if (single_len > max_data_len) {
  511. mylog(log_warn, "single_len %d(%d) > %d, maybe you need to turn down mtu at upper level\n", single_len, single_len_no_xor, max_data_len);
  512. break;
  513. }
  514. int ret = reserved_parse_safer(conn_info, recv_data, single_len, type, data, len);
  515. if (ret != 0) {
  516. mylog(log_debug, "parse failed, offset= %d,single_len=%d(%d)\n", (int)(recv_data - ori_recv_data), single_len, single_len_no_xor);
  517. } else {
  518. type_arr.push_back(type);
  519. data_arr.emplace_back(data, data + len);
  520. // std::copy(data,data+len,data_arr[data_arr.size()-1]);
  521. }
  522. recv_data += single_len;
  523. recv_len -= single_len;
  524. }
  525. if (cnt > 1) {
  526. mylog(log_debug, "got a suspected gro packet, %d packets recovered, recv_len=%d, loop_cnt=%d\n", (int)data_arr.size(), ori_recv_len, cnt);
  527. }
  528. return 0;
  529. }
  530. }
  531. void server_clear_function(u64_t u64) // used in conv_manager in server mode.for server we have to use one udp fd for one conv(udp connection),
  532. // so we have to close the fd when conv expires
  533. {
  534. // int fd=int(u64);
  535. // int ret;
  536. // assert(fd!=0);
  537. /*
  538. epoll_event ev;
  539. ev.events = EPOLLIN;
  540. ev.data.u64 = u64;
  541. ret = epoll_ctl(epollfd, EPOLL_CTL_DEL, fd, &ev);
  542. if (ret!=0)
  543. {
  544. mylog(log_fatal,"fd:%d epoll delete failed!!!!\n",fd);
  545. myexit(-1); //this shouldnt happen
  546. }*/
  547. // no need
  548. /*ret= close(fd); //closed fd should be auto removed from epoll
  549. if (ret!=0)
  550. {
  551. mylog(log_fatal,"close fd %d failed !!!!\n",fd);
  552. myexit(-1); //this shouldnt happen
  553. }*/
  554. // mylog(log_fatal,"size:%d !!!!\n",conn_manager.udp_fd_mp.size());
  555. fd64_t fd64 = u64;
  556. assert(fd_manager.exist(fd64));
  557. fd_manager.fd64_close(fd64);
  558. // assert(conn_manager.udp_fd_mp.find(fd)!=conn_manager.udp_fd_mp.end());
  559. // conn_manager.udp_fd_mp.erase(fd);
  560. }