common.cpp 29 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148
  1. /*
  2. * comm.cpp
  3. *
  4. * Created on: Jul 29, 2017
  5. * Author: wangyu
  6. */
  7. #include "common.h"
  8. #include "log.h"
  9. #include "misc.h"
  10. #include <random>
  11. #include <cmath>
  12. // static int random_number_fd=-1;
  13. int force_socket_buf = 0;
  14. int address_t::from_str(char *str) {
  15. clear();
  16. char ip_addr_str[100];
  17. u32_t port;
  18. mylog(log_info, "parsing address: %s\n", str);
  19. int is_ipv6 = 0;
  20. if (sscanf(str, "[%[^]]]:%u", ip_addr_str, &port) == 2) {
  21. mylog(log_info, "its an ipv6 adress\n");
  22. inner.ipv6.sin6_family = AF_INET6;
  23. is_ipv6 = 1;
  24. } else if (sscanf(str, "%[^:]:%u", ip_addr_str, &port) == 2) {
  25. mylog(log_info, "its an ipv4 adress\n");
  26. inner.ipv4.sin_family = AF_INET;
  27. } else {
  28. mylog(log_error, "failed to parse\n");
  29. myexit(-1);
  30. }
  31. mylog(log_info, "ip_address is {%s}, port is {%u}\n", ip_addr_str, port);
  32. if (port > 65535) {
  33. mylog(log_error, "invalid port: %d\n", port);
  34. myexit(-1);
  35. }
  36. int ret = -100;
  37. if (is_ipv6) {
  38. ret = inet_pton(AF_INET6, ip_addr_str, &(inner.ipv6.sin6_addr));
  39. inner.ipv6.sin6_port = htons(port);
  40. if (ret == 0) // 0 if address type doesnt match
  41. {
  42. mylog(log_error, "ip_addr %s is not an ipv6 address, %d\n", ip_addr_str, ret);
  43. myexit(-1);
  44. } else if (ret == 1) // inet_pton returns 1 on success
  45. {
  46. // okay
  47. } else {
  48. mylog(log_error, "ip_addr %s is invalid, %d\n", ip_addr_str, ret);
  49. myexit(-1);
  50. }
  51. } else {
  52. ret = inet_pton(AF_INET, ip_addr_str, &(inner.ipv4.sin_addr));
  53. inner.ipv4.sin_port = htons(port);
  54. if (ret == 0) {
  55. mylog(log_error, "ip_addr %s is not an ipv4 address, %d\n", ip_addr_str, ret);
  56. myexit(-1);
  57. } else if (ret == 1) {
  58. // okay
  59. } else {
  60. mylog(log_error, "ip_addr %s is invalid, %d\n", ip_addr_str, ret);
  61. myexit(-1);
  62. }
  63. }
  64. return 0;
  65. }
  66. int address_t::from_str_ip_only(char *str) {
  67. clear();
  68. u32_t type;
  69. if (strchr(str, ':') == NULL)
  70. type = AF_INET;
  71. else
  72. type = AF_INET6;
  73. ((sockaddr *)&inner)->sa_family = type;
  74. int ret;
  75. if (type == AF_INET) {
  76. ret = inet_pton(type, str, &inner.ipv4.sin_addr);
  77. } else {
  78. ret = inet_pton(type, str, &inner.ipv6.sin6_addr);
  79. }
  80. if (ret == 0) // 0 if address type doesnt match
  81. {
  82. mylog(log_error, "confusion in parsing %s, %d\n", str, ret);
  83. myexit(-1);
  84. } else if (ret == 1) // inet_pton returns 1 on success
  85. {
  86. // okay
  87. } else {
  88. mylog(log_error, "ip_addr %s is invalid, %d\n", str, ret);
  89. myexit(-1);
  90. }
  91. return 0;
  92. }
  93. char *address_t::get_str() {
  94. static char res[max_addr_len];
  95. to_str(res);
  96. return res;
  97. }
  98. void address_t::to_str(char *s) {
  99. // static char res[max_addr_len];
  100. char ip_addr[max_addr_len];
  101. u32_t port;
  102. const char *ret = 0;
  103. if (get_type() == AF_INET6) {
  104. ret = inet_ntop(AF_INET6, &inner.ipv6.sin6_addr, ip_addr, max_addr_len);
  105. port = inner.ipv6.sin6_port;
  106. } else if (get_type() == AF_INET) {
  107. ret = inet_ntop(AF_INET, &inner.ipv4.sin_addr, ip_addr, max_addr_len);
  108. port = inner.ipv4.sin_port;
  109. } else {
  110. assert(0 == 1);
  111. }
  112. if (ret == 0) // NULL on failure
  113. {
  114. mylog(log_error, "inet_ntop failed\n");
  115. myexit(-1);
  116. }
  117. port = ntohs(port);
  118. ip_addr[max_addr_len - 1] = 0;
  119. if (get_type() == AF_INET6) {
  120. sprintf(s, "[%s]:%u", ip_addr, (u32_t)port);
  121. } else {
  122. sprintf(s, "%s:%u", ip_addr, (u32_t)port);
  123. }
  124. // return res;
  125. }
  126. char *address_t::get_ip() {
  127. char ip_addr[max_addr_len];
  128. static char s[max_addr_len];
  129. const char *ret = 0;
  130. if (get_type() == AF_INET6) {
  131. ret = inet_ntop(AF_INET6, &inner.ipv6.sin6_addr, ip_addr, max_addr_len);
  132. } else if (get_type() == AF_INET) {
  133. ret = inet_ntop(AF_INET, &inner.ipv4.sin_addr, ip_addr, max_addr_len);
  134. } else {
  135. assert(0 == 1);
  136. }
  137. if (ret == 0) // NULL on failure
  138. {
  139. mylog(log_error, "inet_ntop failed\n");
  140. myexit(-1);
  141. }
  142. ip_addr[max_addr_len - 1] = 0;
  143. if (get_type() == AF_INET6) {
  144. sprintf(s, "%s", ip_addr);
  145. } else {
  146. sprintf(s, "%s", ip_addr);
  147. }
  148. return s;
  149. }
  150. int address_t::from_sockaddr(sockaddr *addr, socklen_t slen) {
  151. clear();
  152. // memset(&inner,0,sizeof(inner));
  153. if (addr->sa_family == AF_INET6) {
  154. assert(slen == sizeof(sockaddr_in6));
  155. // inner.ipv6= *( (sockaddr_in6*) addr );
  156. memcpy(&inner, addr, slen);
  157. } else if (addr->sa_family == AF_INET) {
  158. assert(slen == sizeof(sockaddr_in));
  159. // inner.ipv4= *( (sockaddr_in*) addr );
  160. memcpy(&inner, addr, slen);
  161. } else {
  162. assert(0 == 1);
  163. }
  164. return 0;
  165. }
  166. int address_t::new_connected_udp_fd() {
  167. int new_udp_fd;
  168. new_udp_fd = socket(get_type(), SOCK_DGRAM, IPPROTO_UDP);
  169. if (new_udp_fd < 0) {
  170. mylog(log_warn, "create udp_fd error\n");
  171. return -1;
  172. }
  173. setnonblocking(new_udp_fd);
  174. set_buf_size(new_udp_fd, socket_buf_size);
  175. mylog(log_debug, "created new udp_fd %d\n", new_udp_fd);
  176. int ret = connect(new_udp_fd, (struct sockaddr *)&inner, get_len());
  177. if (ret != 0) {
  178. mylog(log_warn, "udp fd connect fail %d %s\n", ret, strerror(errno));
  179. // sock_close(new_udp_fd);
  180. close(new_udp_fd);
  181. return -1;
  182. }
  183. return new_udp_fd;
  184. }
  185. bool my_ip_t::equal(const my_ip_t &b) const {
  186. // extern int raw_ip_version;
  187. if (raw_ip_version == AF_INET) {
  188. return v4 == b.v4;
  189. } else if (raw_ip_version == AF_INET6) {
  190. return memcmp(&v6, &b.v6, sizeof(v6)) == 0;
  191. }
  192. assert(0 == 1);
  193. return 0;
  194. }
  195. char *my_ip_t::get_str1() const {
  196. static char res[max_addr_len];
  197. if (raw_ip_version == AF_INET6) {
  198. assert(inet_ntop(AF_INET6, &v6, res, max_addr_len) != 0);
  199. } else {
  200. assert(raw_ip_version == AF_INET);
  201. assert(inet_ntop(AF_INET, &v4, res, max_addr_len) != 0);
  202. }
  203. return res;
  204. }
  205. char *my_ip_t::get_str2() const {
  206. static char res[max_addr_len];
  207. if (raw_ip_version == AF_INET6) {
  208. assert(inet_ntop(AF_INET6, &v6, res, max_addr_len) != 0);
  209. } else {
  210. assert(raw_ip_version == AF_INET);
  211. assert(inet_ntop(AF_INET, &v4, res, max_addr_len) != 0);
  212. }
  213. return res;
  214. }
  215. int my_ip_t::from_address_t(address_t tmp_addr) {
  216. if (tmp_addr.get_type() == raw_ip_version && raw_ip_version == AF_INET) {
  217. v4 = tmp_addr.inner.ipv4.sin_addr.s_addr;
  218. } else if (tmp_addr.get_type() == raw_ip_version && raw_ip_version == AF_INET6) {
  219. v6 = tmp_addr.inner.ipv6.sin6_addr;
  220. } else {
  221. assert(0 == 1);
  222. }
  223. return 0;
  224. }
  225. /*
  226. int my_ip_t::from_str(char * str)
  227. {
  228. u32_t type;
  229. if(strchr(str,':')==NULL)
  230. type=AF_INET;
  231. else
  232. type=AF_INET6;
  233. int ret;
  234. ret=inet_pton(type, str,this);
  235. if(ret==0) // 0 if address type doesnt match
  236. {
  237. mylog(log_error,"confusion in parsing %s, %d\n",str,ret);
  238. myexit(-1);
  239. }
  240. else if(ret==1) // inet_pton returns 1 on success
  241. {
  242. //okay
  243. }
  244. else
  245. {
  246. mylog(log_error,"ip_addr %s is invalid, %d\n",str,ret);
  247. myexit(-1);
  248. }
  249. return 0;
  250. }*/
  251. #ifdef UDP2RAW_MP
  252. int init_ws() {
  253. #if defined(__MINGW32__)
  254. WORD wVersionRequested;
  255. WSADATA wsaData;
  256. int err;
  257. /* Use the MAKEWORD(lowbyte, highbyte) macro declared in Windef.h */
  258. wVersionRequested = MAKEWORD(2, 2);
  259. err = WSAStartup(wVersionRequested, &wsaData);
  260. if (err != 0) {
  261. /* Tell the user that we could not find a usable */
  262. /* Winsock DLL. */
  263. printf("WSAStartup failed with error: %d\n", err);
  264. exit(-1);
  265. }
  266. /* Confirm that the WinSock DLL supports 2.2.*/
  267. /* Note that if the DLL supports versions greater */
  268. /* than 2.2 in addition to 2.2, it will still return */
  269. /* 2.2 in wVersion since that is the version we */
  270. /* requested. */
  271. if (LOBYTE(wsaData.wVersion) != 2 || HIBYTE(wsaData.wVersion) != 2) {
  272. /* Tell the user that we could not find a usable */
  273. /* WinSock DLL. */
  274. printf("Could not find a usable version of Winsock.dll\n");
  275. WSACleanup();
  276. exit(-1);
  277. } else {
  278. printf("The Winsock 2.2 dll was found okay");
  279. }
  280. int tmp[] = {0, 100, 200, 300, 500, 800, 1000, 2000, 3000, 4000, -1};
  281. int succ = 0;
  282. for (int i = 1; tmp[i] != -1; i++) {
  283. if (_setmaxstdio(100) == -1)
  284. break;
  285. else
  286. succ = i;
  287. }
  288. printf(", _setmaxstdio() was set to %d\n", tmp[succ]);
  289. #endif
  290. return 0;
  291. }
  292. #endif
  293. #if defined(__MINGW32__)
  294. int inet_pton(int af, const char *src, void *dst) {
  295. struct sockaddr_storage ss;
  296. int size = sizeof(ss);
  297. char src_copy[max_addr_len + 1];
  298. ZeroMemory(&ss, sizeof(ss));
  299. /* stupid non-const API */
  300. strncpy(src_copy, src, max_addr_len + 1);
  301. src_copy[max_addr_len] = 0;
  302. if (WSAStringToAddress(src_copy, af, NULL, (struct sockaddr *)&ss, &size) == 0) {
  303. switch (af) {
  304. case AF_INET:
  305. *(struct in_addr *)dst = ((struct sockaddr_in *)&ss)->sin_addr;
  306. return 1;
  307. case AF_INET6:
  308. *(struct in6_addr *)dst = ((struct sockaddr_in6 *)&ss)->sin6_addr;
  309. return 1;
  310. }
  311. }
  312. return 0;
  313. }
  314. const char *inet_ntop(int af, const void *src, char *dst, socklen_t size) {
  315. struct sockaddr_storage ss;
  316. unsigned long s = size;
  317. ZeroMemory(&ss, sizeof(ss));
  318. ss.ss_family = af;
  319. switch (af) {
  320. case AF_INET:
  321. ((struct sockaddr_in *)&ss)->sin_addr = *(struct in_addr *)src;
  322. break;
  323. case AF_INET6:
  324. ((struct sockaddr_in6 *)&ss)->sin6_addr = *(struct in6_addr *)src;
  325. break;
  326. default:
  327. return NULL;
  328. }
  329. /* cannot direclty use &size because of strict aliasing rules */
  330. return (WSAAddressToString((struct sockaddr *)&ss, sizeof(ss), NULL, dst, &s) == 0) ? dst : NULL;
  331. }
  332. char *get_sock_error() {
  333. static char buf[1000];
  334. int e = WSAGetLastError();
  335. wchar_t *s = NULL;
  336. FormatMessageW(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
  337. NULL, e,
  338. MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT),
  339. (LPWSTR)&s, 0, NULL);
  340. sprintf(buf, "%d:%S", e, s);
  341. int len = strlen(buf);
  342. while (len > 0 && (buf[len - 1] == '\r' || buf[len - 1] == '\n')) {
  343. len--;
  344. buf[len] = 0;
  345. }
  346. LocalFree(s);
  347. return buf;
  348. }
  349. int get_sock_errno() {
  350. return WSAGetLastError();
  351. }
  352. #else
  353. char *get_sock_error() {
  354. static char buf[1000];
  355. sprintf(buf, "%d:%s", errno, strerror(errno));
  356. return buf;
  357. }
  358. int get_sock_errno() {
  359. return errno;
  360. }
  361. #endif
  362. u64_t get_current_time_us() {
  363. static u64_t value_fix = 0;
  364. static u64_t largest_value = 0;
  365. u64_t raw_value = (u64_t)(ev_time() * 1000 * 1000);
  366. u64_t fixed_value = raw_value + value_fix;
  367. if (fixed_value < largest_value) {
  368. value_fix += largest_value - fixed_value;
  369. } else {
  370. largest_value = fixed_value;
  371. }
  372. // printf("<%lld,%lld,%lld>\n",raw_value,value_fix,raw_value + value_fix);
  373. return raw_value + value_fix; // new fixed value
  374. }
  375. u64_t get_current_time() {
  376. return get_current_time_us() / 1000;
  377. }
  378. u64_t pack_u64(u32_t a, u32_t b) {
  379. u64_t ret = a;
  380. ret <<= 32u;
  381. ret += b;
  382. return ret;
  383. }
  384. u32_t get_u64_h(u64_t a) {
  385. return a >> 32u;
  386. }
  387. u32_t get_u64_l(u64_t a) {
  388. return (a << 32u) >> 32u;
  389. }
  390. char *my_ntoa(u32_t ip) {
  391. in_addr a;
  392. a.s_addr = ip;
  393. return inet_ntoa(a);
  394. }
  395. /*
  396. void init_random_number_fd()
  397. {
  398. random_number_fd=open("/dev/urandom",O_RDONLY);
  399. if(random_number_fd==-1)
  400. {
  401. mylog(log_fatal,"error open /dev/urandom\n");
  402. myexit(-1);
  403. }
  404. setnonblocking(random_number_fd);
  405. }*/
  406. #if !defined(__MINGW32__)
  407. struct random_fd_t {
  408. int random_number_fd;
  409. random_fd_t() {
  410. random_number_fd = open("/dev/urandom", O_RDONLY);
  411. if (random_number_fd == -1) {
  412. mylog(log_fatal, "error open /dev/urandom\n");
  413. myexit(-1);
  414. }
  415. setnonblocking(random_number_fd);
  416. }
  417. int get_fd() {
  418. return random_number_fd;
  419. }
  420. } random_fd;
  421. #else
  422. struct my_random_t {
  423. std::random_device rd;
  424. std::mt19937 gen;
  425. std::uniform_int_distribution<u64_t> dis64;
  426. std::uniform_int_distribution<u32_t> dis32;
  427. std::uniform_int_distribution<unsigned char> dis8;
  428. my_random_t() {
  429. // std::mt19937 gen_tmp(rd()); //random device is broken on mingw
  430. timespec tmp_time;
  431. clock_gettime(CLOCK_MONOTONIC, &tmp_time);
  432. long long a = ((u64_t)tmp_time.tv_sec) * 1000000000llu + ((u64_t)tmp_time.tv_nsec);
  433. std::mt19937 gen_tmp(a);
  434. gen = gen_tmp;
  435. gen.discard(700000); // magic
  436. }
  437. u64_t gen64() {
  438. return dis64(gen);
  439. }
  440. u32_t gen32() {
  441. return dis32(gen);
  442. }
  443. unsigned char gen8() {
  444. return dis8(gen);
  445. }
  446. /*int random_number_fd;
  447. random_fd_t()
  448. {
  449. random_number_fd=open("/dev/urandom",O_RDONLY);
  450. if(random_number_fd==-1)
  451. {
  452. mylog(log_fatal,"error open /dev/urandom\n");
  453. myexit(-1);
  454. }
  455. setnonblocking(random_number_fd);
  456. }
  457. int get_fd()
  458. {
  459. return random_number_fd;
  460. }*/
  461. } my_random;
  462. #endif
  463. u64_t get_true_random_number_64() {
  464. #if !defined(__MINGW32__)
  465. u64_t ret;
  466. int size = read(random_fd.get_fd(), &ret, sizeof(ret));
  467. if (size != sizeof(ret)) {
  468. mylog(log_fatal, "get random number failed %d\n", size);
  469. myexit(-1);
  470. }
  471. return ret;
  472. #else
  473. return my_random.gen64(); // fake random number
  474. #endif
  475. }
  476. u32_t get_true_random_number() {
  477. #if !defined(__MINGW32__)
  478. u32_t ret;
  479. int size = read(random_fd.get_fd(), &ret, sizeof(ret));
  480. if (size != sizeof(ret)) {
  481. mylog(log_fatal, "get random number failed %d\n", size);
  482. myexit(-1);
  483. }
  484. return ret;
  485. #else
  486. return my_random.gen32(); // fake random number
  487. #endif
  488. }
  489. u32_t get_true_random_number_nz() // nz for non-zero
  490. {
  491. u32_t ret = 0;
  492. while (ret == 0) {
  493. ret = get_true_random_number();
  494. }
  495. return ret;
  496. }
  497. inline int is_big_endian() {
  498. int i = 1;
  499. return !*((char *)&i);
  500. }
  501. u64_t ntoh64(u64_t a) {
  502. #ifdef UDP2RAW_LITTLE_ENDIAN
  503. u32_t h = get_u64_h(a);
  504. u32_t l = get_u64_l(a);
  505. return pack_u64(ntohl(l), ntohl(h));
  506. // return bswap_64( a);
  507. #else
  508. return a;
  509. #endif
  510. }
  511. u64_t hton64(u64_t a) {
  512. return ntoh64(a);
  513. }
  514. void write_u16(char *p, u16_t w) {
  515. *(unsigned char *)(p + 1) = (w & 0xff);
  516. *(unsigned char *)(p + 0) = (w >> 8);
  517. }
  518. u16_t read_u16(char *p) {
  519. u16_t res;
  520. res = *(const unsigned char *)(p + 0);
  521. res = *(const unsigned char *)(p + 1) + (res << 8);
  522. return res;
  523. }
  524. void write_u32(char *p, u32_t l) {
  525. *(unsigned char *)(p + 3) = (unsigned char)((l >> 0) & 0xff);
  526. *(unsigned char *)(p + 2) = (unsigned char)((l >> 8) & 0xff);
  527. *(unsigned char *)(p + 1) = (unsigned char)((l >> 16) & 0xff);
  528. *(unsigned char *)(p + 0) = (unsigned char)((l >> 24) & 0xff);
  529. }
  530. u32_t read_u32(char *p) {
  531. u32_t res;
  532. res = *(const unsigned char *)(p + 0);
  533. res = *(const unsigned char *)(p + 1) + (res << 8);
  534. res = *(const unsigned char *)(p + 2) + (res << 8);
  535. res = *(const unsigned char *)(p + 3) + (res << 8);
  536. return res;
  537. }
  538. void write_u64(char *s, u64_t a) {
  539. assert(0 == 1);
  540. }
  541. u64_t read_u64(char *s) {
  542. assert(0 == 1);
  543. return 0;
  544. }
  545. void setnonblocking(int sock) {
  546. #if !defined(__MINGW32__)
  547. int opts;
  548. opts = fcntl(sock, F_GETFL);
  549. if (opts < 0) {
  550. mylog(log_fatal, "fcntl(sock,GETFL)\n");
  551. // perror("fcntl(sock,GETFL)");
  552. myexit(1);
  553. }
  554. opts = opts | O_NONBLOCK;
  555. if (fcntl(sock, F_SETFL, opts) < 0) {
  556. mylog(log_fatal, "fcntl(sock,SETFL,opts)\n");
  557. // perror("fcntl(sock,SETFL,opts)");
  558. myexit(1);
  559. }
  560. #else
  561. int iResult;
  562. u_long iMode = 1;
  563. iResult = ioctlsocket(sock, FIONBIO, &iMode);
  564. if (iResult != NO_ERROR)
  565. printf("ioctlsocket failed with error: %d\n", iResult);
  566. #endif
  567. }
  568. /*
  569. Generic checksum calculation function
  570. */
  571. unsigned short csum(const unsigned short *ptr, int nbytes) { // works both for big and little endian
  572. long sum;
  573. unsigned short oddbyte;
  574. short answer;
  575. sum = 0;
  576. while (nbytes > 1) {
  577. sum += *ptr++;
  578. nbytes -= 2;
  579. }
  580. if (nbytes == 1) {
  581. oddbyte = 0;
  582. *((u_char *)&oddbyte) = *(u_char *)ptr;
  583. sum += oddbyte;
  584. }
  585. sum = (sum >> 16) + (sum & 0xffff);
  586. sum = sum + (sum >> 16);
  587. answer = (short)~sum;
  588. return (answer);
  589. }
  590. unsigned short csum_with_header(char *header, int hlen, const unsigned short *ptr, int nbytes) { // works both for big and little endian
  591. long sum;
  592. unsigned short oddbyte;
  593. short answer;
  594. assert(hlen % 2 == 0);
  595. sum = 0;
  596. unsigned short *tmp = (unsigned short *)header;
  597. for (int i = 0; i < hlen / 2; i++) {
  598. sum += *tmp++;
  599. }
  600. while (nbytes > 1) {
  601. sum += *ptr++;
  602. nbytes -= 2;
  603. }
  604. if (nbytes == 1) {
  605. oddbyte = 0;
  606. *((u_char *)&oddbyte) = *(u_char *)ptr;
  607. sum += oddbyte;
  608. }
  609. sum = (sum >> 16) + (sum & 0xffff);
  610. sum = sum + (sum >> 16);
  611. answer = (short)~sum;
  612. return (answer);
  613. }
  614. int set_buf_size(int fd, int socket_buf_size) {
  615. if (force_socket_buf) {
  616. if (is_udp2raw_mp) {
  617. mylog(log_fatal, "force_socket_buf not supported in this verion\n");
  618. myexit(-1);
  619. }
  620. // assert(0==1);
  621. #ifdef UDP2RAW_LINUX
  622. if (setsockopt(fd, SOL_SOCKET, SO_SNDBUFFORCE, &socket_buf_size, sizeof(socket_buf_size)) < 0) {
  623. mylog(log_fatal, "SO_SNDBUFFORCE fail socket_buf_size=%d errno=%s\n", socket_buf_size, strerror(errno));
  624. myexit(1);
  625. }
  626. if (setsockopt(fd, SOL_SOCKET, SO_RCVBUFFORCE, &socket_buf_size, sizeof(socket_buf_size)) < 0) {
  627. mylog(log_fatal, "SO_RCVBUFFORCE fail socket_buf_size=%d errno=%s\n", socket_buf_size, strerror(errno));
  628. myexit(1);
  629. }
  630. #endif
  631. } else {
  632. if (setsockopt(fd, SOL_SOCKET, SO_SNDBUF, &socket_buf_size, sizeof(socket_buf_size)) < 0) {
  633. mylog(log_fatal, "SO_SNDBUF fail socket_buf_size=%d errno=%s\n", socket_buf_size, get_sock_error());
  634. myexit(1);
  635. }
  636. if (setsockopt(fd, SOL_SOCKET, SO_RCVBUF, &socket_buf_size, sizeof(socket_buf_size)) < 0) {
  637. mylog(log_fatal, "SO_RCVBUF fail socket_buf_size=%d errno=%s\n", socket_buf_size, get_sock_error());
  638. myexit(1);
  639. }
  640. }
  641. return 0;
  642. }
  643. int numbers_to_char(my_id_t id1, my_id_t id2, my_id_t id3, char *&data, int &len) {
  644. static char buf[buf_len];
  645. data = buf;
  646. my_id_t tmp = htonl(id1);
  647. memcpy(buf, &tmp, sizeof(tmp));
  648. tmp = htonl(id2);
  649. memcpy(buf + sizeof(tmp), &tmp, sizeof(tmp));
  650. tmp = htonl(id3);
  651. memcpy(buf + sizeof(tmp) * 2, &tmp, sizeof(tmp));
  652. len = sizeof(my_id_t) * 3;
  653. return 0;
  654. }
  655. int char_to_numbers(const char *data, int len, my_id_t &id1, my_id_t &id2, my_id_t &id3) {
  656. if (len < int(sizeof(my_id_t) * 3)) return -1;
  657. // id1=ntohl( *((id_t*)(data+0)) );
  658. memcpy(&id1, data + 0, sizeof(id1));
  659. id1 = ntohl(id1);
  660. // id2=ntohl( *((id_t*)(data+sizeof(id_t))) );
  661. memcpy(&id2, data + sizeof(my_id_t), sizeof(id2));
  662. id2 = ntohl(id2);
  663. // id3=ntohl( *((id_t*)(data+sizeof(id_t)*2)) );
  664. memcpy(&id3, data + sizeof(my_id_t) * 2, sizeof(id3));
  665. id3 = ntohl(id3);
  666. return 0;
  667. }
  668. int hex_to_u32(const string &a, u32_t &output) {
  669. // string b="0x";
  670. // b+=a;
  671. if (sscanf(a.c_str(), "%x", &output) == 1) {
  672. // printf("%s %x\n",a.c_str(),output);
  673. return 0;
  674. }
  675. mylog(log_error, "<%s> doesnt contain a hex\n", a.c_str());
  676. return -1;
  677. }
  678. int hex_to_u32_with_endian(const string &a, u32_t &output) {
  679. // string b="0x";
  680. // b+=a;
  681. if (sscanf(a.c_str(), "%x", &output) == 1) {
  682. output = htonl(output);
  683. // printf("%s %x\n",a.c_str(),output);
  684. return 0;
  685. }
  686. mylog(log_error, "<%s> doesnt contain a hex\n", a.c_str());
  687. return -1;
  688. }
  689. bool larger_than_u32(u32_t a, u32_t b) {
  690. return ((i32_t(a - b)) > 0);
  691. /*
  692. u32_t smaller,bigger;
  693. smaller=min(a,b);//smaller in normal sense
  694. bigger=max(a,b);
  695. u32_t distance=min(bigger-smaller,smaller+(0xffffffff-bigger+1));
  696. if(distance==bigger-smaller)
  697. {
  698. if(bigger==a)
  699. {
  700. return 1;
  701. }
  702. else
  703. {
  704. return 0;
  705. }
  706. }
  707. else
  708. {
  709. if(smaller==b)
  710. {
  711. return 0;
  712. }
  713. else
  714. {
  715. return 1;
  716. }
  717. }
  718. */
  719. }
  720. bool larger_than_u16(uint16_t a, uint16_t b) {
  721. return ((i16_t(a - b)) > 0);
  722. /*
  723. uint16_t smaller,bigger;
  724. smaller=min(a,b);//smaller in normal sense
  725. bigger=max(a,b);
  726. uint16_t distance=min(bigger-smaller,smaller+(0xffff-bigger+1));
  727. if(distance==bigger-smaller)
  728. {
  729. if(bigger==a)
  730. {
  731. return 1;
  732. }
  733. else
  734. {
  735. return 0;
  736. }
  737. }
  738. else
  739. {
  740. if(smaller==b)
  741. {
  742. return 0;
  743. }
  744. else
  745. {
  746. return 1;
  747. }
  748. }*/
  749. }
  750. void myexit(int a) {
  751. if (enable_log_color)
  752. printf("%s\n", RESET);
  753. #ifdef UDP2RAW_LINUX
  754. if (keep_thread_running) {
  755. if (pthread_cancel(keep_thread)) {
  756. mylog(log_warn, "pthread_cancel failed\n");
  757. } else {
  758. mylog(log_info, "pthread_cancel success\n");
  759. }
  760. }
  761. clear_iptables_rule();
  762. #endif
  763. exit(a);
  764. }
  765. vector<string> string_to_vec(const char *s, const char *sp) {
  766. vector<string> res;
  767. string str = s;
  768. char *p = strtok((char *)str.c_str(), sp);
  769. while (p != NULL) {
  770. res.push_back(p);
  771. // printf ("%s\n",p);
  772. p = strtok(NULL, sp);
  773. }
  774. /* for(int i=0;i<(int)res.size();i++)
  775. {
  776. printf("<<%s>>\n",res[i].c_str());
  777. }*/
  778. return res;
  779. }
  780. vector<vector<string> > string_to_vec2(const char *s) {
  781. vector<vector<string> > res;
  782. vector<string> lines = string_to_vec(s, "\n");
  783. for (int i = 0; i < int(lines.size()); i++) {
  784. vector<string> tmp;
  785. tmp = string_to_vec(lines[i].c_str(), "\t ");
  786. res.push_back(tmp);
  787. }
  788. return res;
  789. }
  790. int read_file(const char *file, string &output) {
  791. const int max_len = 3 * 1024 * 1024;
  792. // static char buf[max_len+100];
  793. string buf0;
  794. buf0.reserve(max_len + 200);
  795. char *buf = (char *)buf0.c_str();
  796. buf[max_len] = 0;
  797. // buf[sizeof(buf)-1]=0;
  798. int fd = open(file, O_RDONLY);
  799. if (fd == -1) {
  800. mylog(log_error, "read_file %s fail\n", file);
  801. return -1;
  802. }
  803. int len = read(fd, buf, max_len);
  804. if (len == max_len) {
  805. buf[0] = 0;
  806. mylog(log_error, "%s too long,buf not large enough\n", file);
  807. return -2;
  808. } else if (len < 0) {
  809. buf[0] = 0;
  810. mylog(log_error, "%s read fail %d\n", file, len);
  811. return -3;
  812. } else {
  813. buf[len] = 0;
  814. output = buf;
  815. }
  816. return 0;
  817. }
  818. int run_command(string command0, char *&output, int flag) {
  819. if (is_udp2raw_mp) {
  820. mylog(log_fatal, "run_command not supported in this version\n");
  821. myexit(-1);
  822. }
  823. #ifdef UDP2RAW_LINUX
  824. FILE *in;
  825. if ((flag & show_log) == 0) command0 += " 2>&1 ";
  826. const char *command = command0.c_str();
  827. int level = (flag & show_log) ? log_warn : log_debug;
  828. if (flag & show_command) {
  829. mylog(log_info, "run_command %s\n", command);
  830. } else {
  831. mylog(log_debug, "run_command %s\n", command);
  832. }
  833. static __thread char buf[1024 * 1024 + 100];
  834. buf[sizeof(buf) - 1] = 0;
  835. if (!(in = popen(command, "r"))) {
  836. mylog(level, "command %s popen failed,errno %s\n", command, strerror(errno));
  837. return -1;
  838. }
  839. int len = fread(buf, 1024 * 1024, 1, in);
  840. if (len == 1024 * 1024) {
  841. buf[0] = 0;
  842. mylog(level, "too long,buf not larger enough\n");
  843. return -2;
  844. } else {
  845. buf[len] = 0;
  846. }
  847. int ret;
  848. if ((ret = ferror(in))) {
  849. mylog(level, "command %s fread failed,ferror return value %d \n", command, ret);
  850. return -3;
  851. }
  852. // if(output!=0)
  853. output = buf;
  854. ret = pclose(in);
  855. int ret2 = WEXITSTATUS(ret);
  856. if (ret != 0 || ret2 != 0) {
  857. mylog(level, "commnad %s ,pclose returned %d ,WEXITSTATUS %d,errnor :%s \n", command, ret, ret2, strerror(errno));
  858. return -4;
  859. }
  860. #endif
  861. return 0;
  862. }
  863. /*
  864. int run_command_no_log(string command0,char * &output) {
  865. FILE *in;
  866. command0+=" 2>&1 ";
  867. const char * command=command0.c_str();
  868. mylog(log_debug,"run_command_no_log %s\n",command);
  869. static char buf[1024*1024+100];
  870. buf[sizeof(buf)-1]=0;
  871. if(!(in = popen(command, "r"))){
  872. mylog(log_debug,"command %s popen failed,errno %s\n",command,strerror(errno));
  873. return -1;
  874. }
  875. int len =fread(buf, 1024*1024, 1, in);
  876. if(len==1024*1024)
  877. {
  878. buf[0]=0;
  879. mylog(log_debug,"too long,buf not larger enough\n");
  880. return -2;
  881. }
  882. else
  883. {
  884. buf[len]=0;
  885. }
  886. int ret;
  887. if(( ret=ferror(in) ))
  888. {
  889. mylog(log_debug,"command %s fread failed,ferror return value %d \n",command,ret);
  890. return -3;
  891. }
  892. //if(output!=0)
  893. output=buf;
  894. ret= pclose(in);
  895. int ret2=WEXITSTATUS(ret);
  896. if(ret!=0||ret2!=0)
  897. {
  898. mylog(log_debug,"commnad %s ,pclose returned %d ,WEXITSTATUS %d,errnor :%s \n",command,ret,ret2,strerror(errno));
  899. return -4;
  900. }
  901. return 0;
  902. }*/
  903. // Remove preceding and trailing characters
  904. string trim(const string &str, char c) {
  905. size_t first = str.find_first_not_of(c);
  906. if (string::npos == first) {
  907. return "";
  908. }
  909. size_t last = str.find_last_not_of(c);
  910. return str.substr(first, (last - first + 1));
  911. }
  912. vector<string> parse_conf_line(const string &s0) {
  913. string s = s0;
  914. s.reserve(s.length() + 200);
  915. char *buf = (char *)s.c_str();
  916. // char buf[s.length()+200];
  917. char *p = buf;
  918. int i = int(s.length()) - 1;
  919. int j;
  920. vector<string> res;
  921. // strcpy(buf,(char *)s.c_str());
  922. while (i >= 0) {
  923. if (buf[i] == ' ' || buf[i] == '\t')
  924. buf[i] = 0;
  925. else
  926. break;
  927. i--;
  928. }
  929. while (*p != 0) {
  930. if (*p == ' ' || *p == '\t') {
  931. p++;
  932. } else
  933. break;
  934. }
  935. int new_len = strlen(p);
  936. if (new_len == 0) return res;
  937. if (p[0] == '#') return res;
  938. if (p[0] != '-') {
  939. mylog(log_fatal, "line :<%s> not begin with '-' ", s.c_str());
  940. myexit(-1);
  941. }
  942. for (i = 0; i < new_len; i++) {
  943. if (p[i] == ' ' || p[i] == '\t') {
  944. break;
  945. }
  946. }
  947. if (i == new_len) {
  948. res.push_back(p);
  949. return res;
  950. }
  951. j = i;
  952. while (p[j] == ' ' || p[j] == '\t')
  953. j++;
  954. p[i] = 0;
  955. res.push_back(p);
  956. res.push_back(p + j);
  957. return res;
  958. }
  959. int create_fifo(char *file) {
  960. #if !defined(__MINGW32__)
  961. if (mkfifo(file, 0666) != 0) {
  962. if (errno == EEXIST) {
  963. mylog(log_warn, "warning fifo file %s exist\n", file);
  964. } else {
  965. mylog(log_fatal, "create fifo file %s failed\n", file);
  966. myexit(-1);
  967. }
  968. }
  969. int fifo_fd = open(file, O_RDWR);
  970. if (fifo_fd < 0) {
  971. mylog(log_fatal, "create fifo file %s failed\n", file);
  972. myexit(-1);
  973. }
  974. struct stat st;
  975. if (fstat(fifo_fd, &st) != 0) {
  976. mylog(log_fatal, "fstat failed for fifo file %s\n", file);
  977. myexit(-1);
  978. }
  979. if (!S_ISFIFO(st.st_mode)) {
  980. mylog(log_fatal, "%s is not a fifo\n", file);
  981. myexit(-1);
  982. }
  983. setnonblocking(fifo_fd);
  984. return fifo_fd;
  985. #else
  986. mylog(log_fatal, "--fifo not supported in this version\n");
  987. myexit(-1);
  988. return 0;
  989. #endif
  990. }
  991. /*
  992. void ip_port_t::from_u64(u64_t u64)
  993. {
  994. ip=get_u64_h(u64);
  995. port=get_u64_l(u64);
  996. }
  997. u64_t ip_port_t::to_u64()
  998. {
  999. return pack_u64(ip,port);
  1000. }
  1001. char * ip_port_t::to_s()
  1002. {
  1003. static char res[40];
  1004. sprintf(res,"%s:%d",my_ntoa(ip),port);
  1005. return res;
  1006. }*/
  1007. void print_binary_chars(const char *a, int len) {
  1008. for (int i = 0; i < len; i++) {
  1009. unsigned char b = a[i];
  1010. log_bare(log_debug, "<%02x>", (int)b);
  1011. }
  1012. log_bare(log_debug, "\n");
  1013. }
  1014. u32_t djb2(unsigned char *str, int len) {
  1015. u32_t hash = 5381;
  1016. int c;
  1017. for (int i=0; i<len ;i++) {
  1018. c = *(str++);
  1019. hash = ((hash << 5) + hash) ^ c; /* (hash * 33) ^ c */
  1020. }
  1021. hash = htonl(hash);
  1022. return hash;
  1023. }
  1024. u32_t sdbm(unsigned char *str, int len) {
  1025. u32_t hash = 0;
  1026. int c;
  1027. for (int i=0; i<len ;i++) {
  1028. c = *(str++);
  1029. hash = c + (hash << 6) + (hash << 16) - hash;
  1030. }
  1031. // hash=htonl(hash);
  1032. return hash;
  1033. }