pbkdf2-sha256.cpp 30 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124
  1. /*
  2. this file is from https://github.com/kholia/PKCS5_PBKDF2, with additional code of hkdf_sha256
  3. * FIPS-180-2 compliant SHA-256 implementation
  4. *
  5. * Copyright (C) 2006-2010, Brainspark B.V.
  6. *
  7. * This file is part of PolarSSL (http://www.polarssl.org)
  8. * Lead Maintainer: Paul Bakker <polarssl_maintainer at polarssl.org>
  9. *
  10. * All rights reserved.
  11. *
  12. * This program is free software; you can redistribute it and/or modify
  13. * it under the terms of the GNU General Public License as published by
  14. * the Free Software Foundation; either version 2 of the License, or
  15. * (at your option) any later version.
  16. *
  17. * This program is distributed in the hope that it will be useful,
  18. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  19. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  20. * GNU General Public License for more details.
  21. *
  22. * You should have received a copy of the GNU General Public License along
  23. * with this program; if not, write to the Free Software Foundation, Inc.,
  24. * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
  25. */
  26. /*
  27. * The SHA-256 Secure Hash Standard was published by NIST in 2002.
  28. *
  29. * http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
  30. */
  31. #include <string.h>
  32. #include <stdio.h>
  33. #include <stdlib.h>
  34. #if defined(TEST) ||defined(DEBUG)
  35. #undef TEST
  36. #undef DEBUG
  37. #warning "undefined TEST/DEBUG"
  38. #endif
  39. typedef struct {
  40. unsigned long total[2]; /*!< number of bytes processed */
  41. unsigned long state[8]; /*!< intermediate digest state */
  42. unsigned char buffer[64]; /*!< data block being processed */
  43. unsigned char ipad[64]; /*!< HMAC: inner padding */
  44. unsigned char opad[64]; /*!< HMAC: outer padding */
  45. int is224; /*!< 0 => SHA-256, else SHA-224 */
  46. } sha2_context;
  47. /*
  48. * 32-bit integer manipulation macros (big endian)
  49. */
  50. #ifndef GET_ULONG_BE
  51. #define GET_ULONG_BE(n,b,i) \
  52. { \
  53. (n) = ( (unsigned long) (b)[(i) ] << 24 ) \
  54. | ( (unsigned long) (b)[(i) + 1] << 16 ) \
  55. | ( (unsigned long) (b)[(i) + 2] << 8 ) \
  56. | ( (unsigned long) (b)[(i) + 3] ); \
  57. }
  58. #endif
  59. #ifndef PUT_ULONG_BE
  60. #define PUT_ULONG_BE(n,b,i) \
  61. { \
  62. (b)[(i) ] = (unsigned char) ( (n) >> 24 ); \
  63. (b)[(i) + 1] = (unsigned char) ( (n) >> 16 ); \
  64. (b)[(i) + 2] = (unsigned char) ( (n) >> 8 ); \
  65. (b)[(i) + 3] = (unsigned char) ( (n) ); \
  66. }
  67. #endif
  68. /*
  69. * SHA-256 context setup
  70. */
  71. void sha2_starts( sha2_context *ctx, int is224 )
  72. {
  73. ctx->total[0] = 0;
  74. ctx->total[1] = 0;
  75. if( is224 == 0 )
  76. {
  77. /* SHA-256 */
  78. ctx->state[0] = 0x6A09E667;
  79. ctx->state[1] = 0xBB67AE85;
  80. ctx->state[2] = 0x3C6EF372;
  81. ctx->state[3] = 0xA54FF53A;
  82. ctx->state[4] = 0x510E527F;
  83. ctx->state[5] = 0x9B05688C;
  84. ctx->state[6] = 0x1F83D9AB;
  85. ctx->state[7] = 0x5BE0CD19;
  86. }
  87. else
  88. {
  89. /* SHA-224 */
  90. ctx->state[0] = 0xC1059ED8;
  91. ctx->state[1] = 0x367CD507;
  92. ctx->state[2] = 0x3070DD17;
  93. ctx->state[3] = 0xF70E5939;
  94. ctx->state[4] = 0xFFC00B31;
  95. ctx->state[5] = 0x68581511;
  96. ctx->state[6] = 0x64F98FA7;
  97. ctx->state[7] = 0xBEFA4FA4;
  98. }
  99. ctx->is224 = is224;
  100. }
  101. static void sha2_process( sha2_context *ctx, const unsigned char data[64] )
  102. {
  103. unsigned long temp1, temp2, W[64];
  104. unsigned long A, B, C, D, E, F, G, H;
  105. GET_ULONG_BE( W[ 0], data, 0 );
  106. GET_ULONG_BE( W[ 1], data, 4 );
  107. GET_ULONG_BE( W[ 2], data, 8 );
  108. GET_ULONG_BE( W[ 3], data, 12 );
  109. GET_ULONG_BE( W[ 4], data, 16 );
  110. GET_ULONG_BE( W[ 5], data, 20 );
  111. GET_ULONG_BE( W[ 6], data, 24 );
  112. GET_ULONG_BE( W[ 7], data, 28 );
  113. GET_ULONG_BE( W[ 8], data, 32 );
  114. GET_ULONG_BE( W[ 9], data, 36 );
  115. GET_ULONG_BE( W[10], data, 40 );
  116. GET_ULONG_BE( W[11], data, 44 );
  117. GET_ULONG_BE( W[12], data, 48 );
  118. GET_ULONG_BE( W[13], data, 52 );
  119. GET_ULONG_BE( W[14], data, 56 );
  120. GET_ULONG_BE( W[15], data, 60 );
  121. #define SHR(x,n) ((x & 0xFFFFFFFF) >> n)
  122. #define ROTR(x,n) (SHR(x,n) | (x << (32 - n)))
  123. #define S0(x) (ROTR(x, 7) ^ ROTR(x,18) ^ SHR(x, 3))
  124. #define S1(x) (ROTR(x,17) ^ ROTR(x,19) ^ SHR(x,10))
  125. #define S2(x) (ROTR(x, 2) ^ ROTR(x,13) ^ ROTR(x,22))
  126. #define S3(x) (ROTR(x, 6) ^ ROTR(x,11) ^ ROTR(x,25))
  127. #define F0(x,y,z) ((x & y) | (z & (x | y)))
  128. #define F1(x,y,z) (z ^ (x & (y ^ z)))
  129. #define R(t) \
  130. ( \
  131. W[t] = S1(W[t - 2]) + W[t - 7] + \
  132. S0(W[t - 15]) + W[t - 16] \
  133. )
  134. #define P(a,b,c,d,e,f,g,h,x,K) \
  135. { \
  136. temp1 = h + S3(e) + F1(e,f,g) + K + x; \
  137. temp2 = S2(a) + F0(a,b,c); \
  138. d += temp1; h = temp1 + temp2; \
  139. }
  140. A = ctx->state[0];
  141. B = ctx->state[1];
  142. C = ctx->state[2];
  143. D = ctx->state[3];
  144. E = ctx->state[4];
  145. F = ctx->state[5];
  146. G = ctx->state[6];
  147. H = ctx->state[7];
  148. P( A, B, C, D, E, F, G, H, W[ 0], 0x428A2F98 );
  149. P( H, A, B, C, D, E, F, G, W[ 1], 0x71374491 );
  150. P( G, H, A, B, C, D, E, F, W[ 2], 0xB5C0FBCF );
  151. P( F, G, H, A, B, C, D, E, W[ 3], 0xE9B5DBA5 );
  152. P( E, F, G, H, A, B, C, D, W[ 4], 0x3956C25B );
  153. P( D, E, F, G, H, A, B, C, W[ 5], 0x59F111F1 );
  154. P( C, D, E, F, G, H, A, B, W[ 6], 0x923F82A4 );
  155. P( B, C, D, E, F, G, H, A, W[ 7], 0xAB1C5ED5 );
  156. P( A, B, C, D, E, F, G, H, W[ 8], 0xD807AA98 );
  157. P( H, A, B, C, D, E, F, G, W[ 9], 0x12835B01 );
  158. P( G, H, A, B, C, D, E, F, W[10], 0x243185BE );
  159. P( F, G, H, A, B, C, D, E, W[11], 0x550C7DC3 );
  160. P( E, F, G, H, A, B, C, D, W[12], 0x72BE5D74 );
  161. P( D, E, F, G, H, A, B, C, W[13], 0x80DEB1FE );
  162. P( C, D, E, F, G, H, A, B, W[14], 0x9BDC06A7 );
  163. P( B, C, D, E, F, G, H, A, W[15], 0xC19BF174 );
  164. P( A, B, C, D, E, F, G, H, R(16), 0xE49B69C1 );
  165. P( H, A, B, C, D, E, F, G, R(17), 0xEFBE4786 );
  166. P( G, H, A, B, C, D, E, F, R(18), 0x0FC19DC6 );
  167. P( F, G, H, A, B, C, D, E, R(19), 0x240CA1CC );
  168. P( E, F, G, H, A, B, C, D, R(20), 0x2DE92C6F );
  169. P( D, E, F, G, H, A, B, C, R(21), 0x4A7484AA );
  170. P( C, D, E, F, G, H, A, B, R(22), 0x5CB0A9DC );
  171. P( B, C, D, E, F, G, H, A, R(23), 0x76F988DA );
  172. P( A, B, C, D, E, F, G, H, R(24), 0x983E5152 );
  173. P( H, A, B, C, D, E, F, G, R(25), 0xA831C66D );
  174. P( G, H, A, B, C, D, E, F, R(26), 0xB00327C8 );
  175. P( F, G, H, A, B, C, D, E, R(27), 0xBF597FC7 );
  176. P( E, F, G, H, A, B, C, D, R(28), 0xC6E00BF3 );
  177. P( D, E, F, G, H, A, B, C, R(29), 0xD5A79147 );
  178. P( C, D, E, F, G, H, A, B, R(30), 0x06CA6351 );
  179. P( B, C, D, E, F, G, H, A, R(31), 0x14292967 );
  180. P( A, B, C, D, E, F, G, H, R(32), 0x27B70A85 );
  181. P( H, A, B, C, D, E, F, G, R(33), 0x2E1B2138 );
  182. P( G, H, A, B, C, D, E, F, R(34), 0x4D2C6DFC );
  183. P( F, G, H, A, B, C, D, E, R(35), 0x53380D13 );
  184. P( E, F, G, H, A, B, C, D, R(36), 0x650A7354 );
  185. P( D, E, F, G, H, A, B, C, R(37), 0x766A0ABB );
  186. P( C, D, E, F, G, H, A, B, R(38), 0x81C2C92E );
  187. P( B, C, D, E, F, G, H, A, R(39), 0x92722C85 );
  188. P( A, B, C, D, E, F, G, H, R(40), 0xA2BFE8A1 );
  189. P( H, A, B, C, D, E, F, G, R(41), 0xA81A664B );
  190. P( G, H, A, B, C, D, E, F, R(42), 0xC24B8B70 );
  191. P( F, G, H, A, B, C, D, E, R(43), 0xC76C51A3 );
  192. P( E, F, G, H, A, B, C, D, R(44), 0xD192E819 );
  193. P( D, E, F, G, H, A, B, C, R(45), 0xD6990624 );
  194. P( C, D, E, F, G, H, A, B, R(46), 0xF40E3585 );
  195. P( B, C, D, E, F, G, H, A, R(47), 0x106AA070 );
  196. P( A, B, C, D, E, F, G, H, R(48), 0x19A4C116 );
  197. P( H, A, B, C, D, E, F, G, R(49), 0x1E376C08 );
  198. P( G, H, A, B, C, D, E, F, R(50), 0x2748774C );
  199. P( F, G, H, A, B, C, D, E, R(51), 0x34B0BCB5 );
  200. P( E, F, G, H, A, B, C, D, R(52), 0x391C0CB3 );
  201. P( D, E, F, G, H, A, B, C, R(53), 0x4ED8AA4A );
  202. P( C, D, E, F, G, H, A, B, R(54), 0x5B9CCA4F );
  203. P( B, C, D, E, F, G, H, A, R(55), 0x682E6FF3 );
  204. P( A, B, C, D, E, F, G, H, R(56), 0x748F82EE );
  205. P( H, A, B, C, D, E, F, G, R(57), 0x78A5636F );
  206. P( G, H, A, B, C, D, E, F, R(58), 0x84C87814 );
  207. P( F, G, H, A, B, C, D, E, R(59), 0x8CC70208 );
  208. P( E, F, G, H, A, B, C, D, R(60), 0x90BEFFFA );
  209. P( D, E, F, G, H, A, B, C, R(61), 0xA4506CEB );
  210. P( C, D, E, F, G, H, A, B, R(62), 0xBEF9A3F7 );
  211. P( B, C, D, E, F, G, H, A, R(63), 0xC67178F2 );
  212. ctx->state[0] += A;
  213. ctx->state[1] += B;
  214. ctx->state[2] += C;
  215. ctx->state[3] += D;
  216. ctx->state[4] += E;
  217. ctx->state[5] += F;
  218. ctx->state[6] += G;
  219. ctx->state[7] += H;
  220. }
  221. /*
  222. * SHA-256 process buffer
  223. */
  224. void sha2_update( sha2_context *ctx, const unsigned char *input, size_t ilen )
  225. {
  226. size_t fill;
  227. unsigned long left;
  228. if( ilen <= 0 )
  229. return;
  230. left = ctx->total[0] & 0x3F;
  231. fill = 64 - left;
  232. ctx->total[0] += (unsigned long) ilen;
  233. ctx->total[0] &= 0xFFFFFFFF;
  234. if( ctx->total[0] < (unsigned long) ilen )
  235. ctx->total[1]++;
  236. if( left && ilen >= fill )
  237. {
  238. memcpy( (void *) (ctx->buffer + left),
  239. (void *) input, fill );
  240. sha2_process( ctx, ctx->buffer );
  241. input += fill;
  242. ilen -= fill;
  243. left = 0;
  244. }
  245. while( ilen >= 64 )
  246. {
  247. sha2_process( ctx, input );
  248. input += 64;
  249. ilen -= 64;
  250. }
  251. if( ilen > 0 )
  252. {
  253. memcpy( (void *) (ctx->buffer + left),
  254. (void *) input, ilen );
  255. }
  256. }
  257. static const unsigned char sha2_padding[64] =
  258. {
  259. 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  260. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  261. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  262. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
  263. };
  264. /*
  265. * SHA-256 final digest
  266. */
  267. void sha2_finish( sha2_context *ctx, unsigned char output[32] )
  268. {
  269. unsigned long last, padn;
  270. unsigned long high, low;
  271. unsigned char msglen[8];
  272. high = ( ctx->total[0] >> 29 )
  273. | ( ctx->total[1] << 3 );
  274. low = ( ctx->total[0] << 3 );
  275. PUT_ULONG_BE( high, msglen, 0 );
  276. PUT_ULONG_BE( low, msglen, 4 );
  277. last = ctx->total[0] & 0x3F;
  278. padn = ( last < 56 ) ? ( 56 - last ) : ( 120 - last );
  279. sha2_update( ctx, (unsigned char *) sha2_padding, padn );
  280. sha2_update( ctx, msglen, 8 );
  281. PUT_ULONG_BE( ctx->state[0], output, 0 );
  282. PUT_ULONG_BE( ctx->state[1], output, 4 );
  283. PUT_ULONG_BE( ctx->state[2], output, 8 );
  284. PUT_ULONG_BE( ctx->state[3], output, 12 );
  285. PUT_ULONG_BE( ctx->state[4], output, 16 );
  286. PUT_ULONG_BE( ctx->state[5], output, 20 );
  287. PUT_ULONG_BE( ctx->state[6], output, 24 );
  288. if( ctx->is224 == 0 )
  289. PUT_ULONG_BE( ctx->state[7], output, 28 );
  290. }
  291. /*
  292. * output = SHA-256( input buffer )
  293. */
  294. void sha2( const unsigned char *input, size_t ilen,
  295. unsigned char output[32], int is224 )
  296. {
  297. sha2_context ctx;
  298. sha2_starts( &ctx, is224 );
  299. sha2_update( &ctx, input, ilen );
  300. sha2_finish( &ctx, output );
  301. memset( &ctx, 0, sizeof( sha2_context ) );
  302. }
  303. /*
  304. * SHA-256 HMAC context setup
  305. */
  306. void sha2_hmac_starts( sha2_context *ctx, const unsigned char *key, size_t keylen,
  307. int is224 )
  308. {
  309. size_t i;
  310. unsigned char sum[32];
  311. if( keylen > 64 )
  312. {
  313. sha2( key, keylen, sum, is224 );
  314. keylen = ( is224 ) ? 28 : 32;
  315. key = sum;
  316. }
  317. memset( ctx->ipad, 0x36, 64 );
  318. memset( ctx->opad, 0x5C, 64 );
  319. for( i = 0; i < keylen; i++ )
  320. {
  321. ctx->ipad[i] = (unsigned char)( ctx->ipad[i] ^ key[i] );
  322. ctx->opad[i] = (unsigned char)( ctx->opad[i] ^ key[i] );
  323. }
  324. sha2_starts( ctx, is224 );
  325. sha2_update( ctx, ctx->ipad, 64 );
  326. memset( sum, 0, sizeof( sum ) );
  327. }
  328. /*
  329. * SHA-256 HMAC process buffer
  330. */
  331. void sha2_hmac_update( sha2_context *ctx, const unsigned char *input, size_t ilen )
  332. {
  333. sha2_update( ctx, input, ilen );
  334. }
  335. /*
  336. * SHA-256 HMAC final digest
  337. */
  338. void sha2_hmac_finish( sha2_context *ctx, unsigned char output[32] )
  339. {
  340. int is224, hlen;
  341. unsigned char tmpbuf[32];
  342. is224 = ctx->is224;
  343. hlen = ( is224 == 0 ) ? 32 : 28;
  344. sha2_finish( ctx, tmpbuf );
  345. sha2_starts( ctx, is224 );
  346. sha2_update( ctx, ctx->opad, 64 );
  347. sha2_update( ctx, tmpbuf, hlen );
  348. sha2_finish( ctx, output );
  349. memset( tmpbuf, 0, sizeof( tmpbuf ) );
  350. }
  351. /*
  352. * SHA-256 HMAC context reset
  353. */
  354. void sha2_hmac_reset( sha2_context *ctx )
  355. {
  356. sha2_starts( ctx, ctx->is224 );
  357. sha2_update( ctx, ctx->ipad, 64 );
  358. }
  359. /*
  360. * output = HMAC-SHA-256( hmac key, input buffer )
  361. */
  362. void sha2_hmac( const unsigned char *key, size_t keylen,
  363. const unsigned char *input, size_t ilen,
  364. unsigned char output[32], int is224 )
  365. {
  366. sha2_context ctx;
  367. sha2_hmac_starts( &ctx, key, keylen, is224 );
  368. sha2_hmac_update( &ctx, input, ilen );
  369. sha2_hmac_finish( &ctx, output );
  370. memset( &ctx, 0, sizeof( sha2_context ) );
  371. }
  372. #ifndef min
  373. #define min( a, b ) ( ((a) < (b)) ? (a) : (b) )
  374. #endif
  375. void PKCS5_PBKDF2_HMAC_SHA256(unsigned char *password, size_t plen,
  376. unsigned char *salt, size_t slen,
  377. const unsigned long iteration_count, const unsigned long key_length,
  378. unsigned char *output)
  379. {
  380. sha2_context ctx;
  381. sha2_starts(&ctx, 0);
  382. // Size of the generated digest
  383. unsigned char md_size = 32;
  384. unsigned char md1[32];
  385. unsigned char work[32];
  386. unsigned long counter = 1;
  387. unsigned long generated_key_length = 0;
  388. while (generated_key_length < key_length) {
  389. // U1 ends up in md1 and work
  390. unsigned char c[4];
  391. c[0] = (counter >> 24) & 0xff;
  392. c[1] = (counter >> 16) & 0xff;
  393. c[2] = (counter >> 8) & 0xff;
  394. c[3] = (counter >> 0) & 0xff;
  395. sha2_hmac_starts(&ctx, password, plen, 0);
  396. sha2_hmac_update(&ctx, salt, slen);
  397. sha2_hmac_update(&ctx, c, 4);
  398. sha2_hmac_finish(&ctx, md1);
  399. memcpy(work, md1, md_size);
  400. unsigned long ic = 1;
  401. for (ic = 1; ic < iteration_count; ic++) {
  402. // U2 ends up in md1
  403. sha2_hmac_starts(&ctx, password, plen, 0);
  404. sha2_hmac_update(&ctx, md1, md_size);
  405. sha2_hmac_finish(&ctx, md1);
  406. // U1 xor U2
  407. unsigned long i = 0;
  408. for (i = 0; i < md_size; i++) {
  409. work[i] ^= md1[i];
  410. }
  411. // and so on until iteration_count
  412. }
  413. // Copy the generated bytes to the key
  414. unsigned long bytes_to_write =
  415. min((key_length - generated_key_length), md_size);
  416. memcpy(output + generated_key_length, work, bytes_to_write);
  417. generated_key_length += bytes_to_write;
  418. ++counter;
  419. }
  420. }
  421. #ifdef TEST
  422. /*
  423. * FIPS-180-2 test vectors
  424. */
  425. static unsigned char sha2_test_buf[3][57] =
  426. {
  427. { "abc" },
  428. { "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq" },
  429. { "" }
  430. };
  431. static const int sha2_test_buflen[3] =
  432. {
  433. 3, 56, 1000
  434. };
  435. static const unsigned char sha2_test_sum[6][32] =
  436. {
  437. /*
  438. * SHA-224 test vectors
  439. */
  440. { 0x23, 0x09, 0x7D, 0x22, 0x34, 0x05, 0xD8, 0x22,
  441. 0x86, 0x42, 0xA4, 0x77, 0xBD, 0xA2, 0x55, 0xB3,
  442. 0x2A, 0xAD, 0xBC, 0xE4, 0xBD, 0xA0, 0xB3, 0xF7,
  443. 0xE3, 0x6C, 0x9D, 0xA7 },
  444. { 0x75, 0x38, 0x8B, 0x16, 0x51, 0x27, 0x76, 0xCC,
  445. 0x5D, 0xBA, 0x5D, 0xA1, 0xFD, 0x89, 0x01, 0x50,
  446. 0xB0, 0xC6, 0x45, 0x5C, 0xB4, 0xF5, 0x8B, 0x19,
  447. 0x52, 0x52, 0x25, 0x25 },
  448. { 0x20, 0x79, 0x46, 0x55, 0x98, 0x0C, 0x91, 0xD8,
  449. 0xBB, 0xB4, 0xC1, 0xEA, 0x97, 0x61, 0x8A, 0x4B,
  450. 0xF0, 0x3F, 0x42, 0x58, 0x19, 0x48, 0xB2, 0xEE,
  451. 0x4E, 0xE7, 0xAD, 0x67 },
  452. /*
  453. * SHA-256 test vectors
  454. */
  455. { 0xBA, 0x78, 0x16, 0xBF, 0x8F, 0x01, 0xCF, 0xEA,
  456. 0x41, 0x41, 0x40, 0xDE, 0x5D, 0xAE, 0x22, 0x23,
  457. 0xB0, 0x03, 0x61, 0xA3, 0x96, 0x17, 0x7A, 0x9C,
  458. 0xB4, 0x10, 0xFF, 0x61, 0xF2, 0x00, 0x15, 0xAD },
  459. { 0x24, 0x8D, 0x6A, 0x61, 0xD2, 0x06, 0x38, 0xB8,
  460. 0xE5, 0xC0, 0x26, 0x93, 0x0C, 0x3E, 0x60, 0x39,
  461. 0xA3, 0x3C, 0xE4, 0x59, 0x64, 0xFF, 0x21, 0x67,
  462. 0xF6, 0xEC, 0xED, 0xD4, 0x19, 0xDB, 0x06, 0xC1 },
  463. { 0xCD, 0xC7, 0x6E, 0x5C, 0x99, 0x14, 0xFB, 0x92,
  464. 0x81, 0xA1, 0xC7, 0xE2, 0x84, 0xD7, 0x3E, 0x67,
  465. 0xF1, 0x80, 0x9A, 0x48, 0xA4, 0x97, 0x20, 0x0E,
  466. 0x04, 0x6D, 0x39, 0xCC, 0xC7, 0x11, 0x2C, 0xD0 }
  467. };
  468. /*
  469. * RFC 4231 test vectors
  470. */
  471. static unsigned char sha2_hmac_test_key[7][26] = {
  472. {"\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B"
  473. "\x0B\x0B\x0B\x0B"},
  474. {"Jefe"},
  475. {"\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA"
  476. "\xAA\xAA\xAA\xAA"},
  477. {"\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0A\x0B\x0C\x0D\x0E\x0F\x10"
  478. "\x11\x12\x13\x14\x15\x16\x17\x18\x19"},
  479. {"\x0C\x0C\x0C\x0C\x0C\x0C\x0C\x0C\x0C\x0C\x0C\x0C\x0C\x0C\x0C\x0C"
  480. "\x0C\x0C\x0C\x0C"},
  481. {""}, /* 0xAA 131 times */
  482. {""}
  483. };
  484. static const int sha2_hmac_test_keylen[7] = {
  485. 20, 4, 20, 25, 20, 131, 131
  486. };
  487. static unsigned char sha2_hmac_test_buf[7][153] =
  488. {
  489. { "Hi There" },
  490. { "what do ya want for nothing?" },
  491. { "\xDD\xDD\xDD\xDD\xDD\xDD\xDD\xDD\xDD\xDD"
  492. "\xDD\xDD\xDD\xDD\xDD\xDD\xDD\xDD\xDD\xDD"
  493. "\xDD\xDD\xDD\xDD\xDD\xDD\xDD\xDD\xDD\xDD"
  494. "\xDD\xDD\xDD\xDD\xDD\xDD\xDD\xDD\xDD\xDD"
  495. "\xDD\xDD\xDD\xDD\xDD\xDD\xDD\xDD\xDD\xDD" },
  496. { "\xCD\xCD\xCD\xCD\xCD\xCD\xCD\xCD\xCD\xCD"
  497. "\xCD\xCD\xCD\xCD\xCD\xCD\xCD\xCD\xCD\xCD"
  498. "\xCD\xCD\xCD\xCD\xCD\xCD\xCD\xCD\xCD\xCD"
  499. "\xCD\xCD\xCD\xCD\xCD\xCD\xCD\xCD\xCD\xCD"
  500. "\xCD\xCD\xCD\xCD\xCD\xCD\xCD\xCD\xCD\xCD" },
  501. { "Test With Truncation" },
  502. { "Test Using Larger Than Block-Size Key - Hash Key First" },
  503. { "This is a test using a larger than block-size key "
  504. "and a larger than block-size data. The key needs to "
  505. "be hashed before being used by the HMAC algorithm." }
  506. };
  507. static const int sha2_hmac_test_buflen[7] =
  508. {
  509. 8, 28, 50, 50, 20, 54, 152
  510. };
  511. static const unsigned char sha2_hmac_test_sum[14][32] =
  512. {
  513. /*
  514. * HMAC-SHA-224 test vectors
  515. */
  516. { 0x89, 0x6F, 0xB1, 0x12, 0x8A, 0xBB, 0xDF, 0x19,
  517. 0x68, 0x32, 0x10, 0x7C, 0xD4, 0x9D, 0xF3, 0x3F,
  518. 0x47, 0xB4, 0xB1, 0x16, 0x99, 0x12, 0xBA, 0x4F,
  519. 0x53, 0x68, 0x4B, 0x22 },
  520. { 0xA3, 0x0E, 0x01, 0x09, 0x8B, 0xC6, 0xDB, 0xBF,
  521. 0x45, 0x69, 0x0F, 0x3A, 0x7E, 0x9E, 0x6D, 0x0F,
  522. 0x8B, 0xBE, 0xA2, 0xA3, 0x9E, 0x61, 0x48, 0x00,
  523. 0x8F, 0xD0, 0x5E, 0x44 },
  524. { 0x7F, 0xB3, 0xCB, 0x35, 0x88, 0xC6, 0xC1, 0xF6,
  525. 0xFF, 0xA9, 0x69, 0x4D, 0x7D, 0x6A, 0xD2, 0x64,
  526. 0x93, 0x65, 0xB0, 0xC1, 0xF6, 0x5D, 0x69, 0xD1,
  527. 0xEC, 0x83, 0x33, 0xEA },
  528. { 0x6C, 0x11, 0x50, 0x68, 0x74, 0x01, 0x3C, 0xAC,
  529. 0x6A, 0x2A, 0xBC, 0x1B, 0xB3, 0x82, 0x62, 0x7C,
  530. 0xEC, 0x6A, 0x90, 0xD8, 0x6E, 0xFC, 0x01, 0x2D,
  531. 0xE7, 0xAF, 0xEC, 0x5A },
  532. { 0x0E, 0x2A, 0xEA, 0x68, 0xA9, 0x0C, 0x8D, 0x37,
  533. 0xC9, 0x88, 0xBC, 0xDB, 0x9F, 0xCA, 0x6F, 0xA8 },
  534. { 0x95, 0xE9, 0xA0, 0xDB, 0x96, 0x20, 0x95, 0xAD,
  535. 0xAE, 0xBE, 0x9B, 0x2D, 0x6F, 0x0D, 0xBC, 0xE2,
  536. 0xD4, 0x99, 0xF1, 0x12, 0xF2, 0xD2, 0xB7, 0x27,
  537. 0x3F, 0xA6, 0x87, 0x0E },
  538. { 0x3A, 0x85, 0x41, 0x66, 0xAC, 0x5D, 0x9F, 0x02,
  539. 0x3F, 0x54, 0xD5, 0x17, 0xD0, 0xB3, 0x9D, 0xBD,
  540. 0x94, 0x67, 0x70, 0xDB, 0x9C, 0x2B, 0x95, 0xC9,
  541. 0xF6, 0xF5, 0x65, 0xD1 },
  542. /*
  543. * HMAC-SHA-256 test vectors
  544. */
  545. { 0xB0, 0x34, 0x4C, 0x61, 0xD8, 0xDB, 0x38, 0x53,
  546. 0x5C, 0xA8, 0xAF, 0xCE, 0xAF, 0x0B, 0xF1, 0x2B,
  547. 0x88, 0x1D, 0xC2, 0x00, 0xC9, 0x83, 0x3D, 0xA7,
  548. 0x26, 0xE9, 0x37, 0x6C, 0x2E, 0x32, 0xCF, 0xF7 },
  549. { 0x5B, 0xDC, 0xC1, 0x46, 0xBF, 0x60, 0x75, 0x4E,
  550. 0x6A, 0x04, 0x24, 0x26, 0x08, 0x95, 0x75, 0xC7,
  551. 0x5A, 0x00, 0x3F, 0x08, 0x9D, 0x27, 0x39, 0x83,
  552. 0x9D, 0xEC, 0x58, 0xB9, 0x64, 0xEC, 0x38, 0x43 },
  553. { 0x77, 0x3E, 0xA9, 0x1E, 0x36, 0x80, 0x0E, 0x46,
  554. 0x85, 0x4D, 0xB8, 0xEB, 0xD0, 0x91, 0x81, 0xA7,
  555. 0x29, 0x59, 0x09, 0x8B, 0x3E, 0xF8, 0xC1, 0x22,
  556. 0xD9, 0x63, 0x55, 0x14, 0xCE, 0xD5, 0x65, 0xFE },
  557. { 0x82, 0x55, 0x8A, 0x38, 0x9A, 0x44, 0x3C, 0x0E,
  558. 0xA4, 0xCC, 0x81, 0x98, 0x99, 0xF2, 0x08, 0x3A,
  559. 0x85, 0xF0, 0xFA, 0xA3, 0xE5, 0x78, 0xF8, 0x07,
  560. 0x7A, 0x2E, 0x3F, 0xF4, 0x67, 0x29, 0x66, 0x5B },
  561. { 0xA3, 0xB6, 0x16, 0x74, 0x73, 0x10, 0x0E, 0xE0,
  562. 0x6E, 0x0C, 0x79, 0x6C, 0x29, 0x55, 0x55, 0x2B },
  563. { 0x60, 0xE4, 0x31, 0x59, 0x1E, 0xE0, 0xB6, 0x7F,
  564. 0x0D, 0x8A, 0x26, 0xAA, 0xCB, 0xF5, 0xB7, 0x7F,
  565. 0x8E, 0x0B, 0xC6, 0x21, 0x37, 0x28, 0xC5, 0x14,
  566. 0x05, 0x46, 0x04, 0x0F, 0x0E, 0xE3, 0x7F, 0x54 },
  567. { 0x9B, 0x09, 0xFF, 0xA7, 0x1B, 0x94, 0x2F, 0xCB,
  568. 0x27, 0x63, 0x5F, 0xBC, 0xD5, 0xB0, 0xE9, 0x44,
  569. 0xBF, 0xDC, 0x63, 0x64, 0x4F, 0x07, 0x13, 0x93,
  570. 0x8A, 0x7F, 0x51, 0x53, 0x5C, 0x3A, 0x35, 0xE2 }
  571. };
  572. typedef struct {
  573. char *t;
  574. char *p;
  575. int plen;
  576. char *s;
  577. int slen;
  578. int c;
  579. int dkLen;
  580. char dk[1024]; // Remember to set this to max dkLen
  581. } testvector;
  582. int do_test(testvector * tv)
  583. {
  584. printf("Started %s\n", tv->t);
  585. fflush(stdout);
  586. char *key = malloc(tv->dkLen);
  587. if (key == 0) {
  588. return -1;
  589. }
  590. PKCS5_PBKDF2_HMAC((unsigned char*)tv->p, tv->plen,
  591. (unsigned char*)tv->s, tv->slen, tv->c,
  592. tv->dkLen, (unsigned char*)key);
  593. if (memcmp(tv->dk, key, tv->dkLen) != 0) {
  594. // Failed
  595. return -1;
  596. }
  597. return 0;
  598. }
  599. /*
  600. * Checkup routine
  601. */
  602. int main()
  603. {
  604. int verbose = 1;
  605. int i, j, k, buflen;
  606. unsigned char buf[1024];
  607. unsigned char sha2sum[32];
  608. sha2_context ctx;
  609. for (i = 0; i < 6; i++) {
  610. j = i % 3;
  611. k = i < 3;
  612. if (verbose != 0)
  613. printf(" SHA-%d test #%d: ", 256 - k * 32, j + 1);
  614. sha2_starts(&ctx, k);
  615. if (j == 2) {
  616. memset(buf, 'a', buflen = 1000);
  617. for (j = 0; j < 1000; j++)
  618. sha2_update(&ctx, buf, buflen);
  619. } else
  620. sha2_update(&ctx, sha2_test_buf[j],
  621. sha2_test_buflen[j]);
  622. sha2_finish(&ctx, sha2sum);
  623. if (memcmp(sha2sum, sha2_test_sum[i], 32 - k * 4) != 0) {
  624. if (verbose != 0)
  625. printf("failed\n");
  626. return (1);
  627. }
  628. if (verbose != 0)
  629. printf("passed\n");
  630. }
  631. if (verbose != 0)
  632. printf("\n");
  633. for (i = 0; i < 14; i++) {
  634. j = i % 7;
  635. k = i < 7;
  636. if (verbose != 0)
  637. printf(" HMAC-SHA-%d test #%d: ", 256 - k * 32,
  638. j + 1);
  639. if (j == 5 || j == 6) {
  640. memset(buf, '\xAA', buflen = 131);
  641. sha2_hmac_starts(&ctx, buf, buflen, k);
  642. } else
  643. sha2_hmac_starts(&ctx, sha2_hmac_test_key[j],
  644. sha2_hmac_test_keylen[j], k);
  645. sha2_hmac_update(&ctx, sha2_hmac_test_buf[j],
  646. sha2_hmac_test_buflen[j]);
  647. sha2_hmac_finish(&ctx, sha2sum);
  648. buflen = (j == 4) ? 16 : 32 - k * 4;
  649. if (memcmp(sha2sum, sha2_hmac_test_sum[i], buflen) != 0) {
  650. if (verbose != 0)
  651. printf("failed\n");
  652. return (1);
  653. }
  654. if (verbose != 0)
  655. printf("passed\n");
  656. }
  657. if (verbose != 0)
  658. printf("\n");
  659. testvector *tv = 0;
  660. int res = 0;
  661. testvector t1 = {
  662. "Test 1",
  663. "password", 8, "salt", 4, 1, 32,
  664. .dk = { 0x12, 0x0f, 0xb6, 0xcf, 0xfc, 0xf8, 0xb3, 0x2c,
  665. 0x43, 0xe7, 0x22, 0x52, 0x56, 0xc4, 0xf8, 0x37,
  666. 0xa8, 0x65, 0x48, 0xc9, 0x2c, 0xcc, 0x35, 0x48,
  667. 0x08, 0x05, 0x98, 0x7c, 0xb7, 0x0b, 0xe1, 0x7b }
  668. };
  669. tv = &t1;
  670. res = do_test(tv);
  671. if (res != 0) {
  672. printf("%s failed\n", tv->t);
  673. return res;
  674. }
  675. testvector t2 = {
  676. "Test 2",
  677. "password", 8, "salt", 4, 2, 32, {
  678. 0xae, 0x4d, 0x0c, 0x95, 0xaf, 0x6b, 0x46, 0xd3,
  679. 0x2d, 0x0a, 0xdf, 0xf9, 0x28, 0xf0, 0x6d, 0xd0,
  680. 0x2a, 0x30, 0x3f, 0x8e, 0xf3, 0xc2, 0x51, 0xdf,
  681. 0xd6, 0xe2, 0xd8, 0x5a, 0x95, 0x47, 0x4c, 0x43 }
  682. };
  683. tv = &t2;
  684. res = do_test(tv);
  685. if (res != 0) {
  686. printf("%s failed\n", tv->t);
  687. return res;
  688. }
  689. testvector t3 = {
  690. "Test 3",
  691. "password", 8, "salt", 4, 4096, 32, {
  692. 0xc5, 0xe4, 0x78, 0xd5, 0x92, 0x88, 0xc8, 0x41,
  693. 0xaa, 0x53, 0x0d, 0xb6, 0x84, 0x5c, 0x4c, 0x8d,
  694. 0x96, 0x28, 0x93, 0xa0, 0x01, 0xce, 0x4e, 0x11,
  695. 0xa4, 0x96, 0x38, 0x73, 0xaa, 0x98, 0x13, 0x4a }
  696. };
  697. tv = &t3;
  698. res = do_test(tv);
  699. if (res != 0) {
  700. printf("%s failed\n", tv->t);
  701. return res;
  702. }
  703. testvector t4 = {
  704. "Test 4",
  705. "password", 8, "salt", 4, 16777216, 32, {
  706. 0xcf, 0x81, 0xc6, 0x6f, 0xe8, 0xcf, 0xc0, 0x4d,
  707. 0x1f, 0x31, 0xec, 0xb6, 0x5d, 0xab, 0x40, 0x89,
  708. 0xf7, 0xf1, 0x79, 0xe8, 0x9b, 0x3b, 0x0b, 0xcb,
  709. 0x17, 0xad, 0x10, 0xe3, 0xac, 0x6e, 0xba, 0x46 }
  710. };
  711. tv = &t4;
  712. // res = do_test(tv);
  713. if (res != 0) {
  714. printf("%s failed\n", tv->t);
  715. return res;
  716. }
  717. testvector t5 = {
  718. "Test 5",
  719. "passwordPASSWORDpassword", 24,
  720. "saltSALTsaltSALTsaltSALTsaltSALTsalt", 36, 4096, 40, {
  721. 0x34, 0x8c, 0x89, 0xdb, 0xcb, 0xd3, 0x2b, 0x2f,
  722. 0x32, 0xd8, 0x14, 0xb8, 0x11, 0x6e, 0x84, 0xcf,
  723. 0x2b, 0x17, 0x34, 0x7e, 0xbc, 0x18, 0x00, 0x18,
  724. 0x1c, 0x4e, 0x2a, 0x1f, 0xb8, 0xdd, 0x53, 0xe1,
  725. 0xc6, 0x35, 0x51, 0x8c, 0x7d, 0xac, 0x47, 0xe9 }
  726. };
  727. tv = &t5;
  728. res = do_test(tv);
  729. if (res != 0) {
  730. printf("%s failed\n", tv->t);
  731. return res;
  732. }
  733. testvector t6 = {
  734. "Test 6",
  735. "pass\0word", 9, "sa\0lt", 5, 4096, 16, {
  736. 0x89, 0xb6, 0x9d, 0x05, 0x16, 0xf8, 0x29, 0x89,
  737. 0x3c, 0x69, 0x62, 0x26, 0x65, 0x0a, 0x86, 0x87 }
  738. };
  739. tv = &t6;
  740. res = do_test(tv);
  741. if (res != 0) {
  742. printf("%s failed\n", tv->t);
  743. return res;
  744. }
  745. return (0);
  746. }
  747. #endif
  748. const int sha256_len=32;
  749. #define MBEDTLS_MD_MAX_SIZE 64
  750. #define MBEDTLS_ERR_HKDF_BAD_INPUT_DATA -0x5F80
  751. static void * (* const volatile memset_func)( void *, int, size_t ) = memset;
  752. void mbedtls_platform_zeroize( void *buf, size_t len )
  753. {
  754. memset_func( buf, 0, len );
  755. }
  756. int hkdf_sha256_extract(
  757. const unsigned char *salt, size_t salt_len,
  758. const unsigned char *ikm, size_t ikm_len,
  759. unsigned char *prk )
  760. {
  761. unsigned char null_salt[MBEDTLS_MD_MAX_SIZE] = { '\0' };
  762. if( salt == NULL )
  763. {
  764. size_t hash_len;
  765. hash_len = sha256_len;
  766. if( hash_len == 0 )
  767. {
  768. return MBEDTLS_ERR_HKDF_BAD_INPUT_DATA;
  769. }
  770. salt = null_salt;
  771. salt_len = hash_len;
  772. }
  773. sha2_hmac (salt, salt_len, ikm, ikm_len, prk ,0);
  774. return 0;
  775. }
  776. int hkdf_sha256_expand( const unsigned char *prk,
  777. size_t prk_len, const unsigned char *info,
  778. size_t info_len, unsigned char *okm, size_t okm_len )
  779. {
  780. size_t hash_len;
  781. size_t where = 0;
  782. size_t n;
  783. size_t t_len = 0;
  784. size_t i;
  785. int ret = 0;
  786. sha2_context ctx;
  787. unsigned char t[MBEDTLS_MD_MAX_SIZE];
  788. if( okm == NULL )
  789. {
  790. return( MBEDTLS_ERR_HKDF_BAD_INPUT_DATA );
  791. }
  792. hash_len = sha256_len;
  793. if( prk_len < hash_len || hash_len == 0 )
  794. {
  795. return( MBEDTLS_ERR_HKDF_BAD_INPUT_DATA );
  796. }
  797. if( info == NULL )
  798. {
  799. info = (const unsigned char *) "";
  800. info_len = 0;
  801. }
  802. n = okm_len / hash_len;
  803. if( (okm_len % hash_len) != 0 )
  804. {
  805. n++;
  806. }
  807. if( n > 255 )
  808. {
  809. return( MBEDTLS_ERR_HKDF_BAD_INPUT_DATA );
  810. }
  811. //mbedtls_md_init( &ctx ); //old code
  812. memset( &ctx, 0, sizeof( ctx) ); //its not necessary
  813. /*
  814. if( (ret = mbedtls_md_setup( &ctx, md, 1) ) != 0 )
  815. {
  816. goto exit;
  817. }*/
  818. /* RFC 5869 Section 2.3. */
  819. for( i = 1; i <= n; i++ )
  820. {
  821. size_t num_to_copy;
  822. unsigned char c = i & 0xff;
  823. sha2_hmac_starts( &ctx, prk, prk_len,0 );
  824. sha2_hmac_update( &ctx, t, t_len );
  825. sha2_hmac_update( &ctx, info, info_len );
  826. /* The constant concatenated to the end of each t(n) is a single octet.
  827. * */
  828. sha2_hmac_update( &ctx, &c, 1 );
  829. sha2_hmac_finish( &ctx, t );
  830. num_to_copy = i != n ? hash_len : okm_len - where;
  831. memcpy( okm + where, t, num_to_copy );
  832. where += hash_len;
  833. t_len = hash_len;
  834. }
  835. //exit:
  836. //mbedtls_md_free( &ctx ); //old code
  837. mbedtls_platform_zeroize( &ctx, sizeof( ctx ) ); //not necessary too
  838. mbedtls_platform_zeroize( t, sizeof( t ) );
  839. return( ret );
  840. }
  841. int hkdf_sha256( const unsigned char *salt,
  842. size_t salt_len, const unsigned char *ikm, size_t ikm_len,
  843. const unsigned char *info, size_t info_len,
  844. unsigned char *okm, size_t okm_len )
  845. {
  846. int ret;
  847. unsigned char prk[MBEDTLS_MD_MAX_SIZE];
  848. ret = hkdf_sha256_extract( salt, salt_len, ikm, ikm_len, prk );
  849. if( ret == 0 )
  850. {
  851. ret = hkdf_sha256_expand( prk, sha256_len,
  852. info, info_len, okm, okm_len );
  853. }
  854. mbedtls_platform_zeroize( prk, sizeof( prk ) );
  855. return( ret );
  856. }
  857. #ifdef HKDF_SHA256_TEST
  858. #include <assert.h>
  859. int hex_to_number(char a)
  860. {
  861. if(a>='0' &&a<='9')
  862. return a-'0';
  863. if(a>='a'&& a<='f') return a- 'a' +10;
  864. assert(0==1);
  865. return -1;
  866. }
  867. int base16_decode(const char *a,unsigned char *buf)
  868. {
  869. int len=strlen(a);
  870. assert(len%2==0);
  871. for(int i=0,j=0;i<len;i+=2,j++)
  872. {
  873. unsigned char c= hex_to_number(a[i])*16+hex_to_number(a[i+1]);
  874. buf[j]=c;
  875. }
  876. return len/2;
  877. }
  878. int main()
  879. {
  880. const struct {
  881. const char *ikm16, *salt16, *info16;
  882. int L;
  883. const char *okm16;
  884. } vecs[] = {
  885. { /* from A.1 */
  886. "0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b",
  887. "000102030405060708090a0b0c",
  888. "f0f1f2f3f4f5f6f7f8f9",
  889. 42,
  890. "3cb25f25faacd57a90434f64d0362f2a2d2d0a90cf1a5a4c5db02d56ecc4c5bf"
  891. "34007208d5b887185865"
  892. },
  893. { /* from A.2 */
  894. "000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f"
  895. "202122232425262728292a2b2c2d2e2f303132333435363738393a3b3c3d3e3f"
  896. "404142434445464748494a4b4c4d4e4f",
  897. "606162636465666768696a6b6c6d6e6f707172737475767778797a7b7c7d7e7f"
  898. "808182838485868788898a8b8c8d8e8f909192939495969798999a9b9c9d9e9f"
  899. "a0a1a2a3a4a5a6a7a8a9aaabacadaeaf",
  900. "b0b1b2b3b4b5b6b7b8b9babbbcbdbebfc0c1c2c3c4c5c6c7c8c9cacbcccdcecf"
  901. "d0d1d2d3d4d5d6d7d8d9dadbdcdddedfe0e1e2e3e4e5e6e7e8e9eaebecedeeef"
  902. "f0f1f2f3f4f5f6f7f8f9fafbfcfdfeff",
  903. 82,
  904. "b11e398dc80327a1c8e7f78c596a49344f012eda2d4efad8a050cc4c19afa97c"
  905. "59045a99cac7827271cb41c65e590e09da3275600c2f09b8367793a9aca3db71"
  906. "cc30c58179ec3e87c14c01d5c1f3434f1d87"
  907. },
  908. { /* from A.3 */
  909. "0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b",
  910. "",
  911. "",
  912. 42,
  913. "8da4e775a563c18f715f802a063c5a31b8a11f5c5ee1879ec3454e5f3c738d2d"
  914. "9d201395faa4b61a96c8",
  915. },
  916. { NULL, NULL, NULL, -1, NULL }
  917. };
  918. for(int i=0;i<3;i++)
  919. {
  920. unsigned char ikm[200]; int ikm_len;
  921. unsigned char salt[200];int salt_len;
  922. unsigned char info[200]; int info_len;
  923. unsigned char okm[200];
  924. ikm_len=base16_decode(vecs[i].ikm16,ikm);
  925. salt_len=base16_decode(vecs[i].salt16,salt);
  926. info_len=base16_decode(vecs[i].info16,info);
  927. base16_decode(vecs[i].okm16,okm);
  928. int outlen=vecs[i].L;
  929. unsigned char output[200];
  930. int ret=hkdf_sha256(salt,
  931. salt_len,ikm, ikm_len,
  932. info, info_len,
  933. output, outlen );
  934. assert(ret==0);
  935. for(int j=0;j<ikm_len;j++)
  936. printf("<%02x>",(int)(ikm[j]));
  937. printf("\n---------------------------\n");
  938. for(int j=0;j<outlen;j++)
  939. printf("<%02x>",(int)(output[j]));
  940. printf("\n---------------------------\n");
  941. for(int j=0;j<outlen;j++)
  942. printf("<%02x>",(int)(okm[j]));
  943. printf("\n===========================\n");
  944. }
  945. }
  946. #endif