/* * Copyright 2024-2025 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include #include #include #include "ml_dsa_key.h" #include "ml_dsa_matrix.h" #include "ml_dsa_hash.h" #include "internal/encoder.h" const ML_DSA_PARAMS *ossl_ml_dsa_key_params(const ML_DSA_KEY *key) { return key->params; } /* Returns the seed data or NULL if there is no seed */ const uint8_t *ossl_ml_dsa_key_get_seed(const ML_DSA_KEY *key) { return key->seed; } int ossl_ml_dsa_key_get_prov_flags(const ML_DSA_KEY *key) { return key->prov_flags; } int ossl_ml_dsa_set_prekey(ML_DSA_KEY *key, int flags_set, int flags_clr, const uint8_t *seed, size_t seed_len, const uint8_t *sk, size_t sk_len) { int ret = 0; if (key == NULL || key->pub_encoding != NULL || key->priv_encoding != NULL || (sk != NULL && sk_len != key->params->sk_len) || (seed != NULL && seed_len != ML_DSA_SEED_BYTES) || key->seed != NULL) return 0; if (sk != NULL && (key->priv_encoding = OPENSSL_memdup(sk, sk_len)) == NULL) goto end; if (seed != NULL && (key->seed = OPENSSL_memdup(seed, seed_len)) == NULL) goto end; key->prov_flags |= flags_set; key->prov_flags &= ~flags_clr; ret = 1; end: if (!ret) { OPENSSL_free(key->priv_encoding); OPENSSL_free(key->seed); key->priv_encoding = key->seed = NULL; } return ret; } /** * @brief Create a new ML_DSA_KEY object * * @param libctx A OSSL_LIB_CTX object used for fetching algorithms. * @param propq The property query used for fetching algorithms * @param alg The algorithm name associated with the key type * @returns The new ML_DSA_KEY object on success, or NULL on malloc failure */ ML_DSA_KEY *ossl_ml_dsa_key_new(OSSL_LIB_CTX *libctx, const char *propq, int evp_type) { ML_DSA_KEY *ret; const ML_DSA_PARAMS *params = ossl_ml_dsa_params_get(evp_type); if (params == NULL) return NULL; ret = OPENSSL_zalloc(sizeof(*ret)); if (ret != NULL) { ret->libctx = libctx; ret->params = params; ret->prov_flags = ML_DSA_KEY_PROV_FLAGS_DEFAULT; ret->shake128_md = EVP_MD_fetch(libctx, "SHAKE-128", propq); ret->shake256_md = EVP_MD_fetch(libctx, "SHAKE-256", propq); if (ret->shake128_md == NULL || ret->shake256_md == NULL) goto err; } return ret; err: ossl_ml_dsa_key_free(ret); return NULL; } int ossl_ml_dsa_key_pub_alloc(ML_DSA_KEY *key) { if (key->t1.poly != NULL) return 0; return vector_alloc(&key->t1, key->params->k); } int ossl_ml_dsa_key_priv_alloc(ML_DSA_KEY *key) { size_t k = key->params->k, l = key->params->l; POLY *poly; if (key->s1.poly != NULL) return 0; if (!vector_alloc(&key->s1, l + 2 * k)) return 0; poly = key->s1.poly; key->s1.num_poly = l; vector_init(&key->s2, poly + l, k); vector_init(&key->t0, poly + l + k, k); return 1; } /** * @brief Destroy an ML_DSA_KEY object */ void ossl_ml_dsa_key_free(ML_DSA_KEY *key) { if (key == NULL) return; EVP_MD_free(key->shake128_md); EVP_MD_free(key->shake256_md); ossl_ml_dsa_key_reset(key); OPENSSL_free(key); } /** * @brief Factory reset an ML_DSA_KEY object */ void ossl_ml_dsa_key_reset(ML_DSA_KEY *key) { /* * The allocation for |s1.poly| subsumes those for |s2| and |t0|, which we * must not access after |s1|'s poly is freed. */ if (key->s1.poly != NULL) { vector_zero(&key->s1); vector_zero(&key->s2); vector_zero(&key->t0); vector_free(&key->s1); key->s2.poly = NULL; key->t0.poly = NULL; } /* The |t1| vector is public and allocated separately */ vector_free(&key->t1); OPENSSL_cleanse(key->K, sizeof(key->K)); OPENSSL_free(key->pub_encoding); key->pub_encoding = NULL; if (key->priv_encoding != NULL) OPENSSL_clear_free(key->priv_encoding, key->params->sk_len); key->priv_encoding = NULL; if (key->seed != NULL) OPENSSL_clear_free(key->seed, ML_DSA_SEED_BYTES); key->seed = NULL; } /** * @brief Duplicate a key * * @param src A ML_DSA_KEY object to copy * @param selection to select public and/or private components. Selecting the * private key will also select the public key * @returns The duplicated key, or NULL on failure. */ ML_DSA_KEY *ossl_ml_dsa_key_dup(const ML_DSA_KEY *src, int selection) { ML_DSA_KEY *ret = NULL; if (src == NULL) return NULL; /* Prekeys with just a seed or private key are not dupable */ if (src->pub_encoding == NULL && (src->priv_encoding != NULL || src->seed != NULL)) return NULL; ret = OPENSSL_zalloc(sizeof(*ret)); if (ret != NULL) { ret->libctx = src->libctx; ret->params = src->params; ret->prov_flags = src->prov_flags; if ((selection & OSSL_KEYMGMT_SELECT_KEYPAIR) != 0) { if (src->pub_encoding != NULL) { /* The public components are present if the private key is present */ memcpy(ret->rho, src->rho, sizeof(src->rho)); memcpy(ret->tr, src->tr, sizeof(src->tr)); if (src->t1.poly != NULL) { if (!ossl_ml_dsa_key_pub_alloc(ret)) goto err; vector_copy(&ret->t1, &src->t1); } if ((ret->pub_encoding = OPENSSL_memdup(src->pub_encoding, src->params->pk_len)) == NULL) goto err; } if ((selection & OSSL_KEYMGMT_SELECT_PRIVATE_KEY) != 0) { if (src->priv_encoding != NULL) { memcpy(ret->K, src->K, sizeof(src->K)); if (src->s1.poly != NULL) { if (!ossl_ml_dsa_key_priv_alloc(ret)) goto err; vector_copy(&ret->s1, &src->s1); vector_copy(&ret->s2, &src->s2); vector_copy(&ret->t0, &src->t0); } if ((ret->priv_encoding = OPENSSL_memdup(src->priv_encoding, src->params->sk_len)) == NULL) goto err; } if (src->seed != NULL && (ret->seed = OPENSSL_memdup(src->seed, ML_DSA_SEED_BYTES)) == NULL) goto err; } } EVP_MD_up_ref(src->shake128_md); EVP_MD_up_ref(src->shake256_md); ret->shake128_md = src->shake128_md; ret->shake256_md = src->shake256_md; } return ret; err: ossl_ml_dsa_key_free(ret); return NULL; } /** * @brief Are 2 keys equal? * * To be equal the keys must have matching public or private key data and * contain the same parameters. * (Note that in OpenSSL that the private key always has a public key component). * * @param key1 A ML_DSA_KEY object * @param key2 A ML_DSA_KEY object * @param selection to select public and/or private component comparison. * @returns 1 if the keys are equal otherwise it returns 0. */ int ossl_ml_dsa_key_equal(const ML_DSA_KEY *key1, const ML_DSA_KEY *key2, int selection) { int key_checked = 0; if (key1->params != key2->params) return 0; if ((selection & OSSL_KEYMGMT_SELECT_KEYPAIR) != 0) { if ((selection & OSSL_KEYMGMT_SELECT_PUBLIC_KEY) != 0) { if (key1->pub_encoding != NULL && key2->pub_encoding != NULL) { if (memcmp(key1->pub_encoding, key2->pub_encoding, key1->params->pk_len) != 0) return 0; key_checked = 1; } } if (!key_checked && (selection & OSSL_KEYMGMT_SELECT_PRIVATE_KEY) != 0) { if (key1->priv_encoding != NULL && key2->priv_encoding != NULL) { if (memcmp(key1->priv_encoding, key2->priv_encoding, key1->params->sk_len) != 0) return 0; key_checked = 1; } } return key_checked; } return 1; } int ossl_ml_dsa_key_has(const ML_DSA_KEY *key, int selection) { if ((selection & OSSL_KEYMGMT_SELECT_KEYPAIR) != 0) { /* Note that the public key always exists if there is a private key */ if (ossl_ml_dsa_key_get_pub(key) == NULL) return 0; /* No public key */ if ((selection & OSSL_KEYMGMT_SELECT_PRIVATE_KEY) != 0 && ossl_ml_dsa_key_get_priv(key) == NULL) return 0; /* No private key */ return 1; } return 0; } /* * @brief Given a key containing private key values for rho, s1 & s2 * generate the public value t and return the compressed values t1, t0. * * @param key A private key containing params, rh0, s1 & s2. * @param md_ctx A EVP_MD_CTX used for sampling. * @param t1 The returned polynomial encoding of the 10 MSB of each coefficient * of the uncompressed public key polynomial t. * @param t0 The returned polynomial encoding of the 13 LSB of each coefficient * of the uncompressed public key polynomial t. * @returns 1 on success, or 0 on failure. */ static int public_from_private(const ML_DSA_KEY *key, EVP_MD_CTX *md_ctx, VECTOR *t1, VECTOR *t0) { int ret = 0; const ML_DSA_PARAMS *params = key->params; uint32_t k = params->k, l = params->l; POLY *polys; MATRIX a_ntt; VECTOR s1_ntt; VECTOR t; polys = OPENSSL_malloc(sizeof(*polys) * (k + l + k * l)); if (polys == NULL) return 0; vector_init(&t, polys, k); vector_init(&s1_ntt, t.poly + k, l); matrix_init(&a_ntt, s1_ntt.poly + l, k, l); /* Using rho generate A' = A in NTT form */ if (!matrix_expand_A(md_ctx, key->shake128_md, key->rho, &a_ntt)) goto err; /* t = NTT_inv(A' * NTT(s1)) + s2 */ vector_copy(&s1_ntt, &key->s1); vector_ntt(&s1_ntt); matrix_mult_vector(&a_ntt, &s1_ntt, &t); vector_ntt_inverse(&t); vector_add(&t, &key->s2, &t); /* Compress t */ vector_power2_round(&t, t1, t0); /* Zeroize secret */ vector_zero(&s1_ntt); ret = 1; err: OPENSSL_free(polys); return ret; } int ossl_ml_dsa_key_public_from_private(ML_DSA_KEY *key) { int ret = 0; VECTOR t0; EVP_MD_CTX *md_ctx = NULL; if (!vector_alloc(&t0, key->params->k)) /* t0 is already in the private key */ return 0; ret = ((md_ctx = EVP_MD_CTX_new())!= NULL) && ossl_ml_dsa_key_pub_alloc(key) /* allocate space for t1 */ && public_from_private(key, md_ctx, &key->t1, &t0) && vector_equal(&t0, &key->t0) /* compare the generated t0 to the expected */ && ossl_ml_dsa_pk_encode(key) && shake_xof(md_ctx, key->shake256_md, key->pub_encoding, key->params->pk_len, key->tr, sizeof(key->tr)); vector_free(&t0); EVP_MD_CTX_free(md_ctx); return ret; } int ossl_ml_dsa_key_pairwise_check(const ML_DSA_KEY *key) { int ret = 0; VECTOR t1, t0; POLY *polys = NULL; uint32_t k = key->params->k; EVP_MD_CTX *md_ctx = NULL; if (key->pub_encoding == NULL || key->priv_encoding == 0) return 0; polys = OPENSSL_malloc(sizeof(*polys) * (2 * k)); if (polys == NULL) return 0; md_ctx = EVP_MD_CTX_new(); if (md_ctx == NULL) goto err; vector_init(&t1, polys, k); vector_init(&t0, polys + k, k); if (!public_from_private(key, md_ctx, &t1, &t0)) goto err; ret = vector_equal(&t1, &key->t1) && vector_equal(&t0, &key->t0); err: EVP_MD_CTX_free(md_ctx); OPENSSL_free(polys); return ret; } /* * @brief Generate a public-private key pair from a seed. * See FIPS 204, Algorithm 6 ML-DSA.KeyGen_internal(). * * @param out The generated key (which contains params on input) * * @returns 1 on success or 0 on failure. */ static int keygen_internal(ML_DSA_KEY *out) { int ret = 0; uint8_t augmented_seed[ML_DSA_SEED_BYTES + 2]; uint8_t expanded_seed[ML_DSA_RHO_BYTES + ML_DSA_PRIV_SEED_BYTES + ML_DSA_K_BYTES]; const uint8_t *const rho = expanded_seed; /* p = Public Random Seed */ const uint8_t *const priv_seed = expanded_seed + ML_DSA_RHO_BYTES; const uint8_t *const K = priv_seed + ML_DSA_PRIV_SEED_BYTES; const ML_DSA_PARAMS *params = out->params; EVP_MD_CTX *md_ctx = NULL; if (out->seed == NULL || (md_ctx = EVP_MD_CTX_new()) == NULL || !ossl_ml_dsa_key_pub_alloc(out) || !ossl_ml_dsa_key_priv_alloc(out)) goto err; /* augmented_seed = seed || k || l */ memcpy(augmented_seed, out->seed, ML_DSA_SEED_BYTES); augmented_seed[ML_DSA_SEED_BYTES] = (uint8_t)params->k; augmented_seed[ML_DSA_SEED_BYTES + 1] = (uint8_t)params->l; /* Expand the seed into p[32], p'[64], K[32] */ if (!shake_xof(md_ctx, out->shake256_md, augmented_seed, sizeof(augmented_seed), expanded_seed, sizeof(expanded_seed))) goto err; memcpy(out->rho, rho, sizeof(out->rho)); memcpy(out->K, K, sizeof(out->K)); ret = vector_expand_S(md_ctx, out->shake256_md, params->eta, priv_seed, &out->s1, &out->s2) && public_from_private(out, md_ctx, &out->t1, &out->t0) && ossl_ml_dsa_pk_encode(out) && shake_xof(md_ctx, out->shake256_md, out->pub_encoding, out->params->pk_len, out->tr, sizeof(out->tr)) && ossl_ml_dsa_sk_encode(out); err: if (out->seed != NULL && (out->prov_flags & ML_DSA_KEY_RETAIN_SEED) == 0) { OPENSSL_clear_free(out->seed, ML_DSA_SEED_BYTES); out->seed = NULL; } EVP_MD_CTX_free(md_ctx); OPENSSL_cleanse(augmented_seed, sizeof(augmented_seed)); OPENSSL_cleanse(expanded_seed, sizeof(expanded_seed)); return ret; } int ossl_ml_dsa_generate_key(ML_DSA_KEY *out) { size_t seed_len = ML_DSA_SEED_BYTES; uint8_t *sk; int ret; if (out->seed == NULL) { if ((out->seed = OPENSSL_malloc(seed_len)) == NULL) return 0; if (RAND_priv_bytes_ex(out->libctx, out->seed, seed_len, 0) <= 0) { OPENSSL_free(out->seed); out->seed = NULL; return 0; } } /* We're generating from a seed, drop private prekey encoding */ sk = out->priv_encoding; out->priv_encoding = NULL; if (sk == NULL) { ret = keygen_internal(out); } else { if ((ret = keygen_internal(out)) != 0 && memcmp(out->priv_encoding, sk, out->params->sk_len) != 0) { ret = 0; ossl_ml_dsa_key_reset(out); ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_KEY, "explicit %s private key does not match seed", out->params->alg); } OPENSSL_free(sk); } return ret; } /** * @brief This is used when a ML DSA key is used for an operation. * This checks that the algorithm is the same (i.e. uses the same parameters) * * @param key A ML_DSA key to use for an operation. * @param evp_type The algorithm nid associated with an operation * * @returns 1 if the algorithm matches, or 0 otherwise. */ int ossl_ml_dsa_key_matches(const ML_DSA_KEY *key, int evp_type) { return (key->params->evp_type == evp_type); } /* Returns the public key data or NULL if there is no public key */ const uint8_t *ossl_ml_dsa_key_get_pub(const ML_DSA_KEY *key) { return key->pub_encoding; } /* Returns the encoded public key size */ size_t ossl_ml_dsa_key_get_pub_len(const ML_DSA_KEY *key) { return key->params->pk_len; } size_t ossl_ml_dsa_key_get_collision_strength_bits(const ML_DSA_KEY *key) { return key->params->bit_strength; } /* Returns the private key data or NULL if there is no private key */ const uint8_t *ossl_ml_dsa_key_get_priv(const ML_DSA_KEY *key) { return key->priv_encoding; } size_t ossl_ml_dsa_key_get_priv_len(const ML_DSA_KEY *key) { return key->params->sk_len; } size_t ossl_ml_dsa_key_get_sig_len(const ML_DSA_KEY *key) { return key->params->sig_len; } OSSL_LIB_CTX *ossl_ml_dsa_key_get0_libctx(const ML_DSA_KEY *key) { return key != NULL ? key->libctx : NULL; } const char *ossl_ml_dsa_key_get_name(const ML_DSA_KEY *key) { return key->params->alg; }