/* * Copyright 2024-2025 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "ml_dsa_local.h" #include "ml_dsa_poly.h" /* * This file has multiple parts required for fast matrix multiplication, * 1) NTT (See https://eprint.iacr.org/2024/585.pdf) * NTT and NTT inverse transformations are Discrete Fourier Transforms in a * polynomial ring. Fast-Fourier Transformations can then be applied to make * multiplications n log(n). This uses the symmetry of the transformation to * reduce computations. * * 2) Montgomery multiplication * The multiplication of a.b mod q requires division by q which is a slow operation. * * When many multiplications mod q are required montgomery multiplication * can be used. This requires a number R > q such that R & q are coprime * (i.e. GCD(R, q) = 1), so that division happens using R instead of q. * If r is a power of 2 then this division can be done as a bit shift. * * Given that q = 2^23 - 2^13 + 1 * We can chose a Montgomery multiplier of R = 2^32. * * To transform |a| into Montgomery form |m| we use * m = a mod q * ((2^32)*(2^32) mod q) * which is then Montgomery reduced, removing the excess factor of R = 2^32. */ /* * The table in FIPS 204 Appendix B uses the following formula * zeta[k]= 1753^bitrev(k) mod q for (k = 1..255) (The first value is not used). * * As this implementation uses montgomery form with a multiplier of 2^32. * The values need to be transformed i.e. * * zetasMontgomery[k] = reduce_montgomery(zeta[k] * (2^32 * 2^32 mod(q))) * reduce_montgomery() is defined below.. */ static const uint32_t zetas_montgomery[256] = { 4193792, 25847, 5771523, 7861508, 237124, 7602457, 7504169, 466468, 1826347, 2353451, 8021166, 6288512, 3119733, 5495562, 3111497, 2680103, 2725464, 1024112, 7300517, 3585928, 7830929, 7260833, 2619752, 6271868, 6262231, 4520680, 6980856, 5102745, 1757237, 8360995, 4010497, 280005, 2706023, 95776, 3077325, 3530437, 6718724, 4788269, 5842901, 3915439, 4519302, 5336701, 3574422, 5512770, 3539968, 8079950, 2348700, 7841118, 6681150, 6736599, 3505694, 4558682, 3507263, 6239768, 6779997, 3699596, 811944, 531354, 954230, 3881043, 3900724, 5823537, 2071892, 5582638, 4450022, 6851714, 4702672, 5339162, 6927966, 3475950, 2176455, 6795196, 7122806, 1939314, 4296819, 7380215, 5190273, 5223087, 4747489, 126922, 3412210, 7396998, 2147896, 2715295, 5412772, 4686924, 7969390, 5903370, 7709315, 7151892, 8357436, 7072248, 7998430, 1349076, 1852771, 6949987, 5037034, 264944, 508951, 3097992, 44288, 7280319, 904516, 3958618, 4656075, 8371839, 1653064, 5130689, 2389356, 8169440, 759969, 7063561, 189548, 4827145, 3159746, 6529015, 5971092, 8202977, 1315589, 1341330, 1285669, 6795489, 7567685, 6940675, 5361315, 4499357, 4751448, 3839961, 2091667, 3407706, 2316500, 3817976, 5037939, 2244091, 5933984, 4817955, 266997, 2434439, 7144689, 3513181, 4860065, 4621053, 7183191, 5187039, 900702, 1859098, 909542, 819034, 495491, 6767243, 8337157, 7857917, 7725090, 5257975, 2031748, 3207046, 4823422, 7855319, 7611795, 4784579, 342297, 286988, 5942594, 4108315, 3437287, 5038140, 1735879, 203044, 2842341, 2691481, 5790267, 1265009, 4055324, 1247620, 2486353, 1595974, 4613401, 1250494, 2635921, 4832145, 5386378, 1869119, 1903435, 7329447, 7047359, 1237275, 5062207, 6950192, 7929317, 1312455, 3306115, 6417775, 7100756, 1917081, 5834105, 7005614, 1500165, 777191, 2235880, 3406031, 7838005, 5548557, 6709241, 6533464, 5796124, 4656147, 594136, 4603424, 6366809, 2432395, 2454455, 8215696, 1957272, 3369112, 185531, 7173032, 5196991, 162844, 1616392, 3014001, 810149, 1652634, 4686184, 6581310, 5341501, 3523897, 3866901, 269760, 2213111, 7404533, 1717735, 472078, 7953734, 1723600, 6577327, 1910376, 6712985, 7276084, 8119771, 4546524, 5441381, 6144432, 7959518, 6094090, 183443, 7403526, 1612842, 4834730, 7826001, 3919660, 8332111, 7018208, 3937738, 1400424, 7534263, 1976782 }; /* * @brief When multiplying 2 numbers mod q that are in montgomery form, the * product mod q needs to be multiplied by 2^-32 to be in montgomery form. * See FIPS 204, Algorithm 49, MontgomeryReduce() * Note it is slightly different due to the input range being positive * * @param a is the result of a multiply of 2 numbers in montgomery form, * in the range 0...(2^32)*q * @returns The Montgomery form of 'a' with multiplier 2^32 in the range 0..q-1 * The result is congruent to x * 2^-32 mod q */ static uint32_t reduce_montgomery(uint64_t a) { uint64_t t = (uint32_t)a * (uint32_t)ML_DSA_Q_NEG_INV; /* a * -qinv */ uint64_t b = a + t * ML_DSA_Q; /* a - t * q */ uint32_t c = b >> 32; /* /2^32 = 0..2q */ return reduce_once(c); /* 0..q */ } /* * @brief Multiply two polynomials in the number theoretically transformed state. * See FIPS 204, Algorithm 45, MultiplyNTT() * This function has been modified to use montgomery multiplication * * @param lhs A polynomial multiplicand * @param rhs A polynomial multiplier * @param out The returned result of the polynomial multiply */ void ossl_ml_dsa_poly_ntt_mult(const POLY *lhs, const POLY *rhs, POLY *out) { int i; for (i = 0; i < ML_DSA_NUM_POLY_COEFFICIENTS; i++) out->coeff[i] = reduce_montgomery((uint64_t)lhs->coeff[i] * (uint64_t)rhs->coeff[i]); } /* * In place number theoretic transform of a given polynomial. * * See FIPS 204, Algorithm 41, NTT() * This function uses montgomery multiplication. * * @param p a polynomial that is used as the input, that is replaced with * the NTT of the polynomial */ void ossl_ml_dsa_poly_ntt(POLY *p) { int i, j, k; int step; int offset = ML_DSA_NUM_POLY_COEFFICIENTS; /* Step: 1, 2, 4, 8, ..., 128 */ for (step = 1; step < ML_DSA_NUM_POLY_COEFFICIENTS; step <<= 1) { k = 0; offset >>= 1; /* Offset: 128, 64, 32, 16, ..., 1 */ for (i = 0; i < step; i++) { const uint32_t z_step_root = zetas_montgomery[step + i]; for (j = k; j < k + offset; j++) { uint32_t w_even = p->coeff[j]; uint32_t t_odd = reduce_montgomery((uint64_t)z_step_root * (uint64_t)p->coeff[j + offset]); p->coeff[j] = reduce_once(w_even + t_odd); p->coeff[j + offset] = mod_sub(w_even, t_odd); } k += 2 * offset; } } } /* * @brief In place inverse number theoretic transform of a given polynomial. * See FIPS 204, Algorithm 42, NTT^-1() * * @param p a polynomial that is used as the input, that is overwritten with * the inverse of the NTT. */ void ossl_ml_dsa_poly_ntt_inverse(POLY *p) { /* * Step: 128, 64, 32, 16, ..., 1 * Offset: 1, 2, 4, 8, ..., 128 */ int i, j, k, offset, step = ML_DSA_NUM_POLY_COEFFICIENTS; /* * The multiplicative inverse of 256 mod q, in Montgomery form is * ((256^-1 mod q) * ((2^32 * 2^32) mod q)) mod q = (8347681 * 2365951) mod 8380417 */ static const uint32_t inverse_degree_montgomery = 41978; for (offset = 1; offset < ML_DSA_NUM_POLY_COEFFICIENTS; offset <<= 1) { step >>= 1; k = 0; for (i = 0; i < step; i++) { const uint32_t step_root = ML_DSA_Q - zetas_montgomery[step + (step - 1 - i)]; for (j = k; j < k + offset; j++) { uint32_t even = p->coeff[j]; uint32_t odd = p->coeff[j + offset]; p->coeff[j] = reduce_once(odd + even); p->coeff[j + offset] = reduce_montgomery((uint64_t)step_root * (uint64_t)(ML_DSA_Q + even - odd)); } k += 2 * offset; } } for (i = 0; i < ML_DSA_NUM_POLY_COEFFICIENTS; i++) p->coeff[i] = reduce_montgomery((uint64_t)p->coeff[i] * (uint64_t)inverse_degree_montgomery); }