| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614 | 
							- /*
 
-  * tree234.c: reasonably generic counted 2-3-4 tree routines.
 
-  * 
 
-  * This file is copyright 1999-2001 Simon Tatham.
 
-  * 
 
-  * Permission is hereby granted, free of charge, to any person
 
-  * obtaining a copy of this software and associated documentation
 
-  * files (the "Software"), to deal in the Software without
 
-  * restriction, including without limitation the rights to use,
 
-  * copy, modify, merge, publish, distribute, sublicense, and/or
 
-  * sell copies of the Software, and to permit persons to whom the
 
-  * Software is furnished to do so, subject to the following
 
-  * conditions:
 
-  * 
 
-  * The above copyright notice and this permission notice shall be
 
-  * included in all copies or substantial portions of the Software.
 
-  * 
 
-  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 
-  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
 
-  * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 
-  * NONINFRINGEMENT.  IN NO EVENT SHALL SIMON TATHAM BE LIABLE FOR
 
-  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
 
-  * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 
-  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 
-  * SOFTWARE.
 
-  */
 
- #include <stdio.h>
 
- #include <stdlib.h>
 
- #include <assert.h>
 
- #include "defs.h"
 
- #include "tree234.h"
 
- #ifdef TEST
 
- #define LOG(x) (printf x)
 
- #define snew(type) ((type *)malloc(sizeof(type)))
 
- #define snewn(n, type) ((type *)malloc((n) * sizeof(type)))
 
- #define sresize(ptr, n, type)                                         \
 
-     ((type *)realloc(sizeof((type *)0 == (ptr)) ? (ptr) : (ptr),      \
 
-                      (n) * sizeof(type)))
 
- #define sfree(ptr) free(ptr)
 
- #else
 
- #include "puttymem.h"
 
- #define LOG(x)
 
- #endif
 
- typedef struct node234_Tag node234;
 
- struct tree234_Tag {
 
-     node234 *root;
 
-     cmpfn234 cmp;
 
- };
 
- struct node234_Tag {
 
-     node234 *parent;
 
-     node234 *kids[4];
 
-     int counts[4];
 
-     void *elems[3];
 
- };
 
- /*
 
-  * Create a 2-3-4 tree.
 
-  */
 
- tree234 *newtree234(cmpfn234 cmp)
 
- {
 
-     tree234 *ret = snew(tree234);
 
-     LOG(("created tree %p\n", ret));
 
-     ret->root = NULL;
 
-     ret->cmp = cmp;
 
-     return ret;
 
- }
 
- /*
 
-  * Free a 2-3-4 tree (not including freeing the elements).
 
-  */
 
- static void freenode234(node234 * n)
 
- {
 
-     if (!n)
 
- 	return;
 
-     freenode234(n->kids[0]);
 
-     freenode234(n->kids[1]);
 
-     freenode234(n->kids[2]);
 
-     freenode234(n->kids[3]);
 
-     sfree(n);
 
- }
 
- void freetree234(tree234 * t)
 
- {
 
-     freenode234(t->root);
 
-     sfree(t);
 
- }
 
- /*
 
-  * Internal function to count a node.
 
-  */
 
- static int countnode234(node234 * n)
 
- {
 
-     int count = 0;
 
-     int i;
 
-     if (!n)
 
- 	return 0;
 
-     for (i = 0; i < 4; i++)
 
- 	count += n->counts[i];
 
-     for (i = 0; i < 3; i++)
 
- 	if (n->elems[i])
 
- 	    count++;
 
-     return count;
 
- }
 
- /*
 
-  * Internal function to return the number of elements in a node.
 
-  */
 
- static int elements234(node234 *n)
 
- {
 
-     int i;
 
-     for (i = 0; i < 3; i++)
 
-         if (!n->elems[i])
 
-             break;
 
-     return i;
 
- }
 
- /*
 
-  * Count the elements in a tree.
 
-  */
 
- int count234(tree234 * t)
 
- {
 
-     if (t->root)
 
- 	return countnode234(t->root);
 
-     else
 
- 	return 0;
 
- }
 
- /*
 
-  * Add an element e to a 2-3-4 tree t. Returns e on success, or if
 
-  * an existing element compares equal, returns that.
 
-  */
 
- static void *add234_internal(tree234 * t, void *e, int index)
 
- {
 
-     node234 *n, **np, *left, *right;
 
-     void *orig_e = e;
 
-     int c, lcount, rcount;
 
-     LOG(("adding node %p to tree %p\n", e, t));
 
-     if (t->root == NULL) {
 
- 	t->root = snew(node234);
 
- 	t->root->elems[1] = t->root->elems[2] = NULL;
 
- 	t->root->kids[0] = t->root->kids[1] = NULL;
 
- 	t->root->kids[2] = t->root->kids[3] = NULL;
 
- 	t->root->counts[0] = t->root->counts[1] = 0;
 
- 	t->root->counts[2] = t->root->counts[3] = 0;
 
- 	t->root->parent = NULL;
 
- 	t->root->elems[0] = e;
 
- 	LOG(("  created root %p\n", t->root));
 
- 	return orig_e;
 
-     }
 
-     n = NULL; /* placate gcc; will always be set below since t->root != NULL */
 
-     np = &t->root;
 
-     while (*np) {
 
- 	int childnum;
 
- 	n = *np;
 
- 	LOG(("  node %p: %p/%d [%p] %p/%d [%p] %p/%d [%p] %p/%d\n",
 
- 	     n,
 
- 	     n->kids[0], n->counts[0], n->elems[0],
 
- 	     n->kids[1], n->counts[1], n->elems[1],
 
- 	     n->kids[2], n->counts[2], n->elems[2],
 
- 	     n->kids[3], n->counts[3]));
 
- 	if (index >= 0) {
 
- 	    if (!n->kids[0]) {
 
- 		/*
 
- 		 * Leaf node. We want to insert at kid position
 
- 		 * equal to the index:
 
- 		 * 
 
- 		 *   0 A 1 B 2 C 3
 
- 		 */
 
- 		childnum = index;
 
- 	    } else {
 
- 		/*
 
- 		 * Internal node. We always descend through it (add
 
- 		 * always starts at the bottom, never in the
 
- 		 * middle).
 
- 		 */
 
- 		do {		       /* this is a do ... while (0) to allow `break' */
 
- 		    if (index <= n->counts[0]) {
 
- 			childnum = 0;
 
- 			break;
 
- 		    }
 
- 		    index -= n->counts[0] + 1;
 
- 		    if (index <= n->counts[1]) {
 
- 			childnum = 1;
 
- 			break;
 
- 		    }
 
- 		    index -= n->counts[1] + 1;
 
- 		    if (index <= n->counts[2]) {
 
- 			childnum = 2;
 
- 			break;
 
- 		    }
 
- 		    index -= n->counts[2] + 1;
 
- 		    if (index <= n->counts[3]) {
 
- 			childnum = 3;
 
- 			break;
 
- 		    }
 
- 		    return NULL;       /* error: index out of range */
 
- 		} while (0);
 
- 	    }
 
- 	} else {
 
- 	    if ((c = t->cmp(e, n->elems[0])) < 0)
 
- 		childnum = 0;
 
- 	    else if (c == 0)
 
- 		return n->elems[0];    /* already exists */
 
- 	    else if (n->elems[1] == NULL
 
- 		     || (c = t->cmp(e, n->elems[1])) < 0) childnum = 1;
 
- 	    else if (c == 0)
 
- 		return n->elems[1];    /* already exists */
 
- 	    else if (n->elems[2] == NULL
 
- 		     || (c = t->cmp(e, n->elems[2])) < 0) childnum = 2;
 
- 	    else if (c == 0)
 
- 		return n->elems[2];    /* already exists */
 
- 	    else
 
- 		childnum = 3;
 
- 	}
 
- 	np = &n->kids[childnum];
 
- 	LOG(("  moving to child %d (%p)\n", childnum, *np));
 
-     }
 
-     /*
 
-      * We need to insert the new element in n at position np.
 
-      */
 
-     left = NULL;
 
-     lcount = 0;
 
-     right = NULL;
 
-     rcount = 0;
 
-     while (n) {
 
- 	LOG(("  at %p: %p/%d [%p] %p/%d [%p] %p/%d [%p] %p/%d\n",
 
- 	     n,
 
- 	     n->kids[0], n->counts[0], n->elems[0],
 
- 	     n->kids[1], n->counts[1], n->elems[1],
 
- 	     n->kids[2], n->counts[2], n->elems[2],
 
- 	     n->kids[3], n->counts[3]));
 
- 	LOG(("  need to insert %p/%d [%p] %p/%d at position %d\n",
 
- 	     left, lcount, e, right, rcount, (int)(np - n->kids)));
 
- 	if (n->elems[1] == NULL) {
 
- 	    /*
 
- 	     * Insert in a 2-node; simple.
 
- 	     */
 
- 	    if (np == &n->kids[0]) {
 
- 		LOG(("  inserting on left of 2-node\n"));
 
- 		n->kids[2] = n->kids[1];
 
- 		n->counts[2] = n->counts[1];
 
- 		n->elems[1] = n->elems[0];
 
- 		n->kids[1] = right;
 
- 		n->counts[1] = rcount;
 
- 		n->elems[0] = e;
 
- 		n->kids[0] = left;
 
- 		n->counts[0] = lcount;
 
- 	    } else {		       /* np == &n->kids[1] */
 
- 		LOG(("  inserting on right of 2-node\n"));
 
- 		n->kids[2] = right;
 
- 		n->counts[2] = rcount;
 
- 		n->elems[1] = e;
 
- 		n->kids[1] = left;
 
- 		n->counts[1] = lcount;
 
- 	    }
 
- 	    if (n->kids[0])
 
- 		n->kids[0]->parent = n;
 
- 	    if (n->kids[1])
 
- 		n->kids[1]->parent = n;
 
- 	    if (n->kids[2])
 
- 		n->kids[2]->parent = n;
 
- 	    LOG(("  done\n"));
 
- 	    break;
 
- 	} else if (n->elems[2] == NULL) {
 
- 	    /*
 
- 	     * Insert in a 3-node; simple.
 
- 	     */
 
- 	    if (np == &n->kids[0]) {
 
- 		LOG(("  inserting on left of 3-node\n"));
 
- 		n->kids[3] = n->kids[2];
 
- 		n->counts[3] = n->counts[2];
 
- 		n->elems[2] = n->elems[1];
 
- 		n->kids[2] = n->kids[1];
 
- 		n->counts[2] = n->counts[1];
 
- 		n->elems[1] = n->elems[0];
 
- 		n->kids[1] = right;
 
- 		n->counts[1] = rcount;
 
- 		n->elems[0] = e;
 
- 		n->kids[0] = left;
 
- 		n->counts[0] = lcount;
 
- 	    } else if (np == &n->kids[1]) {
 
- 		LOG(("  inserting in middle of 3-node\n"));
 
- 		n->kids[3] = n->kids[2];
 
- 		n->counts[3] = n->counts[2];
 
- 		n->elems[2] = n->elems[1];
 
- 		n->kids[2] = right;
 
- 		n->counts[2] = rcount;
 
- 		n->elems[1] = e;
 
- 		n->kids[1] = left;
 
- 		n->counts[1] = lcount;
 
- 	    } else {		       /* np == &n->kids[2] */
 
- 		LOG(("  inserting on right of 3-node\n"));
 
- 		n->kids[3] = right;
 
- 		n->counts[3] = rcount;
 
- 		n->elems[2] = e;
 
- 		n->kids[2] = left;
 
- 		n->counts[2] = lcount;
 
- 	    }
 
- 	    if (n->kids[0])
 
- 		n->kids[0]->parent = n;
 
- 	    if (n->kids[1])
 
- 		n->kids[1]->parent = n;
 
- 	    if (n->kids[2])
 
- 		n->kids[2]->parent = n;
 
- 	    if (n->kids[3])
 
- 		n->kids[3]->parent = n;
 
- 	    LOG(("  done\n"));
 
- 	    break;
 
- 	} else {
 
- 	    node234 *m = snew(node234);
 
- 	    m->parent = n->parent;
 
- 	    LOG(("  splitting a 4-node; created new node %p\n", m));
 
- 	    /*
 
- 	     * Insert in a 4-node; split into a 2-node and a
 
- 	     * 3-node, and move focus up a level.
 
- 	     * 
 
- 	     * I don't think it matters which way round we put the
 
- 	     * 2 and the 3. For simplicity, we'll put the 3 first
 
- 	     * always.
 
- 	     */
 
- 	    if (np == &n->kids[0]) {
 
- 		m->kids[0] = left;
 
- 		m->counts[0] = lcount;
 
- 		m->elems[0] = e;
 
- 		m->kids[1] = right;
 
- 		m->counts[1] = rcount;
 
- 		m->elems[1] = n->elems[0];
 
- 		m->kids[2] = n->kids[1];
 
- 		m->counts[2] = n->counts[1];
 
- 		e = n->elems[1];
 
- 		n->kids[0] = n->kids[2];
 
- 		n->counts[0] = n->counts[2];
 
- 		n->elems[0] = n->elems[2];
 
- 		n->kids[1] = n->kids[3];
 
- 		n->counts[1] = n->counts[3];
 
- 	    } else if (np == &n->kids[1]) {
 
- 		m->kids[0] = n->kids[0];
 
- 		m->counts[0] = n->counts[0];
 
- 		m->elems[0] = n->elems[0];
 
- 		m->kids[1] = left;
 
- 		m->counts[1] = lcount;
 
- 		m->elems[1] = e;
 
- 		m->kids[2] = right;
 
- 		m->counts[2] = rcount;
 
- 		e = n->elems[1];
 
- 		n->kids[0] = n->kids[2];
 
- 		n->counts[0] = n->counts[2];
 
- 		n->elems[0] = n->elems[2];
 
- 		n->kids[1] = n->kids[3];
 
- 		n->counts[1] = n->counts[3];
 
- 	    } else if (np == &n->kids[2]) {
 
- 		m->kids[0] = n->kids[0];
 
- 		m->counts[0] = n->counts[0];
 
- 		m->elems[0] = n->elems[0];
 
- 		m->kids[1] = n->kids[1];
 
- 		m->counts[1] = n->counts[1];
 
- 		m->elems[1] = n->elems[1];
 
- 		m->kids[2] = left;
 
- 		m->counts[2] = lcount;
 
- 		/* e = e; */
 
- 		n->kids[0] = right;
 
- 		n->counts[0] = rcount;
 
- 		n->elems[0] = n->elems[2];
 
- 		n->kids[1] = n->kids[3];
 
- 		n->counts[1] = n->counts[3];
 
- 	    } else {		       /* np == &n->kids[3] */
 
- 		m->kids[0] = n->kids[0];
 
- 		m->counts[0] = n->counts[0];
 
- 		m->elems[0] = n->elems[0];
 
- 		m->kids[1] = n->kids[1];
 
- 		m->counts[1] = n->counts[1];
 
- 		m->elems[1] = n->elems[1];
 
- 		m->kids[2] = n->kids[2];
 
- 		m->counts[2] = n->counts[2];
 
- 		n->kids[0] = left;
 
- 		n->counts[0] = lcount;
 
- 		n->elems[0] = e;
 
- 		n->kids[1] = right;
 
- 		n->counts[1] = rcount;
 
- 		e = n->elems[2];
 
- 	    }
 
- 	    m->kids[3] = n->kids[3] = n->kids[2] = NULL;
 
- 	    m->counts[3] = n->counts[3] = n->counts[2] = 0;
 
- 	    m->elems[2] = n->elems[2] = n->elems[1] = NULL;
 
- 	    if (m->kids[0])
 
- 		m->kids[0]->parent = m;
 
- 	    if (m->kids[1])
 
- 		m->kids[1]->parent = m;
 
- 	    if (m->kids[2])
 
- 		m->kids[2]->parent = m;
 
- 	    if (n->kids[0])
 
- 		n->kids[0]->parent = n;
 
- 	    if (n->kids[1])
 
- 		n->kids[1]->parent = n;
 
- 	    LOG(("  left (%p): %p/%d [%p] %p/%d [%p] %p/%d\n", m,
 
- 		 m->kids[0], m->counts[0], m->elems[0],
 
- 		 m->kids[1], m->counts[1], m->elems[1],
 
- 		 m->kids[2], m->counts[2]));
 
- 	    LOG(("  right (%p): %p/%d [%p] %p/%d\n", n,
 
- 		 n->kids[0], n->counts[0], n->elems[0],
 
- 		 n->kids[1], n->counts[1]));
 
- 	    left = m;
 
- 	    lcount = countnode234(left);
 
- 	    right = n;
 
- 	    rcount = countnode234(right);
 
- 	}
 
- 	if (n->parent)
 
- 	    np = (n->parent->kids[0] == n ? &n->parent->kids[0] :
 
- 		  n->parent->kids[1] == n ? &n->parent->kids[1] :
 
- 		  n->parent->kids[2] == n ? &n->parent->kids[2] :
 
- 		  &n->parent->kids[3]);
 
- 	n = n->parent;
 
-     }
 
-     /*
 
-      * If we've come out of here by `break', n will still be
 
-      * non-NULL and all we need to do is go back up the tree
 
-      * updating counts. If we've come here because n is NULL, we
 
-      * need to create a new root for the tree because the old one
 
-      * has just split into two. */
 
-     if (n) {
 
- 	while (n->parent) {
 
- 	    int count = countnode234(n);
 
- 	    int childnum;
 
- 	    childnum = (n->parent->kids[0] == n ? 0 :
 
- 			n->parent->kids[1] == n ? 1 :
 
- 			n->parent->kids[2] == n ? 2 : 3);
 
- 	    n->parent->counts[childnum] = count;
 
- 	    n = n->parent;
 
- 	}
 
-     } else {
 
- 	LOG(("  root is overloaded, split into two\n"));
 
- 	t->root = snew(node234);
 
- 	t->root->kids[0] = left;
 
- 	t->root->counts[0] = lcount;
 
- 	t->root->elems[0] = e;
 
- 	t->root->kids[1] = right;
 
- 	t->root->counts[1] = rcount;
 
- 	t->root->elems[1] = NULL;
 
- 	t->root->kids[2] = NULL;
 
- 	t->root->counts[2] = 0;
 
- 	t->root->elems[2] = NULL;
 
- 	t->root->kids[3] = NULL;
 
- 	t->root->counts[3] = 0;
 
- 	t->root->parent = NULL;
 
- 	if (t->root->kids[0])
 
- 	    t->root->kids[0]->parent = t->root;
 
- 	if (t->root->kids[1])
 
- 	    t->root->kids[1]->parent = t->root;
 
- 	LOG(("  new root is %p/%d [%p] %p/%d\n",
 
- 	     t->root->kids[0], t->root->counts[0],
 
- 	     t->root->elems[0], t->root->kids[1], t->root->counts[1]));
 
-     }
 
-     return orig_e;
 
- }
 
- void *add234(tree234 * t, void *e)
 
- {
 
-     if (!t->cmp)		       /* tree is unsorted */
 
- 	return NULL;
 
-     return add234_internal(t, e, -1);
 
- }
 
- void *addpos234(tree234 * t, void *e, int index)
 
- {
 
-     if (index < 0 ||		       /* index out of range */
 
- 	t->cmp)			       /* tree is sorted */
 
- 	return NULL;		       /* return failure */
 
-     return add234_internal(t, e, index);	/* this checks the upper bound */
 
- }
 
- /*
 
-  * Look up the element at a given numeric index in a 2-3-4 tree.
 
-  * Returns NULL if the index is out of range.
 
-  */
 
- void *index234(tree234 * t, int index)
 
- {
 
-     node234 *n;
 
-     if (!t->root)
 
- 	return NULL;		       /* tree is empty */
 
-     if (index < 0 || index >= countnode234(t->root))
 
- 	return NULL;		       /* out of range */
 
-     n = t->root;
 
-     while (n) {
 
- 	if (index < n->counts[0])
 
- 	    n = n->kids[0];
 
- 	else if (index -= n->counts[0] + 1, index < 0)
 
- 	    return n->elems[0];
 
- 	else if (index < n->counts[1])
 
- 	    n = n->kids[1];
 
- 	else if (index -= n->counts[1] + 1, index < 0)
 
- 	    return n->elems[1];
 
- 	else if (index < n->counts[2])
 
- 	    n = n->kids[2];
 
- 	else if (index -= n->counts[2] + 1, index < 0)
 
- 	    return n->elems[2];
 
- 	else
 
- 	    n = n->kids[3];
 
-     }
 
-     /* We shouldn't ever get here. I wonder how we did. */
 
-     return NULL;
 
- }
 
- /*
 
-  * Find an element e in a sorted 2-3-4 tree t. Returns NULL if not
 
-  * found. e is always passed as the first argument to cmp, so cmp
 
-  * can be an asymmetric function if desired. cmp can also be passed
 
-  * as NULL, in which case the compare function from the tree proper
 
-  * will be used.
 
-  */
 
- void *findrelpos234(tree234 * t, void *e, cmpfn234 cmp,
 
- 		    int relation, int *index)
 
- {
 
-     search234_state ss;
 
-     int reldir = (relation == REL234_LT || relation == REL234_LE ? -1 :
 
-                   relation == REL234_GT || relation == REL234_GE ? +1 : 0);
 
-     bool equal_permitted = (relation != REL234_LT && relation != REL234_GT);
 
-     void *toret;
 
-     /* Only LT / GT relations are permitted with a null query element. */
 
-     assert(!(equal_permitted && !e));
 
-     if (cmp == NULL)
 
- 	cmp = t->cmp;
 
-     search234_start(&ss, t);
 
-     while (ss.element) {
 
-         int cmpret;
 
-         if (e) {
 
-             cmpret = cmp(e, ss.element);
 
-         } else {
 
-             cmpret = -reldir;          /* invent a fixed compare result */
 
-         }
 
-         if (cmpret == 0) {
 
-             /*
 
-              * We've found an element that compares exactly equal to
 
-              * the query element.
 
-              */
 
-             if (equal_permitted) {
 
-                 /* If our search relation permits equality, we've
 
-                  * finished already. */
 
-                 if (index)
 
-                     *index = ss.index;
 
-                 return ss.element;
 
-             } else {
 
-                 /* Otherwise, pretend this element was slightly too
 
-                  * big/small, according to the direction of search. */
 
-                 cmpret = reldir;
 
-             }
 
-         }
 
-         search234_step(&ss, cmpret);
 
-     }
 
-     /*
 
-      * No element compares equal to the one we were after, but
 
-      * ss.index indicates the index that element would have if it were
 
-      * inserted.
 
-      *
 
-      * So if our search relation is EQ, we must simply return failure.
 
-      */
 
-     if (relation == REL234_EQ)
 
-         return NULL;
 
-     /*
 
-      * Otherwise, we must do an index lookup for the previous index
 
-      * (if we're going left - LE or LT) or this index (if we're going
 
-      * right - GE or GT).
 
-      */
 
-     if (relation == REL234_LT || relation == REL234_LE) {
 
-         ss.index--;
 
-     }
 
-     /*
 
-      * We know the index of the element we want; just call index234
 
-      * to do the rest. This will return NULL if the index is out of
 
-      * bounds, which is exactly what we want.
 
-      */
 
-     toret = index234(t, ss.index);
 
-     if (toret && index)
 
-         *index = ss.index;
 
-     return toret;
 
- }
 
- void *find234(tree234 * t, void *e, cmpfn234 cmp)
 
- {
 
-     return findrelpos234(t, e, cmp, REL234_EQ, NULL);
 
- }
 
- void *findrel234(tree234 * t, void *e, cmpfn234 cmp, int relation)
 
- {
 
-     return findrelpos234(t, e, cmp, relation, NULL);
 
- }
 
- void *findpos234(tree234 * t, void *e, cmpfn234 cmp, int *index)
 
- {
 
-     return findrelpos234(t, e, cmp, REL234_EQ, index);
 
- }
 
- void search234_start(search234_state *state, tree234 *t)
 
- {
 
-     state->_node = t->root;
 
-     state->_base = 0; /* index of first element in this node's subtree */
 
-     state->_last = -1; /* indicate that this node is not previously visted */
 
-     search234_step(state, 0);
 
- }
 
- void search234_step(search234_state *state, int direction)
 
- {
 
-     node234 *node = state->_node;
 
-     int i;
 
-     if (!node) {
 
-         state->element = NULL;
 
-         state->index = 0;
 
-         return;
 
-     }
 
-     if (state->_last != -1) {
 
-         /*
 
-          * We're already pointing at some element of a node, so we
 
-          * should restrict to the elements left or right of it,
 
-          * depending on the requested search direction.
 
-          */
 
-         assert(direction);
 
-         assert(node);
 
-         if (direction > 0) {
 
-             state->_lo = state->_last + 1;
 
-             direction = +1;
 
-         } else {
 
-             state->_hi = state->_last - 1;
 
-             direction = -1;
 
-         }
 
-         if (state->_lo > state->_hi) {
 
-             /*
 
-              * We've run out of elements in this node, i.e. we've
 
-              * narrowed to nothing but a child pointer. Descend to
 
-              * that child, and update _base to the leftmost index of
 
-              * its subtree.
 
-              */
 
-             for (i = 0; i < state->_lo; i++)
 
-                 state->_base += 1 + node->counts[i];
 
-             state->_node = node = node->kids[state->_lo];
 
-             state->_last = -1;
 
-         }
 
-     }
 
-     if (state->_last == -1) {
 
-         /*
 
-          * We've just entered a new node - either because of the above
 
-          * code, or because we were called from search234_start - and
 
-          * anything in that node is a viable answer.
 
-          */
 
-         state->_lo = 0;
 
-         state->_hi = node ? elements234(node)-1 : 0;
 
-     }
 
-     /*
 
-      * Now we've got something we can return.
 
-      */
 
-     if (!node) {
 
-         state->element = NULL;
 
-         state->index = state->_base;
 
-     } else {
 
-         state->_last = (state->_lo + state->_hi) / 2;
 
-         state->element = node->elems[state->_last];
 
-         state->index = state->_base + state->_last;
 
-         for (i = 0; i <= state->_last; i++)
 
-             state->index += node->counts[i];
 
-     }
 
- }
 
- /*
 
-  * Delete an element e in a 2-3-4 tree. Does not free the element,
 
-  * merely removes all links to it from the tree nodes.
 
-  */
 
- static void *delpos234_internal(tree234 * t, int index)
 
- {
 
-     node234 *n;
 
-     void *retval;
 
-     int ei = -1;
 
-     retval = 0;
 
-     n = t->root;
 
-     LOG(("deleting item %d from tree %p\n", index, t));
 
-     while (1) {
 
- 	while (n) {
 
- 	    int ki;
 
- 	    node234 *sub;
 
- 	    LOG(
 
- 		("  node %p: %p/%d [%p] %p/%d [%p] %p/%d [%p] %p/%d index=%d\n",
 
- 		 n, n->kids[0], n->counts[0], n->elems[0], n->kids[1],
 
- 		 n->counts[1], n->elems[1], n->kids[2], n->counts[2],
 
- 		 n->elems[2], n->kids[3], n->counts[3], index));
 
- 	    if (index < n->counts[0]) {
 
- 		ki = 0;
 
- 	    } else if (index -= n->counts[0] + 1, index < 0) {
 
- 		ei = 0;
 
- 		break;
 
- 	    } else if (index < n->counts[1]) {
 
- 		ki = 1;
 
- 	    } else if (index -= n->counts[1] + 1, index < 0) {
 
- 		ei = 1;
 
- 		break;
 
- 	    } else if (index < n->counts[2]) {
 
- 		ki = 2;
 
- 	    } else if (index -= n->counts[2] + 1, index < 0) {
 
- 		ei = 2;
 
- 		break;
 
- 	    } else {
 
- 		ki = 3;
 
- 	    }
 
- 	    /*
 
- 	     * Recurse down to subtree ki. If it has only one element,
 
- 	     * we have to do some transformation to start with.
 
- 	     */
 
- 	    LOG(("  moving to subtree %d\n", ki));
 
- 	    sub = n->kids[ki];
 
- 	    if (!sub->elems[1]) {
 
- 		LOG(("  subtree has only one element!\n"));
 
- 		if (ki > 0 && n->kids[ki - 1]->elems[1]) {
 
- 		    /*
 
- 		     * Case 3a, left-handed variant. Child ki has
 
- 		     * only one element, but child ki-1 has two or
 
- 		     * more. So we need to move a subtree from ki-1
 
- 		     * to ki.
 
- 		     * 
 
- 		     *                . C .                     . B .
 
- 		     *               /     \     ->            /     \
 
- 		     * [more] a A b B c   d D e      [more] a A b   c C d D e
 
- 		     */
 
- 		    node234 *sib = n->kids[ki - 1];
 
- 		    int lastelem = (sib->elems[2] ? 2 :
 
- 				    sib->elems[1] ? 1 : 0);
 
- 		    sub->kids[2] = sub->kids[1];
 
- 		    sub->counts[2] = sub->counts[1];
 
- 		    sub->elems[1] = sub->elems[0];
 
- 		    sub->kids[1] = sub->kids[0];
 
- 		    sub->counts[1] = sub->counts[0];
 
- 		    sub->elems[0] = n->elems[ki - 1];
 
- 		    sub->kids[0] = sib->kids[lastelem + 1];
 
- 		    sub->counts[0] = sib->counts[lastelem + 1];
 
- 		    if (sub->kids[0])
 
- 			sub->kids[0]->parent = sub;
 
- 		    n->elems[ki - 1] = sib->elems[lastelem];
 
- 		    sib->kids[lastelem + 1] = NULL;
 
- 		    sib->counts[lastelem + 1] = 0;
 
- 		    sib->elems[lastelem] = NULL;
 
- 		    n->counts[ki] = countnode234(sub);
 
- 		    LOG(("  case 3a left\n"));
 
- 		    LOG(
 
- 			("  index and left subtree count before adjustment: %d, %d\n",
 
- 			 index, n->counts[ki - 1]));
 
- 		    index += n->counts[ki - 1];
 
- 		    n->counts[ki - 1] = countnode234(sib);
 
- 		    index -= n->counts[ki - 1];
 
- 		    LOG(
 
- 			("  index and left subtree count after adjustment: %d, %d\n",
 
- 			 index, n->counts[ki - 1]));
 
- 		} else if (ki < 3 && n->kids[ki + 1]
 
- 			   && n->kids[ki + 1]->elems[1]) {
 
- 		    /*
 
- 		     * Case 3a, right-handed variant. ki has only
 
- 		     * one element but ki+1 has two or more. Move a
 
- 		     * subtree from ki+1 to ki.
 
- 		     * 
 
- 		     *      . B .                             . C .
 
- 		     *     /     \                ->         /     \
 
- 		     *  a A b   c C d D e [more]      a A b B c   d D e [more]
 
- 		     */
 
- 		    node234 *sib = n->kids[ki + 1];
 
- 		    int j;
 
- 		    sub->elems[1] = n->elems[ki];
 
- 		    sub->kids[2] = sib->kids[0];
 
- 		    sub->counts[2] = sib->counts[0];
 
- 		    if (sub->kids[2])
 
- 			sub->kids[2]->parent = sub;
 
- 		    n->elems[ki] = sib->elems[0];
 
- 		    sib->kids[0] = sib->kids[1];
 
- 		    sib->counts[0] = sib->counts[1];
 
- 		    for (j = 0; j < 2 && sib->elems[j + 1]; j++) {
 
- 			sib->kids[j + 1] = sib->kids[j + 2];
 
- 			sib->counts[j + 1] = sib->counts[j + 2];
 
- 			sib->elems[j] = sib->elems[j + 1];
 
- 		    }
 
- 		    sib->kids[j + 1] = NULL;
 
- 		    sib->counts[j + 1] = 0;
 
- 		    sib->elems[j] = NULL;
 
- 		    n->counts[ki] = countnode234(sub);
 
- 		    n->counts[ki + 1] = countnode234(sib);
 
- 		    LOG(("  case 3a right\n"));
 
- 		} else {
 
- 		    /*
 
- 		     * Case 3b. ki has only one element, and has no
 
- 		     * neighbour with more than one. So pick a
 
- 		     * neighbour and merge it with ki, taking an
 
- 		     * element down from n to go in the middle.
 
- 		     *
 
- 		     *      . B .                .
 
- 		     *     /     \     ->        |
 
- 		     *  a A b   c C d      a A b B c C d
 
- 		     * 
 
- 		     * (Since at all points we have avoided
 
- 		     * descending to a node with only one element,
 
- 		     * we can be sure that n is not reduced to
 
- 		     * nothingness by this move, _unless_ it was
 
- 		     * the very first node, ie the root of the
 
- 		     * tree. In that case we remove the now-empty
 
- 		     * root and replace it with its single large
 
- 		     * child as shown.)
 
- 		     */
 
- 		    node234 *sib;
 
- 		    int j;
 
- 		    if (ki > 0) {
 
- 			ki--;
 
- 			index += n->counts[ki] + 1;
 
- 		    }
 
- 		    sib = n->kids[ki];
 
- 		    sub = n->kids[ki + 1];
 
- 		    sub->kids[3] = sub->kids[1];
 
- 		    sub->counts[3] = sub->counts[1];
 
- 		    sub->elems[2] = sub->elems[0];
 
- 		    sub->kids[2] = sub->kids[0];
 
- 		    sub->counts[2] = sub->counts[0];
 
- 		    sub->elems[1] = n->elems[ki];
 
- 		    sub->kids[1] = sib->kids[1];
 
- 		    sub->counts[1] = sib->counts[1];
 
- 		    if (sub->kids[1])
 
- 			sub->kids[1]->parent = sub;
 
- 		    sub->elems[0] = sib->elems[0];
 
- 		    sub->kids[0] = sib->kids[0];
 
- 		    sub->counts[0] = sib->counts[0];
 
- 		    if (sub->kids[0])
 
- 			sub->kids[0]->parent = sub;
 
- 		    n->counts[ki + 1] = countnode234(sub);
 
- 		    sfree(sib);
 
- 		    /*
 
- 		     * That's built the big node in sub. Now we
 
- 		     * need to remove the reference to sib in n.
 
- 		     */
 
- 		    for (j = ki; j < 3 && n->kids[j + 1]; j++) {
 
- 			n->kids[j] = n->kids[j + 1];
 
- 			n->counts[j] = n->counts[j + 1];
 
- 			n->elems[j] = j < 2 ? n->elems[j + 1] : NULL;
 
- 		    }
 
- 		    n->kids[j] = NULL;
 
- 		    n->counts[j] = 0;
 
- 		    if (j < 3)
 
- 			n->elems[j] = NULL;
 
- 		    LOG(("  case 3b ki=%d\n", ki));
 
- 		    if (!n->elems[0]) {
 
- 			/*
 
- 			 * The root is empty and needs to be
 
- 			 * removed.
 
- 			 */
 
- 			LOG(("  shifting root!\n"));
 
- 			t->root = sub;
 
- 			sub->parent = NULL;
 
- 			sfree(n);
 
- 		    }
 
- 		}
 
- 	    }
 
- 	    n = sub;
 
- 	}
 
- 	if (!retval)
 
- 	    retval = n->elems[ei];
 
- 	if (ei == -1)
 
- 	    return NULL;	       /* although this shouldn't happen */
 
- 	/*
 
- 	 * Treat special case: this is the one remaining item in
 
- 	 * the tree. n is the tree root (no parent), has one
 
- 	 * element (no elems[1]), and has no kids (no kids[0]).
 
- 	 */
 
- 	if (!n->parent && !n->elems[1] && !n->kids[0]) {
 
- 	    LOG(("  removed last element in tree\n"));
 
- 	    sfree(n);
 
- 	    t->root = NULL;
 
- 	    return retval;
 
- 	}
 
- 	/*
 
- 	 * Now we have the element we want, as n->elems[ei], and we
 
- 	 * have also arranged for that element not to be the only
 
- 	 * one in its node. So...
 
- 	 */
 
- 	if (!n->kids[0] && n->elems[1]) {
 
- 	    /*
 
- 	     * Case 1. n is a leaf node with more than one element,
 
- 	     * so it's _really easy_. Just delete the thing and
 
- 	     * we're done.
 
- 	     */
 
- 	    int i;
 
- 	    LOG(("  case 1\n"));
 
- 	    for (i = ei; i < 2 && n->elems[i + 1]; i++)
 
- 		n->elems[i] = n->elems[i + 1];
 
- 	    n->elems[i] = NULL;
 
- 	    /*
 
- 	     * Having done that to the leaf node, we now go back up
 
- 	     * the tree fixing the counts.
 
- 	     */
 
- 	    while (n->parent) {
 
- 		int childnum;
 
- 		childnum = (n->parent->kids[0] == n ? 0 :
 
- 			    n->parent->kids[1] == n ? 1 :
 
- 			    n->parent->kids[2] == n ? 2 : 3);
 
- 		n->parent->counts[childnum]--;
 
- 		n = n->parent;
 
- 	    }
 
- 	    return retval;	       /* finished! */
 
- 	} else if (n->kids[ei]->elems[1]) {
 
- 	    /*
 
- 	     * Case 2a. n is an internal node, and the root of the
 
- 	     * subtree to the left of e has more than one element.
 
- 	     * So find the predecessor p to e (ie the largest node
 
- 	     * in that subtree), place it where e currently is, and
 
- 	     * then start the deletion process over again on the
 
- 	     * subtree with p as target.
 
- 	     */
 
- 	    node234 *m = n->kids[ei];
 
- 	    void *target;
 
- 	    LOG(("  case 2a\n"));
 
- 	    while (m->kids[0]) {
 
- 		m = (m->kids[3] ? m->kids[3] :
 
- 		     m->kids[2] ? m->kids[2] :
 
- 		     m->kids[1] ? m->kids[1] : m->kids[0]);
 
- 	    }
 
- 	    target = (m->elems[2] ? m->elems[2] :
 
- 		      m->elems[1] ? m->elems[1] : m->elems[0]);
 
- 	    n->elems[ei] = target;
 
- 	    index = n->counts[ei] - 1;
 
- 	    n = n->kids[ei];
 
- 	} else if (n->kids[ei + 1]->elems[1]) {
 
- 	    /*
 
- 	     * Case 2b, symmetric to 2a but s/left/right/ and
 
- 	     * s/predecessor/successor/. (And s/largest/smallest/).
 
- 	     */
 
- 	    node234 *m = n->kids[ei + 1];
 
- 	    void *target;
 
- 	    LOG(("  case 2b\n"));
 
- 	    while (m->kids[0]) {
 
- 		m = m->kids[0];
 
- 	    }
 
- 	    target = m->elems[0];
 
- 	    n->elems[ei] = target;
 
- 	    n = n->kids[ei + 1];
 
- 	    index = 0;
 
- 	} else {
 
- 	    /*
 
- 	     * Case 2c. n is an internal node, and the subtrees to
 
- 	     * the left and right of e both have only one element.
 
- 	     * So combine the two subnodes into a single big node
 
- 	     * with their own elements on the left and right and e
 
- 	     * in the middle, then restart the deletion process on
 
- 	     * that subtree, with e still as target.
 
- 	     */
 
- 	    node234 *a = n->kids[ei], *b = n->kids[ei + 1];
 
- 	    int j;
 
- 	    LOG(("  case 2c\n"));
 
- 	    a->elems[1] = n->elems[ei];
 
- 	    a->kids[2] = b->kids[0];
 
- 	    a->counts[2] = b->counts[0];
 
- 	    if (a->kids[2])
 
- 		a->kids[2]->parent = a;
 
- 	    a->elems[2] = b->elems[0];
 
- 	    a->kids[3] = b->kids[1];
 
- 	    a->counts[3] = b->counts[1];
 
- 	    if (a->kids[3])
 
- 		a->kids[3]->parent = a;
 
- 	    sfree(b);
 
- 	    n->counts[ei] = countnode234(a);
 
- 	    /*
 
- 	     * That's built the big node in a, and destroyed b. Now
 
- 	     * remove the reference to b (and e) in n.
 
- 	     */
 
- 	    for (j = ei; j < 2 && n->elems[j + 1]; j++) {
 
- 		n->elems[j] = n->elems[j + 1];
 
- 		n->kids[j + 1] = n->kids[j + 2];
 
- 		n->counts[j + 1] = n->counts[j + 2];
 
- 	    }
 
- 	    n->elems[j] = NULL;
 
- 	    n->kids[j + 1] = NULL;
 
- 	    n->counts[j + 1] = 0;
 
- 	    /*
 
- 	     * It's possible, in this case, that we've just removed
 
- 	     * the only element in the root of the tree. If so,
 
- 	     * shift the root.
 
- 	     */
 
- 	    if (n->elems[0] == NULL) {
 
- 		LOG(("  shifting root!\n"));
 
- 		t->root = a;
 
- 		a->parent = NULL;
 
- 		sfree(n);
 
- 	    }
 
- 	    /*
 
- 	     * Now go round the deletion process again, with n
 
- 	     * pointing at the new big node and e still the same.
 
- 	     */
 
- 	    n = a;
 
- 	    index = a->counts[0] + a->counts[1] + 1;
 
- 	}
 
-     }
 
- }
 
- void *delpos234(tree234 * t, int index)
 
- {
 
-     if (index < 0 || index >= countnode234(t->root))
 
- 	return NULL;
 
-     return delpos234_internal(t, index);
 
- }
 
- void *del234(tree234 * t, void *e)
 
- {
 
-     int index;
 
-     if (!findrelpos234(t, e, NULL, REL234_EQ, &index))
 
- 	return NULL;		       /* it wasn't in there anyway */
 
-     return delpos234_internal(t, index);	/* it's there; delete it. */
 
- }
 
- #ifdef TEST
 
- /*
 
-  * Test code for the 2-3-4 tree. This code maintains an alternative
 
-  * representation of the data in the tree, in an array (using the
 
-  * obvious and slow insert and delete functions). After each tree
 
-  * operation, the verify() function is called, which ensures all
 
-  * the tree properties are preserved:
 
-  *  - node->child->parent always equals node
 
-  *  - tree->root->parent always equals NULL
 
-  *  - number of kids == 0 or number of elements + 1;
 
-  *  - tree has the same depth everywhere
 
-  *  - every node has at least one element
 
-  *  - subtree element counts are accurate
 
-  *  - any NULL kid pointer is accompanied by a zero count
 
-  *  - in a sorted tree: ordering property between elements of a
 
-  *    node and elements of its children is preserved
 
-  * and also ensures the list represented by the tree is the same
 
-  * list it should be. (This last check also doubly verifies the
 
-  * ordering properties, because the `same list it should be' is by
 
-  * definition correctly ordered. It also ensures all nodes are
 
-  * distinct, because the enum functions would get caught in a loop
 
-  * if not.)
 
-  */
 
- #include <stdarg.h>
 
- #include <string.h>
 
- int n_errors = 0;
 
- /*
 
-  * Error reporting function.
 
-  */
 
- void error(char *fmt, ...)
 
- {
 
-     va_list ap;
 
-     printf("ERROR: ");
 
-     va_start(ap, fmt);
 
-     vfprintf(stdout, fmt, ap);
 
-     va_end(ap);
 
-     printf("\n");
 
-     n_errors++;
 
- }
 
- /* The array representation of the data. */
 
- void **array;
 
- int arraylen, arraysize;
 
- cmpfn234 cmp;
 
- /* The tree representation of the same data. */
 
- tree234 *tree;
 
- typedef struct {
 
-     int treedepth;
 
-     int elemcount;
 
- } chkctx;
 
- int chknode(chkctx * ctx, int level, node234 * node,
 
- 	    void *lowbound, void *highbound)
 
- {
 
-     int nkids, nelems;
 
-     int i;
 
-     int count;
 
-     /* Count the non-NULL kids. */
 
-     for (nkids = 0; nkids < 4 && node->kids[nkids]; nkids++);
 
-     /* Ensure no kids beyond the first NULL are non-NULL. */
 
-     for (i = nkids; i < 4; i++)
 
- 	if (node->kids[i]) {
 
- 	    error("node %p: nkids=%d but kids[%d] non-NULL",
 
- 		  node, nkids, i);
 
- 	} else if (node->counts[i]) {
 
- 	    error("node %p: kids[%d] NULL but count[%d]=%d nonzero",
 
- 		  node, i, i, node->counts[i]);
 
- 	}
 
-     /* Count the non-NULL elements. */
 
-     for (nelems = 0; nelems < 3 && node->elems[nelems]; nelems++);
 
-     /* Ensure no elements beyond the first NULL are non-NULL. */
 
-     for (i = nelems; i < 3; i++)
 
- 	if (node->elems[i]) {
 
- 	    error("node %p: nelems=%d but elems[%d] non-NULL",
 
- 		  node, nelems, i);
 
- 	}
 
-     if (nkids == 0) {
 
- 	/*
 
- 	 * If nkids==0, this is a leaf node; verify that the tree
 
- 	 * depth is the same everywhere.
 
- 	 */
 
- 	if (ctx->treedepth < 0)
 
- 	    ctx->treedepth = level;    /* we didn't know the depth yet */
 
- 	else if (ctx->treedepth != level)
 
- 	    error("node %p: leaf at depth %d, previously seen depth %d",
 
- 		  node, level, ctx->treedepth);
 
-     } else {
 
- 	/*
 
- 	 * If nkids != 0, then it should be nelems+1, unless nelems
 
- 	 * is 0 in which case nkids should also be 0 (and so we
 
- 	 * shouldn't be in this condition at all).
 
- 	 */
 
- 	int shouldkids = (nelems ? nelems + 1 : 0);
 
- 	if (nkids != shouldkids) {
 
- 	    error("node %p: %d elems should mean %d kids but has %d",
 
- 		  node, nelems, shouldkids, nkids);
 
- 	}
 
-     }
 
-     /*
 
-      * nelems should be at least 1.
 
-      */
 
-     if (nelems == 0) {
 
- 	error("node %p: no elems", node, nkids);
 
-     }
 
-     /*
 
-      * Add nelems to the running element count of the whole tree.
 
-      */
 
-     ctx->elemcount += nelems;
 
-     /*
 
-      * Check ordering property: all elements should be strictly >
 
-      * lowbound, strictly < highbound, and strictly < each other in
 
-      * sequence. (lowbound and highbound are NULL at edges of tree
 
-      * - both NULL at root node - and NULL is considered to be <
 
-      * everything and > everything. IYSWIM.)
 
-      */
 
-     if (cmp) {
 
- 	for (i = -1; i < nelems; i++) {
 
- 	    void *lower = (i == -1 ? lowbound : node->elems[i]);
 
- 	    void *higher =
 
- 		(i + 1 == nelems ? highbound : node->elems[i + 1]);
 
- 	    if (lower && higher && cmp(lower, higher) >= 0) {
 
- 		error("node %p: kid comparison [%d=%s,%d=%s] failed",
 
- 		      node, i, lower, i + 1, higher);
 
- 	    }
 
- 	}
 
-     }
 
-     /*
 
-      * Check parent pointers: all non-NULL kids should have a
 
-      * parent pointer coming back to this node.
 
-      */
 
-     for (i = 0; i < nkids; i++)
 
- 	if (node->kids[i]->parent != node) {
 
- 	    error("node %p kid %d: parent ptr is %p not %p",
 
- 		  node, i, node->kids[i]->parent, node);
 
- 	}
 
-     /*
 
-      * Now (finally!) recurse into subtrees.
 
-      */
 
-     count = nelems;
 
-     for (i = 0; i < nkids; i++) {
 
- 	void *lower = (i == 0 ? lowbound : node->elems[i - 1]);
 
- 	void *higher = (i >= nelems ? highbound : node->elems[i]);
 
- 	int subcount =
 
- 	    chknode(ctx, level + 1, node->kids[i], lower, higher);
 
- 	if (node->counts[i] != subcount) {
 
- 	    error("node %p kid %d: count says %d, subtree really has %d",
 
- 		  node, i, node->counts[i], subcount);
 
- 	}
 
- 	count += subcount;
 
-     }
 
-     return count;
 
- }
 
- void verify(void)
 
- {
 
-     chkctx ctx;
 
-     int i;
 
-     void *p;
 
-     ctx.treedepth = -1;		       /* depth unknown yet */
 
-     ctx.elemcount = 0;		       /* no elements seen yet */
 
-     /*
 
-      * Verify validity of tree properties.
 
-      */
 
-     if (tree->root) {
 
- 	if (tree->root->parent != NULL)
 
- 	    error("root->parent is %p should be null", tree->root->parent);
 
- 	chknode(&ctx, 0, tree->root, NULL, NULL);
 
-     }
 
-     printf("tree depth: %d\n", ctx.treedepth);
 
-     /*
 
-      * Enumerate the tree and ensure it matches up to the array.
 
-      */
 
-     for (i = 0; NULL != (p = index234(tree, i)); i++) {
 
- 	if (i >= arraylen)
 
- 	    error("tree contains more than %d elements", arraylen);
 
- 	if (array[i] != p)
 
- 	    error("enum at position %d: array says %s, tree says %s",
 
- 		  i, array[i], p);
 
-     }
 
-     if (ctx.elemcount != i) {
 
- 	error("tree really contains %d elements, enum gave %d",
 
- 	      ctx.elemcount, i);
 
-     }
 
-     if (i < arraylen) {
 
- 	error("enum gave only %d elements, array has %d", i, arraylen);
 
-     }
 
-     i = count234(tree);
 
-     if (ctx.elemcount != i) {
 
- 	error("tree really contains %d elements, count234 gave %d",
 
- 	      ctx.elemcount, i);
 
-     }
 
- }
 
- void internal_addtest(void *elem, int index, void *realret)
 
- {
 
-     int i, j;
 
-     void *retval;
 
-     if (arraysize < arraylen + 1) {
 
- 	arraysize = arraylen + 1 + 256;
 
- 	array = sresize(array, arraysize, void *);
 
-     }
 
-     i = index;
 
-     /* now i points to the first element >= elem */
 
-     retval = elem;		       /* expect elem returned (success) */
 
-     for (j = arraylen; j > i; j--)
 
- 	array[j] = array[j - 1];
 
-     array[i] = elem;		       /* add elem to array */
 
-     arraylen++;
 
-     if (realret != retval) {
 
- 	error("add: retval was %p expected %p", realret, retval);
 
-     }
 
-     verify();
 
- }
 
- void addtest(void *elem)
 
- {
 
-     int i;
 
-     void *realret;
 
-     realret = add234(tree, elem);
 
-     i = 0;
 
-     while (i < arraylen && cmp(elem, array[i]) > 0)
 
- 	i++;
 
-     if (i < arraylen && !cmp(elem, array[i])) {
 
- 	void *retval = array[i];       /* expect that returned not elem */
 
- 	if (realret != retval) {
 
- 	    error("add: retval was %p expected %p", realret, retval);
 
- 	}
 
-     } else
 
- 	internal_addtest(elem, i, realret);
 
- }
 
- void addpostest(void *elem, int i)
 
- {
 
-     void *realret;
 
-     realret = addpos234(tree, elem, i);
 
-     internal_addtest(elem, i, realret);
 
- }
 
- void delpostest(int i)
 
- {
 
-     int index = i;
 
-     void *elem = array[i], *ret;
 
-     /* i points to the right element */
 
-     while (i < arraylen - 1) {
 
- 	array[i] = array[i + 1];
 
- 	i++;
 
-     }
 
-     arraylen--;			       /* delete elem from array */
 
-     if (tree->cmp)
 
- 	ret = del234(tree, elem);
 
-     else
 
- 	ret = delpos234(tree, index);
 
-     if (ret != elem) {
 
- 	error("del returned %p, expected %p", ret, elem);
 
-     }
 
-     verify();
 
- }
 
- void deltest(void *elem)
 
- {
 
-     int i;
 
-     i = 0;
 
-     while (i < arraylen && cmp(elem, array[i]) > 0)
 
- 	i++;
 
-     if (i >= arraylen || cmp(elem, array[i]) != 0)
 
- 	return;			       /* don't do it! */
 
-     delpostest(i);
 
- }
 
- /* A sample data set and test utility. Designed for pseudo-randomness,
 
-  * and yet repeatability. */
 
- /*
 
-  * This random number generator uses the `portable implementation'
 
-  * given in ANSI C99 draft N869. It assumes `unsigned' is 32 bits;
 
-  * change it if not.
 
-  */
 
- int randomnumber(unsigned *seed)
 
- {
 
-     *seed *= 1103515245;
 
-     *seed += 12345;
 
-     return ((*seed) / 65536) % 32768;
 
- }
 
- int mycmp(void *av, void *bv)
 
- {
 
-     char const *a = (char const *) av;
 
-     char const *b = (char const *) bv;
 
-     return strcmp(a, b);
 
- }
 
- #define lenof(x) ( sizeof((x)) / sizeof(*(x)) )
 
- char *strings[] = {
 
-     "a", "ab", "absque", "coram", "de",
 
-     "palam", "clam", "cum", "ex", "e",
 
-     "sine", "tenus", "pro", "prae",
 
-     "banana", "carrot", "cabbage", "broccoli", "onion", "zebra",
 
-     "penguin", "blancmange", "pangolin", "whale", "hedgehog",
 
-     "giraffe", "peanut", "bungee", "foo", "bar", "baz", "quux",
 
-     "murfl", "spoo", "breen", "flarn", "octothorpe",
 
-     "snail", "tiger", "elephant", "octopus", "warthog", "armadillo",
 
-     "aardvark", "wyvern", "dragon", "elf", "dwarf", "orc", "goblin",
 
-     "pixie", "basilisk", "warg", "ape", "lizard", "newt", "shopkeeper",
 
-     "wand", "ring", "amulet"
 
- };
 
- #define NSTR lenof(strings)
 
- int findtest(void)
 
- {
 
-     const static int rels[] = {
 
- 	REL234_EQ, REL234_GE, REL234_LE, REL234_LT, REL234_GT
 
-     };
 
-     const static char *const relnames[] = {
 
- 	"EQ", "GE", "LE", "LT", "GT"
 
-     };
 
-     int i, j, rel, index;
 
-     char *p, *ret, *realret, *realret2;
 
-     int lo, hi, mid, c;
 
-     for (i = 0; i < NSTR; i++) {
 
- 	p = strings[i];
 
- 	for (j = 0; j < sizeof(rels) / sizeof(*rels); j++) {
 
- 	    rel = rels[j];
 
- 	    lo = 0;
 
- 	    hi = arraylen - 1;
 
- 	    while (lo <= hi) {
 
- 		mid = (lo + hi) / 2;
 
- 		c = strcmp(p, array[mid]);
 
- 		if (c < 0)
 
- 		    hi = mid - 1;
 
- 		else if (c > 0)
 
- 		    lo = mid + 1;
 
- 		else
 
- 		    break;
 
- 	    }
 
- 	    if (c == 0) {
 
- 		if (rel == REL234_LT)
 
- 		    ret = (mid > 0 ? array[--mid] : NULL);
 
- 		else if (rel == REL234_GT)
 
- 		    ret = (mid < arraylen - 1 ? array[++mid] : NULL);
 
- 		else
 
- 		    ret = array[mid];
 
- 	    } else {
 
- 		assert(lo == hi + 1);
 
- 		if (rel == REL234_LT || rel == REL234_LE) {
 
- 		    mid = hi;
 
- 		    ret = (hi >= 0 ? array[hi] : NULL);
 
- 		} else if (rel == REL234_GT || rel == REL234_GE) {
 
- 		    mid = lo;
 
- 		    ret = (lo < arraylen ? array[lo] : NULL);
 
- 		} else
 
- 		    ret = NULL;
 
- 	    }
 
- 	    realret = findrelpos234(tree, p, NULL, rel, &index);
 
- 	    if (realret != ret) {
 
- 		error("find(\"%s\",%s) gave %s should be %s",
 
- 		      p, relnames[j], realret, ret);
 
- 	    }
 
- 	    if (realret && index != mid) {
 
- 		error("find(\"%s\",%s) gave %d should be %d",
 
- 		      p, relnames[j], index, mid);
 
- 	    }
 
- 	    if (realret && rel == REL234_EQ) {
 
- 		realret2 = index234(tree, index);
 
- 		if (realret2 != realret) {
 
- 		    error("find(\"%s\",%s) gave %s(%d) but %d -> %s",
 
- 			  p, relnames[j], realret, index, index, realret2);
 
- 		}
 
- 	    }
 
- #if 0
 
- 	    printf("find(\"%s\",%s) gave %s(%d)\n", p, relnames[j],
 
- 		   realret, index);
 
- #endif
 
- 	}
 
-     }
 
-     realret = findrelpos234(tree, NULL, NULL, REL234_GT, &index);
 
-     if (arraylen && (realret != array[0] || index != 0)) {
 
- 	error("find(NULL,GT) gave %s(%d) should be %s(0)",
 
- 	      realret, index, array[0]);
 
-     } else if (!arraylen && (realret != NULL)) {
 
- 	error("find(NULL,GT) gave %s(%d) should be NULL", realret, index);
 
-     }
 
-     realret = findrelpos234(tree, NULL, NULL, REL234_LT, &index);
 
-     if (arraylen
 
- 	&& (realret != array[arraylen - 1] || index != arraylen - 1)) {
 
- 	error("find(NULL,LT) gave %s(%d) should be %s(0)", realret, index,
 
- 	      array[arraylen - 1]);
 
-     } else if (!arraylen && (realret != NULL)) {
 
- 	error("find(NULL,LT) gave %s(%d) should be NULL", realret, index);
 
-     }
 
- }
 
- void searchtest_recurse(search234_state ss, int lo, int hi,
 
-                         char **expected, char *directionbuf,
 
-                         char *directionptr)
 
- {
 
-     *directionptr = '\0';
 
-     if (!ss.element) {
 
-         if (lo != hi) {
 
-             error("search234(%s) gave NULL for non-empty interval [%d,%d)",
 
-                   directionbuf, lo, hi);
 
-         } else if (ss.index != lo) {
 
-             error("search234(%s) gave index %d should be %d",
 
-                   directionbuf, ss.index, lo);
 
-         } else {
 
-             printf("%*ssearch234(%s) gave NULL,%d\n",
 
-                    (int)(directionptr-directionbuf) * 2, "", directionbuf,
 
-                    ss.index);
 
-         }
 
-     } else if (lo == hi) {
 
-         error("search234(%s) gave %s for empty interval [%d,%d)",
 
-               directionbuf, (char *)ss.element, lo, hi);
 
-     } else if (ss.element != expected[ss.index]) {
 
-         error("search234(%s) gave element %s should be %s",
 
-               directionbuf, (char *)ss.element, expected[ss.index]);
 
-     } else if (ss.index < lo || ss.index >= hi) {
 
-         error("search234(%s) gave index %d should be in [%d,%d)",
 
-               directionbuf, ss.index, lo, hi);
 
-         return;
 
-     } else {
 
-         search234_state next;
 
-         printf("%*ssearch234(%s) gave %s,%d\n",
 
-                (int)(directionptr-directionbuf) * 2, "", directionbuf,
 
-                (char *)ss.element, ss.index);
 
-         next = ss;
 
-         search234_step(&next, -1);
 
-         *directionptr = '-';
 
-         searchtest_recurse(next, lo, ss.index,
 
-                            expected, directionbuf, directionptr+1);
 
-         next = ss;
 
-         search234_step(&next, +1);
 
-         *directionptr = '+';
 
-         searchtest_recurse(next, ss.index+1, hi,
 
-                            expected, directionbuf, directionptr+1);
 
-     }
 
- }
 
- void searchtest(void)
 
- {
 
-     char *expected[NSTR], *p;
 
-     char directionbuf[NSTR * 10];
 
-     int n;
 
-     search234_state ss;
 
-     printf("beginning searchtest:");
 
-     for (n = 0; (p = index234(tree, n)) != NULL; n++) {
 
-         expected[n] = p;
 
-         printf(" %d=%s", n, p);
 
-     }
 
-     printf(" count=%d\n", n);
 
-     search234_start(&ss, tree);
 
-     searchtest_recurse(ss, 0, n, expected, directionbuf, directionbuf);
 
- }
 
- int main(void)
 
- {
 
-     int in[NSTR];
 
-     int i, j, k;
 
-     unsigned seed = 0;
 
-     for (i = 0; i < NSTR; i++)
 
- 	in[i] = 0;
 
-     array = NULL;
 
-     arraylen = arraysize = 0;
 
-     tree = newtree234(mycmp);
 
-     cmp = mycmp;
 
-     verify();
 
-     searchtest();
 
-     for (i = 0; i < 10000; i++) {
 
- 	j = randomnumber(&seed);
 
- 	j %= NSTR;
 
- 	printf("trial: %d\n", i);
 
- 	if (in[j]) {
 
- 	    printf("deleting %s (%d)\n", strings[j], j);
 
- 	    deltest(strings[j]);
 
- 	    in[j] = 0;
 
- 	} else {
 
- 	    printf("adding %s (%d)\n", strings[j], j);
 
- 	    addtest(strings[j]);
 
- 	    in[j] = 1;
 
- 	}
 
- 	findtest();
 
-         searchtest();
 
-     }
 
-     while (arraylen > 0) {
 
- 	j = randomnumber(&seed);
 
- 	j %= arraylen;
 
- 	deltest(array[j]);
 
-     }
 
-     freetree234(tree);
 
-     /*
 
-      * Now try an unsorted tree. We don't really need to test
 
-      * delpos234 because we know del234 is based on it, so it's
 
-      * already been tested in the above sorted-tree code; but for
 
-      * completeness we'll use it to tear down our unsorted tree
 
-      * once we've built it.
 
-      */
 
-     tree = newtree234(NULL);
 
-     cmp = NULL;
 
-     verify();
 
-     for (i = 0; i < 1000; i++) {
 
- 	printf("trial: %d\n", i);
 
- 	j = randomnumber(&seed);
 
- 	j %= NSTR;
 
- 	k = randomnumber(&seed);
 
- 	k %= count234(tree) + 1;
 
- 	printf("adding string %s at index %d\n", strings[j], k);
 
- 	addpostest(strings[j], k);
 
-     }
 
-     while (count234(tree) > 0) {
 
- 	printf("cleanup: tree size %d\n", count234(tree));
 
- 	j = randomnumber(&seed);
 
- 	j %= count234(tree);
 
- 	printf("deleting string %s from index %d\n",
 
-                (const char *)array[j], j);
 
- 	delpostest(j);
 
-     }
 
-     printf("%d errors found\n", n_errors);
 
-     return (n_errors != 0);
 
- }
 
- #endif
 
 
  |