| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593 | 
							- /*
 
-  * Implementation of the Argon2 password hash function.
 
-  *
 
-  * My sources for the algorithm description and test vectors (the latter in
 
-  * test/cryptsuite.py) were the reference implementation on Github, and also
 
-  * the Internet-Draft description:
 
-  *
 
-  *   https://github.com/P-H-C/phc-winner-argon2
 
-  *   https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-argon2-13
 
-  */
 
- #include <assert.h>
 
- #include "putty.h"
 
- #include "ssh.h"
 
- #include "marshal.h"
 
- /* ----------------------------------------------------------------------
 
-  * Argon2 uses data marshalling rules similar to SSH but with 32-bit integers
 
-  * stored little-endian. Start with some local BinarySink routines for storing
 
-  * a uint32 and a string in that fashion.
 
-  */
 
- static void BinarySink_put_uint32_le(BinarySink *bs, unsigned long val)
 
- {
 
-     unsigned char data[4];
 
-     PUT_32BIT_LSB_FIRST(data, val);
 
-     bs->write(bs, data, sizeof(data));
 
- }
 
- static void BinarySink_put_stringpl_le(BinarySink *bs, ptrlen pl)
 
- {
 
-     /* Check that the string length fits in a uint32, without doing a
 
-      * potentially implementation-defined shift of more than 31 bits */
 
-     assert((pl.len >> 31) < 2);
 
-     BinarySink_put_uint32_le(bs, pl.len);
 
-     bs->write(bs, pl.ptr, pl.len);
 
- }
 
- #define put_uint32_le(bs, val) \
 
-     BinarySink_put_uint32_le(BinarySink_UPCAST(bs), val)
 
- #define put_stringpl_le(bs, val) \
 
-     BinarySink_put_stringpl_le(BinarySink_UPCAST(bs), val)
 
- /* ----------------------------------------------------------------------
 
-  * Argon2 defines a hash-function family that's an extension of BLAKE2b to
 
-  * generate longer output digests, by repeatedly outputting half of a BLAKE2
 
-  * hash output and then re-hashing the whole thing until there are 64 or fewer
 
-  * bytes left to output. The spec calls this H' (a variant of the original
 
-  * hash it calls H, which is the unmodified BLAKE2b).
 
-  */
 
- static ssh_hash *hprime_new(unsigned length)
 
- {
 
-     ssh_hash *h = blake2b_new_general(length > 64 ? 64 : length);
 
-     put_uint32_le(h, length);
 
-     return h;
 
- }
 
- static void hprime_final(ssh_hash *h, unsigned length, void *vout)
 
- {
 
-     uint8_t *out = (uint8_t *)vout;
 
-     while (length > 64) {
 
-         uint8_t hashbuf[64];
 
-         ssh_hash_final(h, hashbuf);
 
-         memcpy(out, hashbuf, 32);
 
-         out += 32;
 
-         length -= 32;
 
-         h = blake2b_new_general(length > 64 ? 64 : length);
 
-         put_data(h, hashbuf, 64);
 
-         smemclr(hashbuf, sizeof(hashbuf));
 
-     }
 
-     ssh_hash_final(h, out);
 
- }
 
- /* Externally visible entry point for the long hash function. This is only
 
-  * used by testcrypt, so it would be overkill to set it up like a proper
 
-  * ssh_hash. */
 
- strbuf *argon2_long_hash(unsigned length, ptrlen data)
 
- {
 
-     ssh_hash *h = hprime_new(length);
 
-     put_datapl(h, data);
 
-     { // WINSCP
 
-     strbuf *out = strbuf_new();
 
-     hprime_final(h, length, strbuf_append(out, length));
 
-     return out;
 
-     } // WINSCP
 
- }
 
- /* ----------------------------------------------------------------------
 
-  * Argon2's own mixing function G, which operates on 1Kb blocks of data.
 
-  *
 
-  * The definition of G in the spec takes two 1Kb blocks as input and produces
 
-  * a 1Kb output block. The first thing that happens to the input blocks is
 
-  * that they get XORed together, and then only the XOR output is used, so you
 
-  * could perfectly well regard G as a 1Kb->1Kb function.
 
-  */
 
- static inline uint64_t ror(uint64_t x, unsigned rotation)
 
- {
 
- #pragma option push -w-ngu // WINSCP
 
-     unsigned lshift = 63 & -rotation, rshift = 63 & rotation;
 
- #pragma option pop // WINSCP
 
-     return (x << lshift) | (x >> rshift);
 
- }
 
- static inline uint64_t trunc32(uint64_t x)
 
- {
 
-     return x & 0xFFFFFFFF;
 
- }
 
- /* Internal function similar to the BLAKE2b round, which mixes up four 64-bit
 
-  * words */
 
- static inline void GB(uint64_t *a, uint64_t *b, uint64_t *c, uint64_t *d)
 
- {
 
-     *a += *b + 2 * trunc32(*a) * trunc32(*b);
 
-     *d = ror(*d ^ *a, 32);
 
-     *c += *d + 2 * trunc32(*c) * trunc32(*d);
 
-     *b = ror(*b ^ *c, 24);
 
-     *a += *b + 2 * trunc32(*a) * trunc32(*b);
 
-     *d = ror(*d ^ *a, 16);
 
-     *c += *d + 2 * trunc32(*c) * trunc32(*d);
 
-     *b = ror(*b ^ *c, 63);
 
- }
 
- /* Higher-level internal function which mixes up sixteen 64-bit words. This is
 
-  * applied to different subsets of the 128 words in a kilobyte block, and the
 
-  * API here is designed to make it easy to apply in the circumstances the spec
 
-  * requires. In every call, the sixteen words form eight pairs adjacent in
 
-  * memory, whose addresses are in arithmetic progression. So the 16 input
 
-  * words are in[0], in[1], in[instep], in[instep+1], ..., in[7*instep],
 
-  * in[7*instep+1], and the 16 output words similarly. */
 
- static inline void P(uint64_t *out, unsigned outstep,
 
-                      uint64_t *in, unsigned instep)
 
- {
 
-     unsigned i; // WINSCP
 
-     for (i = 0; i < 8; i++) {
 
-         out[i*outstep] = in[i*instep];
 
-         out[i*outstep+1] = in[i*instep+1];
 
-     }
 
-     GB(out+0*outstep+0, out+2*outstep+0, out+4*outstep+0, out+6*outstep+0);
 
-     GB(out+0*outstep+1, out+2*outstep+1, out+4*outstep+1, out+6*outstep+1);
 
-     GB(out+1*outstep+0, out+3*outstep+0, out+5*outstep+0, out+7*outstep+0);
 
-     GB(out+1*outstep+1, out+3*outstep+1, out+5*outstep+1, out+7*outstep+1);
 
-     GB(out+0*outstep+0, out+2*outstep+1, out+5*outstep+0, out+7*outstep+1);
 
-     GB(out+0*outstep+1, out+3*outstep+0, out+5*outstep+1, out+6*outstep+0);
 
-     GB(out+1*outstep+0, out+3*outstep+1, out+4*outstep+0, out+6*outstep+1);
 
-     GB(out+1*outstep+1, out+2*outstep+0, out+4*outstep+1, out+7*outstep+0);
 
- }
 
- /* The full G function, taking input blocks X and Y. The result of G is most
 
-  * often XORed into an existing output block, so this API is designed with
 
-  * that in mind: the mixing function's output is always XORed into whatever
 
-  * 1Kb of data is already at 'out'. */
 
- static void G_xor(uint8_t *out, const uint8_t *X, const uint8_t *Y)
 
- {
 
-     uint64_t R[128], Q[128], Z[128];
 
-     unsigned i; // WINSCP
 
-     for (i = 0; i < 128; i++)
 
-         R[i] = GET_64BIT_LSB_FIRST(X + 8*i) ^ GET_64BIT_LSB_FIRST(Y + 8*i);
 
-     for (i = 0; i < 8; i++) // WINSCP
 
-         P(Q+16*i, 2, R+16*i, 2);
 
-     for (i = 0; i < 8; i++) // WINSCP
 
-         P(Z+2*i, 16, Q+2*i, 16);
 
-     for (i = 0; i < 128; i++) // WINSCP
 
-         PUT_64BIT_LSB_FIRST(out + 8*i,
 
-                             GET_64BIT_LSB_FIRST(out + 8*i) ^ R[i] ^ Z[i]);
 
-     smemclr(R, sizeof(R));
 
-     smemclr(Q, sizeof(Q));
 
-     smemclr(Z, sizeof(Z));
 
- }
 
- /* ----------------------------------------------------------------------
 
-  * The main Argon2 function.
 
-  */
 
- static void argon2_internal(uint32_t p, uint32_t T, uint32_t m, uint32_t t,
 
-                             uint32_t y, ptrlen P, ptrlen S, ptrlen K, ptrlen X,
 
-                             uint8_t *out)
 
- {
 
-     /*
 
-      * Start by hashing all the input data together: the four string arguments
 
-      * (password P, salt S, optional secret key K, optional associated data
 
-      * X), plus all the parameters for the function's memory and time usage.
 
-      *
 
-      * The output of this hash is the sole input to the subsequent mixing
 
-      * step: Argon2 does not preserve any more entropy from the inputs, it
 
-      * just makes it extra painful to get the final answer.
 
-      */
 
-     uint8_t h0[64];
 
-     {
 
-         ssh_hash *h = blake2b_new_general(64);
 
-         put_uint32_le(h, p);
 
-         put_uint32_le(h, T);
 
-         put_uint32_le(h, m);
 
-         put_uint32_le(h, t);
 
-         put_uint32_le(h, 0x13);        /* hash function version number */
 
-         put_uint32_le(h, y);
 
-         put_stringpl_le(h, P);
 
-         put_stringpl_le(h, S);
 
-         put_stringpl_le(h, K);
 
-         put_stringpl_le(h, X);
 
-         ssh_hash_final(h, h0);
 
-     }
 
-     { // WINSCP
 
-     struct blk { uint8_t data[1024]; };
 
-     /*
 
-      * Array of 1Kb blocks. The total size is (approximately) m, the
 
-      * caller-specified parameter for how much memory to use; the blocks are
 
-      * regarded as a rectangular array of p rows ('lanes') by q columns, where
 
-      * p is the 'parallelism' input parameter (the lanes can be processed
 
-      * concurrently up to a point) and q is whatever makes the product pq come
 
-      * to m.
 
-      *
 
-      * Additionally, each row is divided into four equal 'segments', which are
 
-      * important to the way the algorithm decides which blocks to use as input
 
-      * to each step of the function.
 
-      *
 
-      * The term 'slice' refers to a whole set of vertically aligned segments,
 
-      * i.e. slice 0 is the whole left quarter of the array, and slice 3 the
 
-      * whole right quarter.
 
-      */
 
-     size_t SL = m / (4*p); /* segment length: # of 1Kb blocks in a segment */
 
-     size_t q = 4 * SL;     /* width of the array: 4 segments times SL */
 
-     size_t mprime = q * p; /* total size of the array, approximately m */
 
-     /* Allocate the memory. */
 
-     struct blk *B = snewn(mprime, struct blk);
 
-     memset(B, 0, mprime * sizeof(struct blk));
 
-     /*
 
-      * Initial setup: fill the first two full columns of the array with data
 
-      * expanded from the starting hash h0. Each block is the result of using
 
-      * the long-output hash function H' to hash h0 itself plus the block's
 
-      * coordinates in the array.
 
-      */
 
-     { // WINSCP
 
-     size_t i; // WINSCP
 
-     for (i = 0; i < p; i++) {
 
-         ssh_hash *h = hprime_new(1024);
 
-         put_data(h, h0, 64);
 
-         put_uint32_le(h, 0);
 
-         put_uint32_le(h, i);
 
-         hprime_final(h, 1024, B[i].data);
 
-     }
 
-     for (i = 0; i < p; i++) { // WINSCP
 
-         ssh_hash *h = hprime_new(1024);
 
-         put_data(h, h0, 64);
 
-         put_uint32_le(h, 1);
 
-         put_uint32_le(h, i);
 
-         hprime_final(h, 1024, B[i+p].data);
 
-     }
 
-     /*
 
-      * Declarations for the main loop.
 
-      *
 
-      * The basic structure of the main loop is going to involve processing the
 
-      * array one whole slice (vertically divided quarter) at a time. Usually
 
-      * we'll write a new value into every single block in the slice, except
 
-      * that in the initial slice on the first pass, we've already written
 
-      * values into the first two columns during the initial setup above. So
 
-      * 'jstart' indicates the starting index in each segment we process; it
 
-      * starts off as 2 so that we don't overwrite the inital setup, and then
 
-      * after the first slice is done, we set it to 0, and it stays there.
 
-      *
 
-      * d_mode indicates whether we're being data-dependent (true) or
 
-      * data-independent (false). In the hybrid Argon2id mode, we start off
 
-      * independent, and then once we've mixed things up enough, switch over to
 
-      * dependent mode to force long serial chains of computation.
 
-      */
 
-     { // WINSCP
 
-     size_t jstart = 2;
 
-     bool d_mode = (y == 0);
 
-     struct blk out2i, tmp2i, in2i;
 
-     /* Outermost loop: t whole passes from left to right over the array */
 
-     size_t pass; // WINSCP
 
-     for (pass = 0; pass < t; pass++) {
 
-         /* Within that, we process the array in its four main slices */
 
-         unsigned slice; // WINSCP
 
-         for (slice = 0; slice < 4; slice++) {
 
-             /* In Argon2id mode, if we're half way through the first pass,
 
-              * this is the moment to switch d_mode from false to true */
 
-             if (pass == 0 && slice == 2 && y == 2)
 
-                 d_mode = true;
 
-             /* Loop over every segment in the slice (i.e. every row). So i is
 
-              * the y-coordinate of each block we process. */
 
-             { // WINSCP
 
-             size_t i; // WINSCP
 
-             for (i = 0; i < p; i++) {
 
-                 /* And within that segment, process the blocks from left to
 
-                  * right, starting at 'jstart' (usually 0, but 2 in the first
 
-                  * slice). */
 
-                 size_t jpre; // WINSCP
 
-                 for (jpre = jstart; jpre < SL; jpre++) {
 
-                     /* j is the x-coordinate of each block we process, made up
 
-                      * of the slice number and the index 'jpre' within the
 
-                      * segment. */
 
-                     size_t j = slice * SL + jpre;
 
-                     /* jm1 is j-1 (mod q) */
 
-                     uint32_t jm1 = (j == 0 ? q-1 : j-1);
 
-                     /*
 
-                      * Construct two 32-bit pseudorandom integers J1 and J2.
 
-                      * This is the part of the algorithm that varies between
 
-                      * the data-dependent and independent modes.
 
-                      */
 
-                     uint32_t J1, J2;
 
-                     if (d_mode) {
 
-                         /*
 
-                          * Data-dependent: grab the first 64 bits of the block
 
-                          * to the left of this one.
 
-                          */
 
-                         J1 = GET_32BIT_LSB_FIRST(B[i + p * jm1].data);
 
-                         J2 = GET_32BIT_LSB_FIRST(B[i + p * jm1].data + 4);
 
-                     } else {
 
-                         /*
 
-                          * Data-independent: generate pseudorandom data by
 
-                          * hashing a sequence of preimage blocks that include
 
-                          * all our input parameters, plus the coordinates of
 
-                          * this point in the algorithm (array position and
 
-                          * pass number) to make all the hash outputs distinct.
 
-                          *
 
-                          * The hash we use is G itself, applied twice. So we
 
-                          * generate 1Kb of data at a time, which is enough for
 
-                          * 128 (J1,J2) pairs. Hence we only need to do the
 
-                          * hashing if our index within the segment is a
 
-                          * multiple of 128, or if we're at the very start of
 
-                          * the algorithm (in which case we started at 2 rather
 
-                          * than 0). After that we can just keep picking data
 
-                          * out of our most recent hash output.
 
-                          */
 
-                         if (jpre == jstart || jpre % 128 == 0) {
 
-                             /*
 
-                              * Hash preimage is mostly zeroes, with a
 
-                              * collection of assorted integer values we had
 
-                              * anyway.
 
-                              */
 
-                             memset(in2i.data, 0, sizeof(in2i.data));
 
-                             PUT_64BIT_LSB_FIRST(in2i.data +  0, pass);
 
-                             PUT_64BIT_LSB_FIRST(in2i.data +  8, i);
 
-                             PUT_64BIT_LSB_FIRST(in2i.data + 16, slice);
 
-                             PUT_64BIT_LSB_FIRST(in2i.data + 24, mprime);
 
-                             PUT_64BIT_LSB_FIRST(in2i.data + 32, t);
 
-                             PUT_64BIT_LSB_FIRST(in2i.data + 40, y);
 
-                             PUT_64BIT_LSB_FIRST(in2i.data + 48, jpre / 128 + 1);
 
-                             /*
 
-                              * Now apply G twice to generate the hash output
 
-                              * in out2i.
 
-                              */
 
-                             memset(tmp2i.data, 0, sizeof(tmp2i.data));
 
-                             G_xor(tmp2i.data, tmp2i.data, in2i.data);
 
-                             memset(out2i.data, 0, sizeof(out2i.data));
 
-                             G_xor(out2i.data, out2i.data, tmp2i.data);
 
-                         }
 
-                         /*
 
-                          * Extract J1 and J2 from the most recent hash output
 
-                          * (whether we've just computed it or not).
 
-                          */
 
-                         J1 = GET_32BIT_LSB_FIRST(
 
-                             out2i.data + 8 * (jpre % 128));
 
-                         J2 = GET_32BIT_LSB_FIRST(
 
-                             out2i.data + 8 * (jpre % 128) + 4);
 
-                     }
 
-                     /*
 
-                      * Now convert J1 and J2 into the index of an existing
 
-                      * block of the array to use as input to this step. This
 
-                      * is fairly fiddly.
 
-                      *
 
-                      * The easy part: the y-coordinate of the input block is
 
-                      * obtained by reducing J2 mod p, except that at the very
 
-                      * start of the algorithm (processing the first slice on
 
-                      * the first pass) we simply use the same y-coordinate as
 
-                      * our output block.
 
-                      *
 
-                      * Note that it's safe to use the ordinary % operator
 
-                      * here, without any concern for timing side channels: in
 
-                      * data-independent mode J2 is not correlated to any
 
-                      * secrets, and in data-dependent mode we're going to be
 
-                      * giving away side-channel data _anyway_ when we use it
 
-                      * as an array index (and by assumption we don't care,
 
-                      * because it's already massively randomised from the real
 
-                      * inputs).
 
-                      */
 
-                     { // WINSCP
 
-                     uint32_t index_l = (pass == 0 && slice == 0) ? i : J2 % p;
 
-                     /*
 
-                      * The hard part: which block in this array row do we use?
 
-                      *
 
-                      * First, we decide what the possible candidates are. This
 
-                      * requires some case analysis, and depends on whether the
 
-                      * array row is the same one we're writing into or not.
 
-                      *
 
-                      * If it's not the same row: we can't use any block from
 
-                      * the current slice (because the segments within a slice
 
-                      * have to be processable in parallel, so in a concurrent
 
-                      * implementation those blocks are potentially in the
 
-                      * process of being overwritten by other threads). But the
 
-                      * other three slices are fair game, except that in the
 
-                      * first pass, slices to the right of us won't have had
 
-                      * any values written into them yet at all.
 
-                      *
 
-                      * If it is the same row, we _are_ allowed to use blocks
 
-                      * from the current slice, but only the ones before our
 
-                      * current position.
 
-                      *
 
-                      * In both cases, we also exclude the individual _column_
 
-                      * just to the left of the current one. (The block
 
-                      * immediately to our left is going to be the _other_
 
-                      * input to G, but the spec also says that we avoid that
 
-                      * column even in a different row.)
 
-                      *
 
-                      * All of this means that we end up choosing from a
 
-                      * cyclically contiguous interval of blocks within this
 
-                      * lane, but the start and end points require some thought
 
-                      * to get them right.
 
-                      */
 
-                     /* Start position is the beginning of the _next_ slice
 
-                      * (containing data from the previous pass), unless we're
 
-                      * on pass 0, where the start position has to be 0. */
 
-                     uint32_t Wstart = (pass == 0 ? 0 : (slice + 1) % 4 * SL);
 
-                     /* End position splits up by cases. */
 
-                     uint32_t Wend;
 
-                     if (index_l == i) {
 
-                         /* Same lane as output: we can use anything up to (but
 
-                          * not including) the block immediately left of us. */
 
-                         Wend = jm1;
 
-                     } else {
 
-                         /* Different lane from output: we can use anything up
 
-                          * to the previous slice boundary, or one less than
 
-                          * that if we're at the very left edge of our slice
 
-                          * right now. */
 
-                         Wend = SL * slice;
 
-                         if (jpre == 0)
 
-                             Wend = (Wend + q-1) % q;
 
-                     }
 
-                     /* Total number of blocks available to choose from */
 
-                     { // WINSCP
 
-                     uint32_t Wsize = (Wend + q - Wstart) % q;
 
-                     /* Fiddly computation from the spec that chooses from the
 
-                      * available blocks, in a deliberately non-uniform
 
-                      * fashion, using J1 as pseudorandom input data. Output is
 
-                      * zz which is the index within our contiguous interval. */
 
-                     uint32_t x = ((uint64_t)J1 * J1) >> 32;
 
-                     uint32_t y = ((uint64_t)Wsize * x) >> 32;
 
-                     uint32_t zz = Wsize - 1 - y;
 
-                     /* And index_z is the actual x coordinate of the block we
 
-                      * want. */
 
-                     uint32_t index_z = (Wstart + zz) % q;
 
-                     /* Phew! Combine that block with the one immediately to
 
-                      * our left, and XOR over the top of whatever is already
 
-                      * in our current output block. */
 
-                     G_xor(B[i + p * j].data, B[i + p * jm1].data,
 
-                           B[index_l + p * index_z].data);
 
-                     } // WINSCP
 
-                     } // WINSCP
 
-                 }
 
-             }
 
-             /* We've finished processing a slice. Reset jstart to 0. It will
 
-              * onily _not_ have been 0 if this was pass 0 slice 0, in which
 
-              * case it still had its initial value of 2 to avoid the starting
 
-              * data. */
 
-             jstart = 0;
 
-             } // WINSCP
 
-         }
 
-     }
 
-     /*
 
-      * The main output is all done. Final output works by taking the XOR of
 
-      * all the blocks in the rightmost column of the array, and then using
 
-      * that as input to our long hash H'. The output of _that_ is what we
 
-      * deliver to the caller.
 
-      */
 
-     { // WINSCP
 
-     struct blk C = B[p * (q-1)];
 
-     size_t i; // WINSCP
 
-     for (i = 1; i < p; i++)
 
-         memxor(C.data, C.data, B[i + p * (q-1)].data, 1024);
 
-     {
 
-         ssh_hash *h = hprime_new(T);
 
-         put_data(h, C.data, 1024);
 
-         hprime_final(h, T, out);
 
-     }
 
-     /*
 
-      * Clean up.
 
-      */
 
-     smemclr(out2i.data, sizeof(out2i.data));
 
-     smemclr(tmp2i.data, sizeof(tmp2i.data));
 
-     smemclr(in2i.data, sizeof(in2i.data));
 
-     smemclr(C.data, sizeof(C.data));
 
-     smemclr(B, mprime * sizeof(struct blk));
 
-     sfree(B);
 
-     } // WINSCP
 
-     } // WINSCP
 
-     } // WINSCP
 
-     } // WINSCP
 
- }
 
- /*
 
-  * Wrapper function that appends to a strbuf (which sshpubk.c will want).
 
-  */
 
- void argon2(Argon2Flavour flavour, uint32_t mem, uint32_t passes,
 
-             uint32_t parallel, uint32_t taglen,
 
-             ptrlen P, ptrlen S, ptrlen K, ptrlen X, strbuf *out)
 
- {
 
-     argon2_internal(parallel, taglen, mem, passes, flavour,
 
-                     P, S, K, X, strbuf_append(out, taglen));
 
- }
 
- /*
 
-  * Wrapper function which dynamically chooses the number of passes to run in
 
-  * order to hit an approximate total amount of CPU time. Writes the result
 
-  * into 'passes'.
 
-  */
 
- void argon2_choose_passes(
 
-     Argon2Flavour flavour, uint32_t mem,
 
-     uint32_t milliseconds, uint32_t *passes,
 
-     uint32_t parallel, uint32_t taglen,
 
-     ptrlen P, ptrlen S, ptrlen K, ptrlen X,
 
-     strbuf *out)
 
- {
 
-     unsigned long desired_time = (TICKSPERSEC * milliseconds) / 1000;
 
-     /*
 
-      * We only need the time taken to be approximately right, so we
 
-      * scale up the number of passes geometrically, which avoids
 
-      * taking O(t^2) time to find a pass count taking time t.
 
-      *
 
-      * Using the Fibonacci numbers is slightly nicer than the obvious
 
-      * approach of powers of 2, because it's still very easy to
 
-      * compute, and grows less fast (powers of 1.6 instead of 2), so
 
-      * you get just a touch more precision.
 
-      */
 
-     uint32_t a = 1, b = 1;
 
-     while (true) {
 
-         unsigned long start_time = GETTICKCOUNT();
 
-         argon2(flavour, mem, b, parallel, taglen, P, S, K, X, out);
 
-         { // WINSCP
 
-         unsigned long ticks = GETTICKCOUNT() - start_time;
 
-         /* But just in case computers get _too_ fast, we have to cap
 
-          * the growth before it gets past the uint32_t upper bound! So
 
-          * if computing a+b would overflow, stop here. */
 
-         if (ticks >= desired_time || a > (uint32_t)~b) {
 
-             *passes = b;
 
-             return;
 
-         } else {
 
-             strbuf_clear(out);
 
-             /* Next Fibonacci number: replace (a, b) with (b, a+b) */
 
-             b += a;
 
-             a = b - a;
 
-         }
 
-         } // WINSCP
 
-     }
 
- }
 
 
  |