v3_addr.c 41 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325
  1. /*
  2. * Copyright 2006-2022 The OpenSSL Project Authors. All Rights Reserved.
  3. *
  4. * Licensed under the OpenSSL license (the "License"). You may not use
  5. * this file except in compliance with the License. You can obtain a copy
  6. * in the file LICENSE in the source distribution or at
  7. * https://www.openssl.org/source/license.html
  8. */
  9. /*
  10. * Implementation of RFC 3779 section 2.2.
  11. */
  12. #include <stdio.h>
  13. #include <stdlib.h>
  14. #include <assert.h>
  15. #include <string.h>
  16. #include "internal/cryptlib.h"
  17. #include <openssl/conf.h>
  18. #include <openssl/asn1.h>
  19. #include <openssl/asn1t.h>
  20. #include <openssl/buffer.h>
  21. #include <openssl/x509v3.h>
  22. #include "crypto/x509.h"
  23. #include "ext_dat.h"
  24. #ifndef OPENSSL_NO_RFC3779
  25. /*
  26. * OpenSSL ASN.1 template translation of RFC 3779 2.2.3.
  27. */
  28. ASN1_SEQUENCE(IPAddressRange) = {
  29. ASN1_SIMPLE(IPAddressRange, min, ASN1_BIT_STRING),
  30. ASN1_SIMPLE(IPAddressRange, max, ASN1_BIT_STRING)
  31. } ASN1_SEQUENCE_END(IPAddressRange)
  32. ASN1_CHOICE(IPAddressOrRange) = {
  33. ASN1_SIMPLE(IPAddressOrRange, u.addressPrefix, ASN1_BIT_STRING),
  34. ASN1_SIMPLE(IPAddressOrRange, u.addressRange, IPAddressRange)
  35. } ASN1_CHOICE_END(IPAddressOrRange)
  36. ASN1_CHOICE(IPAddressChoice) = {
  37. ASN1_SIMPLE(IPAddressChoice, u.inherit, ASN1_NULL),
  38. ASN1_SEQUENCE_OF(IPAddressChoice, u.addressesOrRanges, IPAddressOrRange)
  39. } ASN1_CHOICE_END(IPAddressChoice)
  40. ASN1_SEQUENCE(IPAddressFamily) = {
  41. ASN1_SIMPLE(IPAddressFamily, addressFamily, ASN1_OCTET_STRING),
  42. ASN1_SIMPLE(IPAddressFamily, ipAddressChoice, IPAddressChoice)
  43. } ASN1_SEQUENCE_END(IPAddressFamily)
  44. ASN1_ITEM_TEMPLATE(IPAddrBlocks) =
  45. ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0,
  46. IPAddrBlocks, IPAddressFamily)
  47. static_ASN1_ITEM_TEMPLATE_END(IPAddrBlocks)
  48. IMPLEMENT_ASN1_FUNCTIONS(IPAddressRange)
  49. IMPLEMENT_ASN1_FUNCTIONS(IPAddressOrRange)
  50. IMPLEMENT_ASN1_FUNCTIONS(IPAddressChoice)
  51. IMPLEMENT_ASN1_FUNCTIONS(IPAddressFamily)
  52. /*
  53. * How much buffer space do we need for a raw address?
  54. */
  55. #define ADDR_RAW_BUF_LEN 16
  56. /*
  57. * What's the address length associated with this AFI?
  58. */
  59. static int length_from_afi(const unsigned afi)
  60. {
  61. switch (afi) {
  62. case IANA_AFI_IPV4:
  63. return 4;
  64. case IANA_AFI_IPV6:
  65. return 16;
  66. default:
  67. return 0;
  68. }
  69. }
  70. /*
  71. * Extract the AFI from an IPAddressFamily.
  72. */
  73. unsigned int X509v3_addr_get_afi(const IPAddressFamily *f)
  74. {
  75. if (f == NULL
  76. || f->addressFamily == NULL
  77. || f->addressFamily->data == NULL
  78. || f->addressFamily->length < 2)
  79. return 0;
  80. return (f->addressFamily->data[0] << 8) | f->addressFamily->data[1];
  81. }
  82. /*
  83. * Expand the bitstring form of an address into a raw byte array.
  84. * At the moment this is coded for simplicity, not speed.
  85. */
  86. static int addr_expand(unsigned char *addr,
  87. const ASN1_BIT_STRING *bs,
  88. const int length, const unsigned char fill)
  89. {
  90. if (bs->length < 0 || bs->length > length)
  91. return 0;
  92. if (bs->length > 0) {
  93. memcpy(addr, bs->data, bs->length);
  94. if ((bs->flags & 7) != 0) {
  95. unsigned char mask = 0xFF >> (8 - (bs->flags & 7));
  96. if (fill == 0)
  97. addr[bs->length - 1] &= ~mask;
  98. else
  99. addr[bs->length - 1] |= mask;
  100. }
  101. }
  102. memset(addr + bs->length, fill, length - bs->length);
  103. return 1;
  104. }
  105. /*
  106. * Extract the prefix length from a bitstring.
  107. */
  108. #define addr_prefixlen(bs) ((int) ((bs)->length * 8 - ((bs)->flags & 7)))
  109. /*
  110. * i2r handler for one address bitstring.
  111. */
  112. static int i2r_address(BIO *out,
  113. const unsigned afi,
  114. const unsigned char fill, const ASN1_BIT_STRING *bs)
  115. {
  116. unsigned char addr[ADDR_RAW_BUF_LEN];
  117. int i, n;
  118. if (bs->length < 0)
  119. return 0;
  120. switch (afi) {
  121. case IANA_AFI_IPV4:
  122. if (!addr_expand(addr, bs, 4, fill))
  123. return 0;
  124. BIO_printf(out, "%d.%d.%d.%d", addr[0], addr[1], addr[2], addr[3]);
  125. break;
  126. case IANA_AFI_IPV6:
  127. if (!addr_expand(addr, bs, 16, fill))
  128. return 0;
  129. for (n = 16; n > 1 && addr[n - 1] == 0x00 && addr[n - 2] == 0x00;
  130. n -= 2) ;
  131. for (i = 0; i < n; i += 2)
  132. BIO_printf(out, "%x%s", (addr[i] << 8) | addr[i + 1],
  133. (i < 14 ? ":" : ""));
  134. if (i < 16)
  135. BIO_puts(out, ":");
  136. if (i == 0)
  137. BIO_puts(out, ":");
  138. break;
  139. default:
  140. for (i = 0; i < bs->length; i++)
  141. BIO_printf(out, "%s%02x", (i > 0 ? ":" : ""), bs->data[i]);
  142. BIO_printf(out, "[%d]", (int)(bs->flags & 7));
  143. break;
  144. }
  145. return 1;
  146. }
  147. /*
  148. * i2r handler for a sequence of addresses and ranges.
  149. */
  150. static int i2r_IPAddressOrRanges(BIO *out,
  151. const int indent,
  152. const IPAddressOrRanges *aors,
  153. const unsigned afi)
  154. {
  155. int i;
  156. for (i = 0; i < sk_IPAddressOrRange_num(aors); i++) {
  157. const IPAddressOrRange *aor = sk_IPAddressOrRange_value(aors, i);
  158. BIO_printf(out, "%*s", indent, "");
  159. switch (aor->type) {
  160. case IPAddressOrRange_addressPrefix:
  161. if (!i2r_address(out, afi, 0x00, aor->u.addressPrefix))
  162. return 0;
  163. BIO_printf(out, "/%d\n", addr_prefixlen(aor->u.addressPrefix));
  164. continue;
  165. case IPAddressOrRange_addressRange:
  166. if (!i2r_address(out, afi, 0x00, aor->u.addressRange->min))
  167. return 0;
  168. BIO_puts(out, "-");
  169. if (!i2r_address(out, afi, 0xFF, aor->u.addressRange->max))
  170. return 0;
  171. BIO_puts(out, "\n");
  172. continue;
  173. }
  174. }
  175. return 1;
  176. }
  177. /*
  178. * i2r handler for an IPAddrBlocks extension.
  179. */
  180. static int i2r_IPAddrBlocks(const X509V3_EXT_METHOD *method,
  181. void *ext, BIO *out, int indent)
  182. {
  183. const IPAddrBlocks *addr = ext;
  184. int i;
  185. for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
  186. IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
  187. const unsigned int afi = X509v3_addr_get_afi(f);
  188. switch (afi) {
  189. case IANA_AFI_IPV4:
  190. BIO_printf(out, "%*sIPv4", indent, "");
  191. break;
  192. case IANA_AFI_IPV6:
  193. BIO_printf(out, "%*sIPv6", indent, "");
  194. break;
  195. default:
  196. BIO_printf(out, "%*sUnknown AFI %u", indent, "", afi);
  197. break;
  198. }
  199. if (f->addressFamily->length > 2) {
  200. switch (f->addressFamily->data[2]) {
  201. case 1:
  202. BIO_puts(out, " (Unicast)");
  203. break;
  204. case 2:
  205. BIO_puts(out, " (Multicast)");
  206. break;
  207. case 3:
  208. BIO_puts(out, " (Unicast/Multicast)");
  209. break;
  210. case 4:
  211. BIO_puts(out, " (MPLS)");
  212. break;
  213. case 64:
  214. BIO_puts(out, " (Tunnel)");
  215. break;
  216. case 65:
  217. BIO_puts(out, " (VPLS)");
  218. break;
  219. case 66:
  220. BIO_puts(out, " (BGP MDT)");
  221. break;
  222. case 128:
  223. BIO_puts(out, " (MPLS-labeled VPN)");
  224. break;
  225. default:
  226. BIO_printf(out, " (Unknown SAFI %u)",
  227. (unsigned)f->addressFamily->data[2]);
  228. break;
  229. }
  230. }
  231. switch (f->ipAddressChoice->type) {
  232. case IPAddressChoice_inherit:
  233. BIO_puts(out, ": inherit\n");
  234. break;
  235. case IPAddressChoice_addressesOrRanges:
  236. BIO_puts(out, ":\n");
  237. if (!i2r_IPAddressOrRanges(out,
  238. indent + 2,
  239. f->ipAddressChoice->
  240. u.addressesOrRanges, afi))
  241. return 0;
  242. break;
  243. }
  244. }
  245. return 1;
  246. }
  247. /*
  248. * Sort comparison function for a sequence of IPAddressOrRange
  249. * elements.
  250. *
  251. * There's no sane answer we can give if addr_expand() fails, and an
  252. * assertion failure on externally supplied data is seriously uncool,
  253. * so we just arbitrarily declare that if given invalid inputs this
  254. * function returns -1. If this messes up your preferred sort order
  255. * for garbage input, tough noogies.
  256. */
  257. static int IPAddressOrRange_cmp(const IPAddressOrRange *a,
  258. const IPAddressOrRange *b, const int length)
  259. {
  260. unsigned char addr_a[ADDR_RAW_BUF_LEN], addr_b[ADDR_RAW_BUF_LEN];
  261. int prefixlen_a = 0, prefixlen_b = 0;
  262. int r;
  263. switch (a->type) {
  264. case IPAddressOrRange_addressPrefix:
  265. if (!addr_expand(addr_a, a->u.addressPrefix, length, 0x00))
  266. return -1;
  267. prefixlen_a = addr_prefixlen(a->u.addressPrefix);
  268. break;
  269. case IPAddressOrRange_addressRange:
  270. if (!addr_expand(addr_a, a->u.addressRange->min, length, 0x00))
  271. return -1;
  272. prefixlen_a = length * 8;
  273. break;
  274. }
  275. switch (b->type) {
  276. case IPAddressOrRange_addressPrefix:
  277. if (!addr_expand(addr_b, b->u.addressPrefix, length, 0x00))
  278. return -1;
  279. prefixlen_b = addr_prefixlen(b->u.addressPrefix);
  280. break;
  281. case IPAddressOrRange_addressRange:
  282. if (!addr_expand(addr_b, b->u.addressRange->min, length, 0x00))
  283. return -1;
  284. prefixlen_b = length * 8;
  285. break;
  286. }
  287. if ((r = memcmp(addr_a, addr_b, length)) != 0)
  288. return r;
  289. else
  290. return prefixlen_a - prefixlen_b;
  291. }
  292. /*
  293. * IPv4-specific closure over IPAddressOrRange_cmp, since sk_sort()
  294. * comparison routines are only allowed two arguments.
  295. */
  296. static int v4IPAddressOrRange_cmp(const IPAddressOrRange *const *a,
  297. const IPAddressOrRange *const *b)
  298. {
  299. return IPAddressOrRange_cmp(*a, *b, 4);
  300. }
  301. /*
  302. * IPv6-specific closure over IPAddressOrRange_cmp, since sk_sort()
  303. * comparison routines are only allowed two arguments.
  304. */
  305. static int v6IPAddressOrRange_cmp(const IPAddressOrRange *const *a,
  306. const IPAddressOrRange *const *b)
  307. {
  308. return IPAddressOrRange_cmp(*a, *b, 16);
  309. }
  310. /*
  311. * Calculate whether a range collapses to a prefix.
  312. * See last paragraph of RFC 3779 2.2.3.7.
  313. */
  314. static int range_should_be_prefix(const unsigned char *min,
  315. const unsigned char *max, const int length)
  316. {
  317. unsigned char mask;
  318. int i, j;
  319. /*
  320. * It is the responsibility of the caller to confirm min <= max. We don't
  321. * use ossl_assert() here since we have no way of signalling an error from
  322. * this function - so we just use a plain assert instead.
  323. */
  324. assert(memcmp(min, max, length) <= 0);
  325. for (i = 0; i < length && min[i] == max[i]; i++) ;
  326. for (j = length - 1; j >= 0 && min[j] == 0x00 && max[j] == 0xFF; j--) ;
  327. if (i < j)
  328. return -1;
  329. if (i > j)
  330. return i * 8;
  331. mask = min[i] ^ max[i];
  332. switch (mask) {
  333. case 0x01:
  334. j = 7;
  335. break;
  336. case 0x03:
  337. j = 6;
  338. break;
  339. case 0x07:
  340. j = 5;
  341. break;
  342. case 0x0F:
  343. j = 4;
  344. break;
  345. case 0x1F:
  346. j = 3;
  347. break;
  348. case 0x3F:
  349. j = 2;
  350. break;
  351. case 0x7F:
  352. j = 1;
  353. break;
  354. default:
  355. return -1;
  356. }
  357. if ((min[i] & mask) != 0 || (max[i] & mask) != mask)
  358. return -1;
  359. else
  360. return i * 8 + j;
  361. }
  362. /*
  363. * Construct a prefix.
  364. */
  365. static int make_addressPrefix(IPAddressOrRange **result,
  366. unsigned char *addr, const int prefixlen)
  367. {
  368. int bytelen = (prefixlen + 7) / 8, bitlen = prefixlen % 8;
  369. IPAddressOrRange *aor = IPAddressOrRange_new();
  370. if (aor == NULL)
  371. return 0;
  372. aor->type = IPAddressOrRange_addressPrefix;
  373. if (aor->u.addressPrefix == NULL &&
  374. (aor->u.addressPrefix = ASN1_BIT_STRING_new()) == NULL)
  375. goto err;
  376. if (!ASN1_BIT_STRING_set(aor->u.addressPrefix, addr, bytelen))
  377. goto err;
  378. aor->u.addressPrefix->flags &= ~7;
  379. aor->u.addressPrefix->flags |= ASN1_STRING_FLAG_BITS_LEFT;
  380. if (bitlen > 0) {
  381. aor->u.addressPrefix->data[bytelen - 1] &= ~(0xFF >> bitlen);
  382. aor->u.addressPrefix->flags |= 8 - bitlen;
  383. }
  384. *result = aor;
  385. return 1;
  386. err:
  387. IPAddressOrRange_free(aor);
  388. return 0;
  389. }
  390. /*
  391. * Construct a range. If it can be expressed as a prefix,
  392. * return a prefix instead. Doing this here simplifies
  393. * the rest of the code considerably.
  394. */
  395. static int make_addressRange(IPAddressOrRange **result,
  396. unsigned char *min,
  397. unsigned char *max, const int length)
  398. {
  399. IPAddressOrRange *aor;
  400. int i, prefixlen;
  401. if (memcmp(min, max, length) > 0)
  402. return 0;
  403. if ((prefixlen = range_should_be_prefix(min, max, length)) >= 0)
  404. return make_addressPrefix(result, min, prefixlen);
  405. if ((aor = IPAddressOrRange_new()) == NULL)
  406. return 0;
  407. aor->type = IPAddressOrRange_addressRange;
  408. if ((aor->u.addressRange = IPAddressRange_new()) == NULL)
  409. goto err;
  410. if (aor->u.addressRange->min == NULL &&
  411. (aor->u.addressRange->min = ASN1_BIT_STRING_new()) == NULL)
  412. goto err;
  413. if (aor->u.addressRange->max == NULL &&
  414. (aor->u.addressRange->max = ASN1_BIT_STRING_new()) == NULL)
  415. goto err;
  416. for (i = length; i > 0 && min[i - 1] == 0x00; --i) ;
  417. if (!ASN1_BIT_STRING_set(aor->u.addressRange->min, min, i))
  418. goto err;
  419. aor->u.addressRange->min->flags &= ~7;
  420. aor->u.addressRange->min->flags |= ASN1_STRING_FLAG_BITS_LEFT;
  421. if (i > 0) {
  422. unsigned char b = min[i - 1];
  423. int j = 1;
  424. while ((b & (0xFFU >> j)) != 0)
  425. ++j;
  426. aor->u.addressRange->min->flags |= 8 - j;
  427. }
  428. for (i = length; i > 0 && max[i - 1] == 0xFF; --i) ;
  429. if (!ASN1_BIT_STRING_set(aor->u.addressRange->max, max, i))
  430. goto err;
  431. aor->u.addressRange->max->flags &= ~7;
  432. aor->u.addressRange->max->flags |= ASN1_STRING_FLAG_BITS_LEFT;
  433. if (i > 0) {
  434. unsigned char b = max[i - 1];
  435. int j = 1;
  436. while ((b & (0xFFU >> j)) != (0xFFU >> j))
  437. ++j;
  438. aor->u.addressRange->max->flags |= 8 - j;
  439. }
  440. *result = aor;
  441. return 1;
  442. err:
  443. IPAddressOrRange_free(aor);
  444. return 0;
  445. }
  446. /*
  447. * Construct a new address family or find an existing one.
  448. */
  449. static IPAddressFamily *make_IPAddressFamily(IPAddrBlocks *addr,
  450. const unsigned afi,
  451. const unsigned *safi)
  452. {
  453. IPAddressFamily *f;
  454. unsigned char key[3];
  455. int keylen;
  456. int i;
  457. key[0] = (afi >> 8) & 0xFF;
  458. key[1] = afi & 0xFF;
  459. if (safi != NULL) {
  460. key[2] = *safi & 0xFF;
  461. keylen = 3;
  462. } else {
  463. keylen = 2;
  464. }
  465. for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
  466. f = sk_IPAddressFamily_value(addr, i);
  467. if (f->addressFamily->length == keylen &&
  468. !memcmp(f->addressFamily->data, key, keylen))
  469. return f;
  470. }
  471. if ((f = IPAddressFamily_new()) == NULL)
  472. goto err;
  473. if (f->ipAddressChoice == NULL &&
  474. (f->ipAddressChoice = IPAddressChoice_new()) == NULL)
  475. goto err;
  476. if (f->addressFamily == NULL &&
  477. (f->addressFamily = ASN1_OCTET_STRING_new()) == NULL)
  478. goto err;
  479. if (!ASN1_OCTET_STRING_set(f->addressFamily, key, keylen))
  480. goto err;
  481. if (!sk_IPAddressFamily_push(addr, f))
  482. goto err;
  483. return f;
  484. err:
  485. IPAddressFamily_free(f);
  486. return NULL;
  487. }
  488. /*
  489. * Add an inheritance element.
  490. */
  491. int X509v3_addr_add_inherit(IPAddrBlocks *addr,
  492. const unsigned afi, const unsigned *safi)
  493. {
  494. IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi);
  495. if (f == NULL ||
  496. f->ipAddressChoice == NULL ||
  497. (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges &&
  498. f->ipAddressChoice->u.addressesOrRanges != NULL))
  499. return 0;
  500. if (f->ipAddressChoice->type == IPAddressChoice_inherit &&
  501. f->ipAddressChoice->u.inherit != NULL)
  502. return 1;
  503. if (f->ipAddressChoice->u.inherit == NULL &&
  504. (f->ipAddressChoice->u.inherit = ASN1_NULL_new()) == NULL)
  505. return 0;
  506. f->ipAddressChoice->type = IPAddressChoice_inherit;
  507. return 1;
  508. }
  509. /*
  510. * Construct an IPAddressOrRange sequence, or return an existing one.
  511. */
  512. static IPAddressOrRanges *make_prefix_or_range(IPAddrBlocks *addr,
  513. const unsigned afi,
  514. const unsigned *safi)
  515. {
  516. IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi);
  517. IPAddressOrRanges *aors = NULL;
  518. if (f == NULL ||
  519. f->ipAddressChoice == NULL ||
  520. (f->ipAddressChoice->type == IPAddressChoice_inherit &&
  521. f->ipAddressChoice->u.inherit != NULL))
  522. return NULL;
  523. if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges)
  524. aors = f->ipAddressChoice->u.addressesOrRanges;
  525. if (aors != NULL)
  526. return aors;
  527. if ((aors = sk_IPAddressOrRange_new_null()) == NULL)
  528. return NULL;
  529. switch (afi) {
  530. case IANA_AFI_IPV4:
  531. (void)sk_IPAddressOrRange_set_cmp_func(aors, v4IPAddressOrRange_cmp);
  532. break;
  533. case IANA_AFI_IPV6:
  534. (void)sk_IPAddressOrRange_set_cmp_func(aors, v6IPAddressOrRange_cmp);
  535. break;
  536. }
  537. f->ipAddressChoice->type = IPAddressChoice_addressesOrRanges;
  538. f->ipAddressChoice->u.addressesOrRanges = aors;
  539. return aors;
  540. }
  541. /*
  542. * Add a prefix.
  543. */
  544. int X509v3_addr_add_prefix(IPAddrBlocks *addr,
  545. const unsigned afi,
  546. const unsigned *safi,
  547. unsigned char *a, const int prefixlen)
  548. {
  549. IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi);
  550. IPAddressOrRange *aor;
  551. if (aors == NULL || !make_addressPrefix(&aor, a, prefixlen))
  552. return 0;
  553. if (sk_IPAddressOrRange_push(aors, aor))
  554. return 1;
  555. IPAddressOrRange_free(aor);
  556. return 0;
  557. }
  558. /*
  559. * Add a range.
  560. */
  561. int X509v3_addr_add_range(IPAddrBlocks *addr,
  562. const unsigned afi,
  563. const unsigned *safi,
  564. unsigned char *min, unsigned char *max)
  565. {
  566. IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi);
  567. IPAddressOrRange *aor;
  568. int length = length_from_afi(afi);
  569. if (aors == NULL)
  570. return 0;
  571. if (!make_addressRange(&aor, min, max, length))
  572. return 0;
  573. if (sk_IPAddressOrRange_push(aors, aor))
  574. return 1;
  575. IPAddressOrRange_free(aor);
  576. return 0;
  577. }
  578. /*
  579. * Extract min and max values from an IPAddressOrRange.
  580. */
  581. static int extract_min_max(IPAddressOrRange *aor,
  582. unsigned char *min, unsigned char *max, int length)
  583. {
  584. if (aor == NULL || min == NULL || max == NULL)
  585. return 0;
  586. switch (aor->type) {
  587. case IPAddressOrRange_addressPrefix:
  588. return (addr_expand(min, aor->u.addressPrefix, length, 0x00) &&
  589. addr_expand(max, aor->u.addressPrefix, length, 0xFF));
  590. case IPAddressOrRange_addressRange:
  591. return (addr_expand(min, aor->u.addressRange->min, length, 0x00) &&
  592. addr_expand(max, aor->u.addressRange->max, length, 0xFF));
  593. }
  594. return 0;
  595. }
  596. /*
  597. * Public wrapper for extract_min_max().
  598. */
  599. int X509v3_addr_get_range(IPAddressOrRange *aor,
  600. const unsigned afi,
  601. unsigned char *min,
  602. unsigned char *max, const int length)
  603. {
  604. int afi_length = length_from_afi(afi);
  605. if (aor == NULL || min == NULL || max == NULL ||
  606. afi_length == 0 || length < afi_length ||
  607. (aor->type != IPAddressOrRange_addressPrefix &&
  608. aor->type != IPAddressOrRange_addressRange) ||
  609. !extract_min_max(aor, min, max, afi_length))
  610. return 0;
  611. return afi_length;
  612. }
  613. /*
  614. * Sort comparison function for a sequence of IPAddressFamily.
  615. *
  616. * The last paragraph of RFC 3779 2.2.3.3 is slightly ambiguous about
  617. * the ordering: I can read it as meaning that IPv6 without a SAFI
  618. * comes before IPv4 with a SAFI, which seems pretty weird. The
  619. * examples in appendix B suggest that the author intended the
  620. * null-SAFI rule to apply only within a single AFI, which is what I
  621. * would have expected and is what the following code implements.
  622. */
  623. static int IPAddressFamily_cmp(const IPAddressFamily *const *a_,
  624. const IPAddressFamily *const *b_)
  625. {
  626. const ASN1_OCTET_STRING *a = (*a_)->addressFamily;
  627. const ASN1_OCTET_STRING *b = (*b_)->addressFamily;
  628. int len = ((a->length <= b->length) ? a->length : b->length);
  629. int cmp = memcmp(a->data, b->data, len);
  630. return cmp ? cmp : a->length - b->length;
  631. }
  632. /*
  633. * Check whether an IPAddrBLocks is in canonical form.
  634. */
  635. int X509v3_addr_is_canonical(IPAddrBlocks *addr)
  636. {
  637. unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
  638. unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN];
  639. IPAddressOrRanges *aors;
  640. int i, j, k;
  641. /*
  642. * Empty extension is canonical.
  643. */
  644. if (addr == NULL)
  645. return 1;
  646. /*
  647. * Check whether the top-level list is in order.
  648. */
  649. for (i = 0; i < sk_IPAddressFamily_num(addr) - 1; i++) {
  650. const IPAddressFamily *a = sk_IPAddressFamily_value(addr, i);
  651. const IPAddressFamily *b = sk_IPAddressFamily_value(addr, i + 1);
  652. if (IPAddressFamily_cmp(&a, &b) >= 0)
  653. return 0;
  654. }
  655. /*
  656. * Top level's ok, now check each address family.
  657. */
  658. for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
  659. IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
  660. int length = length_from_afi(X509v3_addr_get_afi(f));
  661. /*
  662. * Inheritance is canonical. Anything other than inheritance or
  663. * a SEQUENCE OF IPAddressOrRange is an ASN.1 error or something.
  664. */
  665. if (f == NULL || f->ipAddressChoice == NULL)
  666. return 0;
  667. switch (f->ipAddressChoice->type) {
  668. case IPAddressChoice_inherit:
  669. continue;
  670. case IPAddressChoice_addressesOrRanges:
  671. break;
  672. default:
  673. return 0;
  674. }
  675. /*
  676. * It's an IPAddressOrRanges sequence, check it.
  677. */
  678. aors = f->ipAddressChoice->u.addressesOrRanges;
  679. if (sk_IPAddressOrRange_num(aors) == 0)
  680. return 0;
  681. for (j = 0; j < sk_IPAddressOrRange_num(aors) - 1; j++) {
  682. IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
  683. IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, j + 1);
  684. if (!extract_min_max(a, a_min, a_max, length) ||
  685. !extract_min_max(b, b_min, b_max, length))
  686. return 0;
  687. /*
  688. * Punt misordered list, overlapping start, or inverted range.
  689. */
  690. if (memcmp(a_min, b_min, length) >= 0 ||
  691. memcmp(a_min, a_max, length) > 0 ||
  692. memcmp(b_min, b_max, length) > 0)
  693. return 0;
  694. /*
  695. * Punt if adjacent or overlapping. Check for adjacency by
  696. * subtracting one from b_min first.
  697. */
  698. for (k = length - 1; k >= 0 && b_min[k]-- == 0x00; k--) ;
  699. if (memcmp(a_max, b_min, length) >= 0)
  700. return 0;
  701. /*
  702. * Check for range that should be expressed as a prefix.
  703. */
  704. if (a->type == IPAddressOrRange_addressRange &&
  705. range_should_be_prefix(a_min, a_max, length) >= 0)
  706. return 0;
  707. }
  708. /*
  709. * Check range to see if it's inverted or should be a
  710. * prefix.
  711. */
  712. j = sk_IPAddressOrRange_num(aors) - 1;
  713. {
  714. IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
  715. if (a != NULL && a->type == IPAddressOrRange_addressRange) {
  716. if (!extract_min_max(a, a_min, a_max, length))
  717. return 0;
  718. if (memcmp(a_min, a_max, length) > 0 ||
  719. range_should_be_prefix(a_min, a_max, length) >= 0)
  720. return 0;
  721. }
  722. }
  723. }
  724. /*
  725. * If we made it through all that, we're happy.
  726. */
  727. return 1;
  728. }
  729. /*
  730. * Whack an IPAddressOrRanges into canonical form.
  731. */
  732. static int IPAddressOrRanges_canonize(IPAddressOrRanges *aors,
  733. const unsigned afi)
  734. {
  735. int i, j, length = length_from_afi(afi);
  736. /*
  737. * Sort the IPAddressOrRanges sequence.
  738. */
  739. sk_IPAddressOrRange_sort(aors);
  740. /*
  741. * Clean up representation issues, punt on duplicates or overlaps.
  742. */
  743. for (i = 0; i < sk_IPAddressOrRange_num(aors) - 1; i++) {
  744. IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, i);
  745. IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, i + 1);
  746. unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
  747. unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN];
  748. if (!extract_min_max(a, a_min, a_max, length) ||
  749. !extract_min_max(b, b_min, b_max, length))
  750. return 0;
  751. /*
  752. * Punt inverted ranges.
  753. */
  754. if (memcmp(a_min, a_max, length) > 0 ||
  755. memcmp(b_min, b_max, length) > 0)
  756. return 0;
  757. /*
  758. * Punt overlaps.
  759. */
  760. if (memcmp(a_max, b_min, length) >= 0)
  761. return 0;
  762. /*
  763. * Merge if a and b are adjacent. We check for
  764. * adjacency by subtracting one from b_min first.
  765. */
  766. for (j = length - 1; j >= 0 && b_min[j]-- == 0x00; j--) ;
  767. if (memcmp(a_max, b_min, length) == 0) {
  768. IPAddressOrRange *merged;
  769. if (!make_addressRange(&merged, a_min, b_max, length))
  770. return 0;
  771. (void)sk_IPAddressOrRange_set(aors, i, merged);
  772. (void)sk_IPAddressOrRange_delete(aors, i + 1);
  773. IPAddressOrRange_free(a);
  774. IPAddressOrRange_free(b);
  775. --i;
  776. continue;
  777. }
  778. }
  779. /*
  780. * Check for inverted final range.
  781. */
  782. j = sk_IPAddressOrRange_num(aors) - 1;
  783. {
  784. IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
  785. if (a != NULL && a->type == IPAddressOrRange_addressRange) {
  786. unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
  787. if (!extract_min_max(a, a_min, a_max, length))
  788. return 0;
  789. if (memcmp(a_min, a_max, length) > 0)
  790. return 0;
  791. }
  792. }
  793. return 1;
  794. }
  795. /*
  796. * Whack an IPAddrBlocks extension into canonical form.
  797. */
  798. int X509v3_addr_canonize(IPAddrBlocks *addr)
  799. {
  800. int i;
  801. for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
  802. IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
  803. if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges &&
  804. !IPAddressOrRanges_canonize(f->ipAddressChoice->
  805. u.addressesOrRanges,
  806. X509v3_addr_get_afi(f)))
  807. return 0;
  808. }
  809. (void)sk_IPAddressFamily_set_cmp_func(addr, IPAddressFamily_cmp);
  810. sk_IPAddressFamily_sort(addr);
  811. if (!ossl_assert(X509v3_addr_is_canonical(addr)))
  812. return 0;
  813. return 1;
  814. }
  815. /*
  816. * v2i handler for the IPAddrBlocks extension.
  817. */
  818. static void *v2i_IPAddrBlocks(const struct v3_ext_method *method,
  819. struct v3_ext_ctx *ctx,
  820. STACK_OF(CONF_VALUE) *values)
  821. {
  822. static const char v4addr_chars[] = "0123456789.";
  823. static const char v6addr_chars[] = "0123456789.:abcdefABCDEF";
  824. IPAddrBlocks *addr = NULL;
  825. char *s = NULL, *t;
  826. int i;
  827. if ((addr = sk_IPAddressFamily_new(IPAddressFamily_cmp)) == NULL) {
  828. X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
  829. return NULL;
  830. }
  831. for (i = 0; i < sk_CONF_VALUE_num(values); i++) {
  832. CONF_VALUE *val = sk_CONF_VALUE_value(values, i);
  833. unsigned char min[ADDR_RAW_BUF_LEN], max[ADDR_RAW_BUF_LEN];
  834. unsigned afi, *safi = NULL, safi_;
  835. const char *addr_chars = NULL;
  836. int prefixlen, i1, i2, delim, length;
  837. if (!name_cmp(val->name, "IPv4")) {
  838. afi = IANA_AFI_IPV4;
  839. } else if (!name_cmp(val->name, "IPv6")) {
  840. afi = IANA_AFI_IPV6;
  841. } else if (!name_cmp(val->name, "IPv4-SAFI")) {
  842. afi = IANA_AFI_IPV4;
  843. safi = &safi_;
  844. } else if (!name_cmp(val->name, "IPv6-SAFI")) {
  845. afi = IANA_AFI_IPV6;
  846. safi = &safi_;
  847. } else {
  848. X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
  849. X509V3_R_EXTENSION_NAME_ERROR);
  850. X509V3_conf_err(val);
  851. goto err;
  852. }
  853. switch (afi) {
  854. case IANA_AFI_IPV4:
  855. addr_chars = v4addr_chars;
  856. break;
  857. case IANA_AFI_IPV6:
  858. addr_chars = v6addr_chars;
  859. break;
  860. }
  861. length = length_from_afi(afi);
  862. /*
  863. * Handle SAFI, if any, and OPENSSL_strdup() so we can null-terminate
  864. * the other input values.
  865. */
  866. if (safi != NULL) {
  867. *safi = strtoul(val->value, &t, 0);
  868. t += strspn(t, " \t");
  869. if (*safi > 0xFF || *t++ != ':') {
  870. X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_SAFI);
  871. X509V3_conf_err(val);
  872. goto err;
  873. }
  874. t += strspn(t, " \t");
  875. s = OPENSSL_strdup(t);
  876. } else {
  877. s = OPENSSL_strdup(val->value);
  878. }
  879. if (s == NULL) {
  880. X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
  881. goto err;
  882. }
  883. /*
  884. * Check for inheritance. Not worth additional complexity to
  885. * optimize this (seldom-used) case.
  886. */
  887. if (strcmp(s, "inherit") == 0) {
  888. if (!X509v3_addr_add_inherit(addr, afi, safi)) {
  889. X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
  890. X509V3_R_INVALID_INHERITANCE);
  891. X509V3_conf_err(val);
  892. goto err;
  893. }
  894. OPENSSL_free(s);
  895. s = NULL;
  896. continue;
  897. }
  898. i1 = strspn(s, addr_chars);
  899. i2 = i1 + strspn(s + i1, " \t");
  900. delim = s[i2++];
  901. s[i1] = '\0';
  902. if (a2i_ipadd(min, s) != length) {
  903. X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_IPADDRESS);
  904. X509V3_conf_err(val);
  905. goto err;
  906. }
  907. switch (delim) {
  908. case '/':
  909. prefixlen = (int)strtoul(s + i2, &t, 10);
  910. if (t == s + i2 || *t != '\0') {
  911. X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
  912. X509V3_R_EXTENSION_VALUE_ERROR);
  913. X509V3_conf_err(val);
  914. goto err;
  915. }
  916. if (!X509v3_addr_add_prefix(addr, afi, safi, min, prefixlen)) {
  917. X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
  918. goto err;
  919. }
  920. break;
  921. case '-':
  922. i1 = i2 + strspn(s + i2, " \t");
  923. i2 = i1 + strspn(s + i1, addr_chars);
  924. if (i1 == i2 || s[i2] != '\0') {
  925. X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
  926. X509V3_R_EXTENSION_VALUE_ERROR);
  927. X509V3_conf_err(val);
  928. goto err;
  929. }
  930. if (a2i_ipadd(max, s + i1) != length) {
  931. X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
  932. X509V3_R_INVALID_IPADDRESS);
  933. X509V3_conf_err(val);
  934. goto err;
  935. }
  936. if (memcmp(min, max, length_from_afi(afi)) > 0) {
  937. X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
  938. X509V3_R_EXTENSION_VALUE_ERROR);
  939. X509V3_conf_err(val);
  940. goto err;
  941. }
  942. if (!X509v3_addr_add_range(addr, afi, safi, min, max)) {
  943. X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
  944. goto err;
  945. }
  946. break;
  947. case '\0':
  948. if (!X509v3_addr_add_prefix(addr, afi, safi, min, length * 8)) {
  949. X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
  950. goto err;
  951. }
  952. break;
  953. default:
  954. X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
  955. X509V3_R_EXTENSION_VALUE_ERROR);
  956. X509V3_conf_err(val);
  957. goto err;
  958. }
  959. OPENSSL_free(s);
  960. s = NULL;
  961. }
  962. /*
  963. * Canonize the result, then we're done.
  964. */
  965. if (!X509v3_addr_canonize(addr))
  966. goto err;
  967. return addr;
  968. err:
  969. OPENSSL_free(s);
  970. sk_IPAddressFamily_pop_free(addr, IPAddressFamily_free);
  971. return NULL;
  972. }
  973. /*
  974. * OpenSSL dispatch
  975. */
  976. const X509V3_EXT_METHOD v3_addr = {
  977. NID_sbgp_ipAddrBlock, /* nid */
  978. 0, /* flags */
  979. ASN1_ITEM_ref(IPAddrBlocks), /* template */
  980. 0, 0, 0, 0, /* old functions, ignored */
  981. 0, /* i2s */
  982. 0, /* s2i */
  983. 0, /* i2v */
  984. v2i_IPAddrBlocks, /* v2i */
  985. i2r_IPAddrBlocks, /* i2r */
  986. 0, /* r2i */
  987. NULL /* extension-specific data */
  988. };
  989. /*
  990. * Figure out whether extension sues inheritance.
  991. */
  992. int X509v3_addr_inherits(IPAddrBlocks *addr)
  993. {
  994. int i;
  995. if (addr == NULL)
  996. return 0;
  997. for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
  998. IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
  999. if (f->ipAddressChoice->type == IPAddressChoice_inherit)
  1000. return 1;
  1001. }
  1002. return 0;
  1003. }
  1004. /*
  1005. * Figure out whether parent contains child.
  1006. */
  1007. static int addr_contains(IPAddressOrRanges *parent,
  1008. IPAddressOrRanges *child, int length)
  1009. {
  1010. unsigned char p_min[ADDR_RAW_BUF_LEN], p_max[ADDR_RAW_BUF_LEN];
  1011. unsigned char c_min[ADDR_RAW_BUF_LEN], c_max[ADDR_RAW_BUF_LEN];
  1012. int p, c;
  1013. if (child == NULL || parent == child)
  1014. return 1;
  1015. if (parent == NULL)
  1016. return 0;
  1017. p = 0;
  1018. for (c = 0; c < sk_IPAddressOrRange_num(child); c++) {
  1019. if (!extract_min_max(sk_IPAddressOrRange_value(child, c),
  1020. c_min, c_max, length))
  1021. return -1;
  1022. for (;; p++) {
  1023. if (p >= sk_IPAddressOrRange_num(parent))
  1024. return 0;
  1025. if (!extract_min_max(sk_IPAddressOrRange_value(parent, p),
  1026. p_min, p_max, length))
  1027. return 0;
  1028. if (memcmp(p_max, c_max, length) < 0)
  1029. continue;
  1030. if (memcmp(p_min, c_min, length) > 0)
  1031. return 0;
  1032. break;
  1033. }
  1034. }
  1035. return 1;
  1036. }
  1037. /*
  1038. * Test whether a is a subset of b.
  1039. */
  1040. int X509v3_addr_subset(IPAddrBlocks *a, IPAddrBlocks *b)
  1041. {
  1042. int i;
  1043. if (a == NULL || a == b)
  1044. return 1;
  1045. if (b == NULL || X509v3_addr_inherits(a) || X509v3_addr_inherits(b))
  1046. return 0;
  1047. (void)sk_IPAddressFamily_set_cmp_func(b, IPAddressFamily_cmp);
  1048. for (i = 0; i < sk_IPAddressFamily_num(a); i++) {
  1049. IPAddressFamily *fa = sk_IPAddressFamily_value(a, i);
  1050. int j = sk_IPAddressFamily_find(b, fa);
  1051. IPAddressFamily *fb;
  1052. fb = sk_IPAddressFamily_value(b, j);
  1053. if (fb == NULL)
  1054. return 0;
  1055. if (!addr_contains(fb->ipAddressChoice->u.addressesOrRanges,
  1056. fa->ipAddressChoice->u.addressesOrRanges,
  1057. length_from_afi(X509v3_addr_get_afi(fb))))
  1058. return 0;
  1059. }
  1060. return 1;
  1061. }
  1062. /*
  1063. * Validation error handling via callback.
  1064. */
  1065. #define validation_err(_err_) \
  1066. do { \
  1067. if (ctx != NULL) { \
  1068. ctx->error = _err_; \
  1069. ctx->error_depth = i; \
  1070. ctx->current_cert = x; \
  1071. ret = ctx->verify_cb(0, ctx); \
  1072. } else { \
  1073. ret = 0; \
  1074. } \
  1075. if (!ret) \
  1076. goto done; \
  1077. } while (0)
  1078. /*
  1079. * Core code for RFC 3779 2.3 path validation.
  1080. *
  1081. * Returns 1 for success, 0 on error.
  1082. *
  1083. * When returning 0, ctx->error MUST be set to an appropriate value other than
  1084. * X509_V_OK.
  1085. */
  1086. static int addr_validate_path_internal(X509_STORE_CTX *ctx,
  1087. STACK_OF(X509) *chain,
  1088. IPAddrBlocks *ext)
  1089. {
  1090. IPAddrBlocks *child = NULL;
  1091. int i, j, ret = 1;
  1092. X509 *x;
  1093. if (!ossl_assert(chain != NULL && sk_X509_num(chain) > 0)
  1094. || !ossl_assert(ctx != NULL || ext != NULL)
  1095. || !ossl_assert(ctx == NULL || ctx->verify_cb != NULL)) {
  1096. if (ctx != NULL)
  1097. ctx->error = X509_V_ERR_UNSPECIFIED;
  1098. return 0;
  1099. }
  1100. /*
  1101. * Figure out where to start. If we don't have an extension to
  1102. * check, we're done. Otherwise, check canonical form and
  1103. * set up for walking up the chain.
  1104. */
  1105. if (ext != NULL) {
  1106. i = -1;
  1107. x = NULL;
  1108. } else {
  1109. i = 0;
  1110. x = sk_X509_value(chain, i);
  1111. if ((ext = x->rfc3779_addr) == NULL)
  1112. goto done;
  1113. }
  1114. if (!X509v3_addr_is_canonical(ext))
  1115. validation_err(X509_V_ERR_INVALID_EXTENSION);
  1116. (void)sk_IPAddressFamily_set_cmp_func(ext, IPAddressFamily_cmp);
  1117. if ((child = sk_IPAddressFamily_dup(ext)) == NULL) {
  1118. X509V3err(X509V3_F_ADDR_VALIDATE_PATH_INTERNAL,
  1119. ERR_R_MALLOC_FAILURE);
  1120. if (ctx != NULL)
  1121. ctx->error = X509_V_ERR_OUT_OF_MEM;
  1122. ret = 0;
  1123. goto done;
  1124. }
  1125. /*
  1126. * Now walk up the chain. No cert may list resources that its
  1127. * parent doesn't list.
  1128. */
  1129. for (i++; i < sk_X509_num(chain); i++) {
  1130. x = sk_X509_value(chain, i);
  1131. if (!X509v3_addr_is_canonical(x->rfc3779_addr))
  1132. validation_err(X509_V_ERR_INVALID_EXTENSION);
  1133. if (x->rfc3779_addr == NULL) {
  1134. for (j = 0; j < sk_IPAddressFamily_num(child); j++) {
  1135. IPAddressFamily *fc = sk_IPAddressFamily_value(child, j);
  1136. if (fc->ipAddressChoice->type != IPAddressChoice_inherit) {
  1137. validation_err(X509_V_ERR_UNNESTED_RESOURCE);
  1138. break;
  1139. }
  1140. }
  1141. continue;
  1142. }
  1143. (void)sk_IPAddressFamily_set_cmp_func(x->rfc3779_addr,
  1144. IPAddressFamily_cmp);
  1145. for (j = 0; j < sk_IPAddressFamily_num(child); j++) {
  1146. IPAddressFamily *fc = sk_IPAddressFamily_value(child, j);
  1147. int k = sk_IPAddressFamily_find(x->rfc3779_addr, fc);
  1148. IPAddressFamily *fp =
  1149. sk_IPAddressFamily_value(x->rfc3779_addr, k);
  1150. if (fp == NULL) {
  1151. if (fc->ipAddressChoice->type ==
  1152. IPAddressChoice_addressesOrRanges) {
  1153. validation_err(X509_V_ERR_UNNESTED_RESOURCE);
  1154. break;
  1155. }
  1156. continue;
  1157. }
  1158. if (fp->ipAddressChoice->type ==
  1159. IPAddressChoice_addressesOrRanges) {
  1160. if (fc->ipAddressChoice->type == IPAddressChoice_inherit
  1161. || addr_contains(fp->ipAddressChoice->u.addressesOrRanges,
  1162. fc->ipAddressChoice->u.addressesOrRanges,
  1163. length_from_afi(X509v3_addr_get_afi(fc))))
  1164. sk_IPAddressFamily_set(child, j, fp);
  1165. else
  1166. validation_err(X509_V_ERR_UNNESTED_RESOURCE);
  1167. }
  1168. }
  1169. }
  1170. /*
  1171. * Trust anchor can't inherit.
  1172. */
  1173. if (x->rfc3779_addr != NULL) {
  1174. for (j = 0; j < sk_IPAddressFamily_num(x->rfc3779_addr); j++) {
  1175. IPAddressFamily *fp =
  1176. sk_IPAddressFamily_value(x->rfc3779_addr, j);
  1177. if (fp->ipAddressChoice->type == IPAddressChoice_inherit
  1178. && sk_IPAddressFamily_find(child, fp) >= 0)
  1179. validation_err(X509_V_ERR_UNNESTED_RESOURCE);
  1180. }
  1181. }
  1182. done:
  1183. sk_IPAddressFamily_free(child);
  1184. return ret;
  1185. }
  1186. #undef validation_err
  1187. /*
  1188. * RFC 3779 2.3 path validation -- called from X509_verify_cert().
  1189. */
  1190. int X509v3_addr_validate_path(X509_STORE_CTX *ctx)
  1191. {
  1192. if (ctx->chain == NULL
  1193. || sk_X509_num(ctx->chain) == 0
  1194. || ctx->verify_cb == NULL) {
  1195. ctx->error = X509_V_ERR_UNSPECIFIED;
  1196. return 0;
  1197. }
  1198. return addr_validate_path_internal(ctx, ctx->chain, NULL);
  1199. }
  1200. /*
  1201. * RFC 3779 2.3 path validation of an extension.
  1202. * Test whether chain covers extension.
  1203. */
  1204. int X509v3_addr_validate_resource_set(STACK_OF(X509) *chain,
  1205. IPAddrBlocks *ext, int allow_inheritance)
  1206. {
  1207. if (ext == NULL)
  1208. return 1;
  1209. if (chain == NULL || sk_X509_num(chain) == 0)
  1210. return 0;
  1211. if (!allow_inheritance && X509v3_addr_inherits(ext))
  1212. return 0;
  1213. return addr_validate_path_internal(NULL, chain, ext);
  1214. }
  1215. #endif /* OPENSSL_NO_RFC3779 */