| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178 | 
							- /*
 
-  * Bignum routines for RSA and DH and stuff.
 
-  */
 
- #include <stdio.h>
 
- #include <assert.h>
 
- #include <stdlib.h>
 
- #include <string.h>
 
- #include <limits.h>
 
- #include <ctype.h>
 
- #include "misc.h"
 
- #include "sshbn.h"
 
- #define BIGNUM_INTERNAL
 
- typedef BignumInt *Bignum;
 
- #include "ssh.h"
 
- #include "marshal.h"
 
- BignumInt bnZero[1] = { 0 };
 
- BignumInt bnOne[2] = { 1, 1 };
 
- BignumInt bnTen[2] = { 1, 10 };
 
- /*
 
-  * The Bignum format is an array of `BignumInt'. The first
 
-  * element of the array counts the remaining elements. The
 
-  * remaining elements express the actual number, base 2^BIGNUM_INT_BITS, _least_
 
-  * significant digit first. (So it's trivial to extract the bit
 
-  * with value 2^n for any n.)
 
-  *
 
-  * All Bignums in this module are positive. Negative numbers must
 
-  * be dealt with outside it.
 
-  *
 
-  * INVARIANT: the most significant word of any Bignum must be
 
-  * nonzero.
 
-  */
 
- Bignum Zero = bnZero, One = bnOne, Ten = bnTen;
 
- static Bignum newbn(int length)
 
- {
 
-     Bignum b;
 
-     assert(length >= 0 && length < INT_MAX / BIGNUM_INT_BITS);
 
-     b = snewn(length + 1, BignumInt);
 
-     memset(b, 0, (length + 1) * sizeof(*b));
 
-     b[0] = length;
 
-     return b;
 
- }
 
- void bn_restore_invariant(Bignum b)
 
- {
 
-     while (b[0] > 1 && b[b[0]] == 0)
 
- 	b[0]--;
 
- }
 
- Bignum copybn(Bignum orig)
 
- {
 
-     Bignum b = snewn(orig[0] + 1, BignumInt);
 
-     if (!b)
 
- 	abort();		       /* FIXME */
 
-     memcpy(b, orig, (orig[0] + 1) * sizeof(*b));
 
-     return b;
 
- }
 
- void freebn(Bignum b)
 
- {
 
-     /*
 
-      * Burn the evidence, just in case.
 
-      */
 
-     smemclr(b, sizeof(b[0]) * (b[0] + 1));
 
-     sfree(b);
 
- }
 
- Bignum bn_power_2(int n)
 
- {
 
-     Bignum ret;
 
-     assert(n >= 0);
 
-     ret = newbn(n / BIGNUM_INT_BITS + 1);
 
-     bignum_set_bit(ret, n, 1);
 
-     return ret;
 
- }
 
- /*
 
-  * Internal addition. Sets c = a - b, where 'a', 'b' and 'c' are all
 
-  * big-endian arrays of 'len' BignumInts. Returns the carry off the
 
-  * top.
 
-  */
 
- static BignumCarry internal_add(const BignumInt *a, const BignumInt *b,
 
-                                 BignumInt *c, int len)
 
- {
 
-     int i;
 
-     BignumCarry carry = 0;
 
-     for (i = len-1; i >= 0; i--)
 
-         BignumADC(c[i], carry, a[i], b[i], carry);
 
-     return (BignumInt)carry;
 
- }
 
- /*
 
-  * Internal subtraction. Sets c = a - b, where 'a', 'b' and 'c' are
 
-  * all big-endian arrays of 'len' BignumInts. Any borrow from the top
 
-  * is ignored.
 
-  */
 
- static void internal_sub(const BignumInt *a, const BignumInt *b,
 
-                          BignumInt *c, int len)
 
- {
 
-     int i;
 
-     BignumCarry carry = 1;
 
-     for (i = len-1; i >= 0; i--)
 
-         BignumADC(c[i], carry, a[i], ~b[i], carry);
 
- }
 
- /*
 
-  * Compute c = a * b.
 
-  * Input is in the first len words of a and b.
 
-  * Result is returned in the first 2*len words of c.
 
-  *
 
-  * 'scratch' must point to an array of BignumInt of size at least
 
-  * mul_compute_scratch(len). (This covers the needs of internal_mul
 
-  * and all its recursive calls to itself.)
 
-  */
 
- #define KARATSUBA_THRESHOLD 50
 
- static int mul_compute_scratch(int len)
 
- {
 
-     int ret = 0;
 
-     while (len > KARATSUBA_THRESHOLD) {
 
-         int toplen = len/2, botlen = len - toplen; /* botlen is the bigger */
 
-         int midlen = botlen + 1;
 
-         ret += 4*midlen;
 
-         len = midlen;
 
-     }
 
-     return ret;
 
- }
 
- static void internal_mul(const BignumInt *a, const BignumInt *b,
 
- 			 BignumInt *c, int len, BignumInt *scratch)
 
- {
 
-     if (len > KARATSUBA_THRESHOLD) {
 
-         int i;
 
-         /*
 
-          * Karatsuba divide-and-conquer algorithm. Cut each input in
 
-          * half, so that it's expressed as two big 'digits' in a giant
 
-          * base D:
 
-          *
 
-          *   a = a_1 D + a_0
 
-          *   b = b_1 D + b_0
 
-          *
 
-          * Then the product is of course
 
-          *
 
-          *  ab = a_1 b_1 D^2 + (a_1 b_0 + a_0 b_1) D + a_0 b_0
 
-          *
 
-          * and we compute the three coefficients by recursively
 
-          * calling ourself to do half-length multiplications.
 
-          *
 
-          * The clever bit that makes this worth doing is that we only
 
-          * need _one_ half-length multiplication for the central
 
-          * coefficient rather than the two that it obviouly looks
 
-          * like, because we can use a single multiplication to compute
 
-          *
 
-          *   (a_1 + a_0) (b_1 + b_0) = a_1 b_1 + a_1 b_0 + a_0 b_1 + a_0 b_0
 
-          *
 
-          * and then we subtract the other two coefficients (a_1 b_1
 
-          * and a_0 b_0) which we were computing anyway.
 
-          *
 
-          * Hence we get to multiply two numbers of length N in about
 
-          * three times as much work as it takes to multiply numbers of
 
-          * length N/2, which is obviously better than the four times
 
-          * as much work it would take if we just did a long
 
-          * conventional multiply.
 
-          */
 
-         int toplen = len/2, botlen = len - toplen; /* botlen is the bigger */
 
-         int midlen = botlen + 1;
 
-         BignumCarry carry;
 
- #ifdef KARA_DEBUG
 
-         int i;
 
- #endif
 
-         /*
 
-          * The coefficients a_1 b_1 and a_0 b_0 just avoid overlapping
 
-          * in the output array, so we can compute them immediately in
 
-          * place.
 
-          */
 
- #ifdef KARA_DEBUG
 
-         printf("a1,a0 = 0x");
 
-         for (i = 0; i < len; i++) {
 
-             if (i == toplen) printf(", 0x");
 
-             printf("%0*x", BIGNUM_INT_BITS/4, a[i]);
 
-         }
 
-         printf("\n");
 
-         printf("b1,b0 = 0x");
 
-         for (i = 0; i < len; i++) {
 
-             if (i == toplen) printf(", 0x");
 
-             printf("%0*x", BIGNUM_INT_BITS/4, b[i]);
 
-         }
 
-         printf("\n");
 
- #endif
 
-         /* a_1 b_1 */
 
-         internal_mul(a, b, c, toplen, scratch);
 
- #ifdef KARA_DEBUG
 
-         printf("a1b1 = 0x");
 
-         for (i = 0; i < 2*toplen; i++) {
 
-             printf("%0*x", BIGNUM_INT_BITS/4, c[i]);
 
-         }
 
-         printf("\n");
 
- #endif
 
-         /* a_0 b_0 */
 
-         internal_mul(a + toplen, b + toplen, c + 2*toplen, botlen, scratch);
 
- #ifdef KARA_DEBUG
 
-         printf("a0b0 = 0x");
 
-         for (i = 0; i < 2*botlen; i++) {
 
-             printf("%0*x", BIGNUM_INT_BITS/4, c[2*toplen+i]);
 
-         }
 
-         printf("\n");
 
- #endif
 
-         /* Zero padding. midlen exceeds toplen by at most 2, so just
 
-          * zero the first two words of each input and the rest will be
 
-          * copied over. */
 
-         scratch[0] = scratch[1] = scratch[midlen] = scratch[midlen+1] = 0;
 
-         for (i = 0; i < toplen; i++) {
 
-             scratch[midlen - toplen + i] = a[i]; /* a_1 */
 
-             scratch[2*midlen - toplen + i] = b[i]; /* b_1 */
 
-         }
 
-         /* compute a_1 + a_0 */
 
-         scratch[0] = internal_add(scratch+1, a+toplen, scratch+1, botlen);
 
- #ifdef KARA_DEBUG
 
-         printf("a1plusa0 = 0x");
 
-         for (i = 0; i < midlen; i++) {
 
-             printf("%0*x", BIGNUM_INT_BITS/4, scratch[i]);
 
-         }
 
-         printf("\n");
 
- #endif
 
-         /* compute b_1 + b_0 */
 
-         scratch[midlen] = internal_add(scratch+midlen+1, b+toplen,
 
-                                        scratch+midlen+1, botlen);
 
- #ifdef KARA_DEBUG
 
-         printf("b1plusb0 = 0x");
 
-         for (i = 0; i < midlen; i++) {
 
-             printf("%0*x", BIGNUM_INT_BITS/4, scratch[midlen+i]);
 
-         }
 
-         printf("\n");
 
- #endif
 
-         /*
 
-          * Now we can do the third multiplication.
 
-          */
 
-         internal_mul(scratch, scratch + midlen, scratch + 2*midlen, midlen,
 
-                      scratch + 4*midlen);
 
- #ifdef KARA_DEBUG
 
-         printf("a1plusa0timesb1plusb0 = 0x");
 
-         for (i = 0; i < 2*midlen; i++) {
 
-             printf("%0*x", BIGNUM_INT_BITS/4, scratch[2*midlen+i]);
 
-         }
 
-         printf("\n");
 
- #endif
 
-         /*
 
-          * Now we can reuse the first half of 'scratch' to compute the
 
-          * sum of the outer two coefficients, to subtract from that
 
-          * product to obtain the middle one.
 
-          */
 
-         scratch[0] = scratch[1] = scratch[2] = scratch[3] = 0;
 
-         for (i = 0; i < 2*toplen; i++)
 
-             scratch[2*midlen - 2*toplen + i] = c[i];
 
-         scratch[1] = internal_add(scratch+2, c + 2*toplen,
 
-                                   scratch+2, 2*botlen);
 
- #ifdef KARA_DEBUG
 
-         printf("a1b1plusa0b0 = 0x");
 
-         for (i = 0; i < 2*midlen; i++) {
 
-             printf("%0*x", BIGNUM_INT_BITS/4, scratch[i]);
 
-         }
 
-         printf("\n");
 
- #endif
 
-         internal_sub(scratch + 2*midlen, scratch,
 
-                      scratch + 2*midlen, 2*midlen);
 
- #ifdef KARA_DEBUG
 
-         printf("a1b0plusa0b1 = 0x");
 
-         for (i = 0; i < 2*midlen; i++) {
 
-             printf("%0*x", BIGNUM_INT_BITS/4, scratch[2*midlen+i]);
 
-         }
 
-         printf("\n");
 
- #endif
 
-         /*
 
-          * And now all we need to do is to add that middle coefficient
 
-          * back into the output. We may have to propagate a carry
 
-          * further up the output, but we can be sure it won't
 
-          * propagate right the way off the top.
 
-          */
 
-         carry = internal_add(c + 2*len - botlen - 2*midlen,
 
-                              scratch + 2*midlen,
 
-                              c + 2*len - botlen - 2*midlen, 2*midlen);
 
-         i = 2*len - botlen - 2*midlen - 1;
 
-         while (carry) {
 
-             assert(i >= 0);
 
-             BignumADC(c[i], carry, c[i], 0, carry);
 
-             i--;
 
-         }
 
- #ifdef KARA_DEBUG
 
-         printf("ab = 0x");
 
-         for (i = 0; i < 2*len; i++) {
 
-             printf("%0*x", BIGNUM_INT_BITS/4, c[i]);
 
-         }
 
-         printf("\n");
 
- #endif
 
-     } else {
 
-         int i;
 
-         BignumInt carry;
 
-         const BignumInt *ap, *bp;
 
-         BignumInt *cp, *cps;
 
-         /*
 
-          * Multiply in the ordinary O(N^2) way.
 
-          */
 
-         for (i = 0; i < 2 * len; i++)
 
-             c[i] = 0;
 
-         for (cps = c + 2*len, ap = a + len; ap-- > a; cps--) {
 
-             carry = 0;
 
-             for (cp = cps, bp = b + len; cp--, bp-- > b ;)
 
-                 BignumMULADD2(carry, *cp, *ap, *bp, *cp, carry);
 
-             *cp = carry;
 
-         }
 
-     }
 
- }
 
- /*
 
-  * Variant form of internal_mul used for the initial step of
 
-  * Montgomery reduction. Only bothers outputting 'len' words
 
-  * (everything above that is thrown away).
 
-  */
 
- static void internal_mul_low(const BignumInt *a, const BignumInt *b,
 
-                              BignumInt *c, int len, BignumInt *scratch)
 
- {
 
-     if (len > KARATSUBA_THRESHOLD) {
 
-         int i;
 
-         /*
 
-          * Karatsuba-aware version of internal_mul_low. As before, we
 
-          * express each input value as a shifted combination of two
 
-          * halves:
 
-          *
 
-          *   a = a_1 D + a_0
 
-          *   b = b_1 D + b_0
 
-          *
 
-          * Then the full product is, as before,
 
-          *
 
-          *  ab = a_1 b_1 D^2 + (a_1 b_0 + a_0 b_1) D + a_0 b_0
 
-          *
 
-          * Provided we choose D on the large side (so that a_0 and b_0
 
-          * are _at least_ as long as a_1 and b_1), we don't need the
 
-          * topmost term at all, and we only need half of the middle
 
-          * term. So there's no point in doing the proper Karatsuba
 
-          * optimisation which computes the middle term using the top
 
-          * one, because we'd take as long computing the top one as
 
-          * just computing the middle one directly.
 
-          *
 
-          * So instead, we do a much more obvious thing: we call the
 
-          * fully optimised internal_mul to compute a_0 b_0, and we
 
-          * recursively call ourself to compute the _bottom halves_ of
 
-          * a_1 b_0 and a_0 b_1, each of which we add into the result
 
-          * in the obvious way.
 
-          *
 
-          * In other words, there's no actual Karatsuba _optimisation_
 
-          * in this function; the only benefit in doing it this way is
 
-          * that we call internal_mul proper for a large part of the
 
-          * work, and _that_ can optimise its operation.
 
-          */
 
-         int toplen = len/2, botlen = len - toplen; /* botlen is the bigger */
 
-         /*
 
-          * Scratch space for the various bits and pieces we're going
 
-          * to be adding together: we need botlen*2 words for a_0 b_0
 
-          * (though we may end up throwing away its topmost word), and
 
-          * toplen words for each of a_1 b_0 and a_0 b_1. That adds up
 
-          * to exactly 2*len.
 
-          */
 
-         /* a_0 b_0 */
 
-         internal_mul(a + toplen, b + toplen, scratch + 2*toplen, botlen,
 
-                      scratch + 2*len);
 
-         /* a_1 b_0 */
 
-         internal_mul_low(a, b + len - toplen, scratch + toplen, toplen,
 
-                          scratch + 2*len);
 
-         /* a_0 b_1 */
 
-         internal_mul_low(a + len - toplen, b, scratch, toplen,
 
-                          scratch + 2*len);
 
-         /* Copy the bottom half of the big coefficient into place */
 
-         for (i = 0; i < botlen; i++)
 
-             c[toplen + i] = scratch[2*toplen + botlen + i];
 
-         /* Add the two small coefficients, throwing away the returned carry */
 
-         internal_add(scratch, scratch + toplen, scratch, toplen);
 
-         /* And add that to the large coefficient, leaving the result in c. */
 
-         internal_add(scratch, scratch + 2*toplen + botlen - toplen,
 
-                      c, toplen);
 
-     } else {
 
-         int i;
 
-         BignumInt carry;
 
-         const BignumInt *ap, *bp;
 
-         BignumInt *cp, *cps;
 
-         /*
 
-          * Multiply in the ordinary O(N^2) way.
 
-          */
 
-         for (i = 0; i < len; i++)
 
-             c[i] = 0;
 
-         for (cps = c + len, ap = a + len; ap-- > a; cps--) {
 
-             carry = 0;
 
-             for (cp = cps, bp = b + len; bp--, cp-- > c ;)
 
-                 BignumMULADD2(carry, *cp, *ap, *bp, *cp, carry);
 
-         }
 
-     }
 
- }
 
- /*
 
-  * Montgomery reduction. Expects x to be a big-endian array of 2*len
 
-  * BignumInts whose value satisfies 0 <= x < rn (where r = 2^(len *
 
-  * BIGNUM_INT_BITS) is the Montgomery base). Returns in the same array
 
-  * a value x' which is congruent to xr^{-1} mod n, and satisfies 0 <=
 
-  * x' < n.
 
-  *
 
-  * 'n' and 'mninv' should be big-endian arrays of 'len' BignumInts
 
-  * each, containing respectively n and the multiplicative inverse of
 
-  * -n mod r.
 
-  *
 
-  * 'tmp' is an array of BignumInt used as scratch space, of length at
 
-  * least 3*len + mul_compute_scratch(len).
 
-  */
 
- static void monty_reduce(BignumInt *x, const BignumInt *n,
 
-                          const BignumInt *mninv, BignumInt *tmp, int len)
 
- {
 
-     int i;
 
-     BignumInt carry;
 
-     /*
 
-      * Multiply x by (-n)^{-1} mod r. This gives us a value m such
 
-      * that mn is congruent to -x mod r. Hence, mn+x is an exact
 
-      * multiple of r, and is also (obviously) congruent to x mod n.
 
-      */
 
-     internal_mul_low(x + len, mninv, tmp, len, tmp + 3*len);
 
-     /*
 
-      * Compute t = (mn+x)/r in ordinary, non-modular, integer
 
-      * arithmetic. By construction this is exact, and is congruent mod
 
-      * n to x * r^{-1}, i.e. the answer we want.
 
-      *
 
-      * The following multiply leaves that answer in the _most_
 
-      * significant half of the 'x' array, so then we must shift it
 
-      * down.
 
-      */
 
-     internal_mul(tmp, n, tmp+len, len, tmp + 3*len);
 
-     carry = internal_add(x, tmp+len, x, 2*len);
 
-     for (i = 0; i < len; i++)
 
-         x[len + i] = x[i], x[i] = 0;
 
-     /*
 
-      * Reduce t mod n. This doesn't require a full-on division by n,
 
-      * but merely a test and single optional subtraction, since we can
 
-      * show that 0 <= t < 2n.
 
-      *
 
-      * Proof:
 
-      *  + we computed m mod r, so 0 <= m < r.
 
-      *  + so 0 <= mn < rn, obviously
 
-      *  + hence we only need 0 <= x < rn to guarantee that 0 <= mn+x < 2rn
 
-      *  + yielding 0 <= (mn+x)/r < 2n as required.
 
-      */
 
-     if (!carry) {
 
-         for (i = 0; i < len; i++)
 
-             if (x[len + i] != n[i])
 
-                 break;
 
-     }
 
-     if (carry || i >= len || x[len + i] > n[i])
 
-         internal_sub(x+len, n, x+len, len);
 
- }
 
- static void internal_add_shifted(BignumInt *number,
 
- 				 BignumInt n, int shift)
 
- {
 
-     int word = 1 + (shift / BIGNUM_INT_BITS);
 
-     int bshift = shift % BIGNUM_INT_BITS;
 
-     BignumInt addendh, addendl;
 
-     BignumCarry carry;
 
-     addendl = n << bshift;
 
-     addendh = (bshift == 0 ? 0 : n >> (BIGNUM_INT_BITS - bshift));
 
-     assert(word <= number[0]);
 
-     BignumADC(number[word], carry, number[word], addendl, 0);
 
-     word++;
 
-     if (!addendh && !carry)
 
-         return;
 
-     assert(word <= number[0]);
 
-     BignumADC(number[word], carry, number[word], addendh, carry);
 
-     word++;
 
-     while (carry) {
 
-         assert(word <= number[0]);
 
-         BignumADC(number[word], carry, number[word], 0, carry);
 
- 	word++;
 
-     }
 
- }
 
- static int bn_clz(BignumInt x)
 
- {
 
-     /*
 
-      * Count the leading zero bits in x. Equivalently, how far left
 
-      * would we need to shift x to make its top bit set?
 
-      *
 
-      * Precondition: x != 0.
 
-      */
 
-     /* FIXME: would be nice to put in some compiler intrinsics under
 
-      * ifdef here */
 
-     int i, ret = 0;
 
-     for (i = BIGNUM_INT_BITS / 2; i != 0; i >>= 1) {
 
-         if ((x >> (BIGNUM_INT_BITS-i)) == 0) {
 
-             x <<= i;
 
-             ret += i;
 
-         }
 
-     }
 
-     return ret;
 
- }
 
- static BignumInt reciprocal_word(BignumInt d)
 
- {
 
-     BignumInt dshort, recip, prodh, prodl;
 
-     int corrections;
 
-     /*
 
-      * Input: a BignumInt value d, with its top bit set.
 
-      */
 
-     assert(d >> (BIGNUM_INT_BITS-1) == 1);
 
-     /*
 
-      * Output: a value, shifted to fill a BignumInt, which is strictly
 
-      * less than 1/(d+1), i.e. is an *under*-estimate (but by as
 
-      * little as possible within the constraints) of the reciprocal of
 
-      * any number whose first BIGNUM_INT_BITS bits match d.
 
-      *
 
-      * Ideally we'd like to _totally_ fill BignumInt, i.e. always
 
-      * return a value with the top bit set. Unfortunately we can't
 
-      * quite guarantee that for all inputs and also return a fixed
 
-      * exponent. So instead we take our reciprocal to be
 
-      * 2^(BIGNUM_INT_BITS*2-1) / d, so that it has the top bit clear
 
-      * only in the exceptional case where d takes exactly the maximum
 
-      * value BIGNUM_INT_MASK; in that case, the top bit is clear and
 
-      * the next bit down is set.
 
-      */
 
-     /*
 
-      * Start by computing a half-length version of the answer, by
 
-      * straightforward division within a BignumInt.
 
-      */
 
-     dshort = (d >> (BIGNUM_INT_BITS/2)) + 1;
 
-     recip = (BIGNUM_TOP_BIT + dshort - 1) / dshort;
 
-     recip <<= BIGNUM_INT_BITS - BIGNUM_INT_BITS/2;
 
-     /*
 
-      * Newton-Raphson iteration to improve that starting reciprocal
 
-      * estimate: take f(x) = d - 1/x, and then the N-R formula gives
 
-      * x_new = x - f(x)/f'(x) = x - (d-1/x)/(1/x^2) = x(2-d*x). Or,
 
-      * taking our fixed-point representation into account, take f(x)
 
-      * to be d - K/x (where K = 2^(BIGNUM_INT_BITS*2-1) as discussed
 
-      * above) and then we get (2K - d*x) * x/K.
 
-      *
 
-      * Newton-Raphson doubles the number of correct bits at every
 
-      * iteration, and the initial division above already gave us half
 
-      * the output word, so it's only worth doing one iteration.
 
-      */
 
-     BignumMULADD(prodh, prodl, recip, d, recip);
 
-     prodl = ~prodl;
 
-     prodh = ~prodh;
 
-     {
 
-         BignumCarry c;
 
-         BignumADC(prodl, c, prodl, 1, 0);
 
-         prodh += c;
 
-     }
 
-     BignumMUL(prodh, prodl, prodh, recip);
 
-     recip = (prodh << 1) | (prodl >> (BIGNUM_INT_BITS-1));
 
-     /*
 
-      * Now make sure we have the best possible reciprocal estimate,
 
-      * before we return it. We might have been off by a handful either
 
-      * way - not enough to bother with any better-thought-out kind of
 
-      * correction loop.
 
-      */
 
-     BignumMULADD(prodh, prodl, recip, d, recip);
 
-     corrections = 0;
 
-     if (prodh >= BIGNUM_TOP_BIT) {
 
-         do {
 
-             BignumCarry c = 1;
 
-             BignumADC(prodl, c, prodl, ~d, c); prodh += BIGNUM_INT_MASK + c;
 
-             recip--;
 
-             corrections++;
 
-         } while (prodh >= ((BignumInt)1 << (BIGNUM_INT_BITS-1)));
 
-     } else {
 
-         while (1) {
 
-             BignumInt newprodh, newprodl;
 
-             BignumCarry c = 0;
 
-             BignumADC(newprodl, c, prodl, d, c); newprodh = prodh + c;
 
-             if (newprodh >= BIGNUM_TOP_BIT)
 
-                 break;
 
-             prodh = newprodh;
 
-             prodl = newprodl;
 
-             recip++;
 
-             corrections++;
 
-         }
 
-     }
 
-     return recip;
 
- }
 
- /*
 
-  * Compute a = a % m.
 
-  * Input in first alen words of a and first mlen words of m.
 
-  * Output in first alen words of a
 
-  * (of which first alen-mlen words will be zero).
 
-  * Quotient is accumulated in the `quotient' array, which is a Bignum
 
-  * rather than the internal bigendian format.
 
-  *
 
-  * 'recip' must be the result of calling reciprocal_word() on the top
 
-  * BIGNUM_INT_BITS of the modulus (denoted m0 in comments below), with
 
-  * the topmost set bit normalised to the MSB of the input to
 
-  * reciprocal_word. 'rshift' is how far left the top nonzero word of
 
-  * the modulus had to be shifted to set that top bit.
 
-  */
 
- static void internal_mod(BignumInt *a, int alen,
 
- 			 BignumInt *m, int mlen,
 
- 			 BignumInt *quot, BignumInt recip, int rshift)
 
- {
 
-     int i, k;
 
- #ifdef DIVISION_DEBUG
 
-     {
 
-         int d;
 
-         printf("start division, m=0x");
 
-         for (d = 0; d < mlen; d++)
 
-             printf("%0*llx", BIGNUM_INT_BITS/4, (unsigned long long)m[d]);
 
-         printf(", recip=%#0*llx, rshift=%d\n",
 
-                BIGNUM_INT_BITS/4, (unsigned long long)recip, rshift);
 
-     }
 
- #endif
 
-     /*
 
-      * Repeatedly use that reciprocal estimate to get a decent number
 
-      * of quotient bits, and subtract off the resulting multiple of m.
 
-      *
 
-      * Normally we expect to terminate this loop by means of finding
 
-      * out q=0 part way through, but one way in which we might not get
 
-      * that far in the first place is if the input a is actually zero,
 
-      * in which case we'll discard zero words from the front of a
 
-      * until we reach the termination condition in the for statement
 
-      * here.
 
-      */
 
-     for (i = 0; i <= alen - mlen ;) {
 
- 	BignumInt product;
 
-         BignumInt aword, q;
 
-         int shift, full_bitoffset, bitoffset, wordoffset;
 
- #ifdef DIVISION_DEBUG
 
-         {
 
-             int d;
 
-             printf("main loop, a=0x");
 
-             for (d = 0; d < alen; d++)
 
-                 printf("%0*llx", BIGNUM_INT_BITS/4, (unsigned long long)a[d]);
 
-             printf("\n");
 
-         }
 
- #endif
 
-         if (a[i] == 0) {
 
- #ifdef DIVISION_DEBUG
 
-             printf("zero word at i=%d\n", i);
 
- #endif
 
-             i++;
 
-             continue;
 
-         }
 
-         aword = a[i];
 
-         shift = bn_clz(aword);
 
-         aword <<= shift;
 
-         if (shift > 0 && i+1 < alen)
 
-             aword |= a[i+1] >> (BIGNUM_INT_BITS - shift);
 
-         {
 
-             BignumInt unused;
 
-             BignumMUL(q, unused, recip, aword);
 
-             (void)unused;
 
-         }
 
- #ifdef DIVISION_DEBUG
 
-         printf("i=%d, aword=%#0*llx, shift=%d, q=%#0*llx\n",
 
-                i, BIGNUM_INT_BITS/4, (unsigned long long)aword,
 
-                shift, BIGNUM_INT_BITS/4, (unsigned long long)q);
 
- #endif
 
-         /*
 
-          * Work out the right bit and word offsets to use when
 
-          * subtracting q*m from a.
 
-          *
 
-          * aword was taken from a[i], which means its LSB was at bit
 
-          * position (alen-1-i) * BIGNUM_INT_BITS. But then we shifted
 
-          * it left by 'shift', so now the low bit of aword corresponds
 
-          * to bit position (alen-1-i) * BIGNUM_INT_BITS - shift, i.e.
 
-          * aword is approximately equal to a / 2^(that).
 
-          *
 
-          * m0 comes from the top word of mod, so its LSB is at bit
 
-          * position (mlen-1) * BIGNUM_INT_BITS - rshift, i.e. it can
 
-          * be considered to be m / 2^(that power). 'recip' is the
 
-          * reciprocal of m0, times 2^(BIGNUM_INT_BITS*2-1), i.e. it's
 
-          * about 2^((mlen+1) * BIGNUM_INT_BITS - rshift - 1) / m.
 
-          *
 
-          * Hence, recip * aword is approximately equal to the product
 
-          * of those, which simplifies to
 
-          *
 
-          * a/m * 2^((mlen+2+i-alen)*BIGNUM_INT_BITS + shift - rshift - 1)
 
-          *
 
-          * But we've also shifted recip*aword down by BIGNUM_INT_BITS
 
-          * to form q, so we have
 
-          *
 
-          * q ~= a/m * 2^((mlen+1+i-alen)*BIGNUM_INT_BITS + shift - rshift - 1)
 
-          *
 
-          * and hence, when we now compute q*m, it will be about
 
-          * a*2^(all that lot), i.e. the negation of that expression is
 
-          * how far left we have to shift the product q*m to make it
 
-          * approximately equal to a.
 
-          */
 
-         full_bitoffset = -((mlen+1+i-alen)*BIGNUM_INT_BITS + shift-rshift-1);
 
- #ifdef DIVISION_DEBUG
 
-         printf("full_bitoffset=%d\n", full_bitoffset);
 
- #endif
 
-         if (full_bitoffset < 0) {
 
-             /*
 
-              * If we find ourselves needing to shift q*m _right_, that
 
-              * means we've reached the bottom of the quotient. Clip q
 
-              * so that its right shift becomes zero, and if that means
 
-              * q becomes _actually_ zero, this loop is done.
 
-              */
 
-             if (full_bitoffset <= -BIGNUM_INT_BITS)
 
-                 break;
 
-             q >>= -full_bitoffset;
 
-             full_bitoffset = 0;
 
-             if (!q)
 
-                 break;
 
- #ifdef DIVISION_DEBUG
 
-             printf("now full_bitoffset=%d, q=%#0*llx\n",
 
-                    full_bitoffset, BIGNUM_INT_BITS/4, (unsigned long long)q);
 
- #endif
 
-         }
 
-         wordoffset = full_bitoffset / BIGNUM_INT_BITS;
 
-         bitoffset = full_bitoffset % BIGNUM_INT_BITS;
 
- #ifdef DIVISION_DEBUG
 
-         printf("wordoffset=%d, bitoffset=%d\n", wordoffset, bitoffset);
 
- #endif
 
-         /* wordoffset as computed above is the offset between the LSWs
 
-          * of m and a. But in fact m and a are stored MSW-first, so we
 
-          * need to adjust it to be the offset between the actual array
 
-          * indices, and flip the sign too. */
 
-         wordoffset = alen - mlen - wordoffset;
 
-         if (bitoffset == 0) {
 
-             BignumCarry c = 1;
 
-             BignumInt prev_hi_word = 0;
 
-             for (k = mlen - 1; wordoffset+k >= i; k--) {
 
-                 BignumInt mword = k<0 ? 0 : m[k];
 
-                 BignumMULADD(prev_hi_word, product, q, mword, prev_hi_word);
 
- #ifdef DIVISION_DEBUG
 
-                 printf("  aligned sub: product word for m[%d] = %#0*llx\n",
 
-                        k, BIGNUM_INT_BITS/4,
 
-                        (unsigned long long)product);
 
- #endif
 
- #ifdef DIVISION_DEBUG
 
-                 printf("  aligned sub: subtrahend for a[%d] = %#0*llx\n",
 
-                        wordoffset+k, BIGNUM_INT_BITS/4,
 
-                        (unsigned long long)product);
 
- #endif
 
-                 BignumADC(a[wordoffset+k], c, a[wordoffset+k], ~product, c);
 
-             }
 
-         } else {
 
-             BignumInt add_word = 0;
 
-             BignumInt c = 1;
 
-             BignumInt prev_hi_word = 0;
 
-             for (k = mlen - 1; wordoffset+k >= i; k--) {
 
-                 BignumInt mword = k<0 ? 0 : m[k];
 
-                 BignumMULADD(prev_hi_word, product, q, mword, prev_hi_word);
 
- #ifdef DIVISION_DEBUG
 
-                 printf("  unaligned sub: product word for m[%d] = %#0*llx\n",
 
-                        k, BIGNUM_INT_BITS/4,
 
-                        (unsigned long long)product);
 
- #endif
 
-                 add_word |= product << bitoffset;
 
- #ifdef DIVISION_DEBUG
 
-                 printf("  unaligned sub: subtrahend for a[%d] = %#0*llx\n",
 
-                        wordoffset+k,
 
-                        BIGNUM_INT_BITS/4, (unsigned long long)add_word);
 
- #endif
 
-                 BignumADC(a[wordoffset+k], c, a[wordoffset+k], ~add_word, c);
 
-                 add_word = product >> (BIGNUM_INT_BITS - bitoffset);
 
-             }
 
-         }
 
- 	if (quot) {
 
- #ifdef DIVISION_DEBUG
 
-             printf("adding quotient word %#0*llx << %d\n",
 
-                    BIGNUM_INT_BITS/4, (unsigned long long)q, full_bitoffset);
 
- #endif
 
- 	    internal_add_shifted(quot, q, full_bitoffset);
 
- #ifdef DIVISION_DEBUG
 
-             {
 
-                 int d;
 
-                 printf("now quot=0x");
 
-                 for (d = quot[0]; d > 0; d--)
 
-                     printf("%0*llx", BIGNUM_INT_BITS/4,
 
-                            (unsigned long long)quot[d]);
 
-                 printf("\n");
 
-             }
 
- #endif
 
-         }
 
-     }
 
- #ifdef DIVISION_DEBUG
 
-     {
 
-         int d;
 
-         printf("end main loop, a=0x");
 
-         for (d = 0; d < alen; d++)
 
-             printf("%0*llx", BIGNUM_INT_BITS/4, (unsigned long long)a[d]);
 
-         if (quot) {
 
-             printf(", quot=0x");
 
-             for (d = quot[0]; d > 0; d--)
 
-                 printf("%0*llx", BIGNUM_INT_BITS/4,
 
-                        (unsigned long long)quot[d]);
 
-         }
 
-         printf("\n");
 
-     }
 
- #endif
 
-     /*
 
-      * The above loop should terminate with the remaining value in a
 
-      * being strictly less than 2*m (if a >= 2*m then we should always
 
-      * have managed to get a nonzero q word), but we can't guarantee
 
-      * that it will be strictly less than m: consider a case where the
 
-      * remainder is 1, and another where the remainder is m-1. By the
 
-      * time a contains a value that's _about m_, you clearly can't
 
-      * distinguish those cases by looking at only the top word of a -
 
-      * you have to go all the way down to the bottom before you find
 
-      * out whether it's just less or just more than m.
 
-      *
 
-      * Hence, we now do a final fixup in which we subtract one last
 
-      * copy of m, or don't, accordingly. We should never have to
 
-      * subtract more than one copy of m here.
 
-      */
 
-     for (i = 0; i < alen; i++) {
 
-         /* Compare a with m, word by word, from the MSW down. As soon
 
-          * as we encounter a difference, we know whether we need the
 
-          * fixup. */
 
-         int mindex = mlen-alen+i;
 
-         BignumInt mword = mindex < 0 ? 0 : m[mindex];
 
-         if (a[i] < mword) {
 
- #ifdef DIVISION_DEBUG
 
-             printf("final fixup not needed, a < m\n");
 
- #endif
 
-             return;
 
-         } else if (a[i] > mword) {
 
- #ifdef DIVISION_DEBUG
 
-             printf("final fixup is needed, a > m\n");
 
- #endif
 
-             break;
 
-         }
 
-         /* If neither of those cases happened, the words are the same,
 
-          * so keep going and look at the next one. */
 
-     }
 
- #ifdef DIVISION_DEBUG
 
-     if (i == mlen) /* if we printed neither of the above diagnostics */
 
-         printf("final fixup is needed, a == m\n");
 
- #endif
 
-     /*
 
-      * If we got here without returning, then a >= m, so we must
 
-      * subtract m, and increment the quotient.
 
-      */
 
-     {
 
-         BignumCarry c = 1;
 
-         for (i = alen - 1; i >= 0; i--) {
 
-             int mindex = mlen-alen+i;
 
-             BignumInt mword = mindex < 0 ? 0 : m[mindex];
 
-             BignumADC(a[i], c, a[i], ~mword, c);
 
-         }
 
-     }
 
-     if (quot)
 
-         internal_add_shifted(quot, 1, 0);
 
- #ifdef DIVISION_DEBUG
 
-     {
 
-         int d;
 
-         printf("after final fixup, a=0x");
 
-         for (d = 0; d < alen; d++)
 
-             printf("%0*llx", BIGNUM_INT_BITS/4, (unsigned long long)a[d]);
 
-         if (quot) {
 
-             printf(", quot=0x");
 
-             for (d = quot[0]; d > 0; d--)
 
-                 printf("%0*llx", BIGNUM_INT_BITS/4,
 
-                        (unsigned long long)quot[d]);
 
-         }
 
-         printf("\n");
 
-     }
 
- #endif
 
- }
 
- /*
 
-  * Compute (base ^ exp) % mod, the pedestrian way.
 
-  */
 
- Bignum modpow_simple(Bignum base_in, Bignum exp, Bignum mod)
 
- {
 
-     BignumInt *a, *b, *n, *m, *scratch;
 
-     BignumInt recip;
 
-     int rshift;
 
-     int mlen, scratchlen, i, j;
 
-     Bignum base, result;
 
-     /*
 
-      * The most significant word of mod needs to be non-zero. It
 
-      * should already be, but let's make sure.
 
-      */
 
-     assert(mod[mod[0]] != 0);
 
-     /*
 
-      * Make sure the base is smaller than the modulus, by reducing
 
-      * it modulo the modulus if not.
 
-      */
 
-     base = bigmod(base_in, mod);
 
-     /* Allocate m of size mlen, copy mod to m */
 
-     /* We use big endian internally */
 
-     mlen = mod[0];
 
-     m = snewn(mlen, BignumInt);
 
-     for (j = 0; j < mlen; j++)
 
- 	m[j] = mod[mod[0] - j];
 
-     /* Allocate n of size mlen, copy base to n */
 
-     n = snewn(mlen, BignumInt);
 
-     i = mlen - base[0];
 
-     for (j = 0; j < i; j++)
 
- 	n[j] = 0;
 
-     for (j = 0; j < (int)base[0]; j++)
 
- 	n[i + j] = base[base[0] - j];
 
-     /* Allocate a and b of size 2*mlen. Set a = 1 */
 
-     a = snewn(2 * mlen, BignumInt);
 
-     b = snewn(2 * mlen, BignumInt);
 
-     for (i = 0; i < 2 * mlen; i++)
 
- 	a[i] = 0;
 
-     a[2 * mlen - 1] = 1;
 
-     /* Scratch space for multiplies */
 
-     scratchlen = mul_compute_scratch(mlen);
 
-     scratch = snewn(scratchlen, BignumInt);
 
-     /* Skip leading zero bits of exp. */
 
-     i = 0;
 
-     j = BIGNUM_INT_BITS-1;
 
-     while (i < (int)exp[0] && (exp[exp[0] - i] & ((BignumInt)1 << j)) == 0) {
 
- 	j--;
 
- 	if (j < 0) {
 
- 	    i++;
 
- 	    j = BIGNUM_INT_BITS-1;
 
- 	}
 
-     }
 
-     /* Compute reciprocal of the top full word of the modulus */
 
-     {
 
-         BignumInt m0 = m[0];
 
-         rshift = bn_clz(m0);
 
-         if (rshift) {
 
-             m0 <<= rshift;
 
-             if (mlen > 1)
 
-                 m0 |= m[1] >> (BIGNUM_INT_BITS - rshift);
 
-         }
 
-         recip = reciprocal_word(m0);
 
-     }
 
-     /* Main computation */
 
-     while (i < (int)exp[0]) {
 
- 	while (j >= 0) {
 
- 	    internal_mul(a + mlen, a + mlen, b, mlen, scratch);
 
- 	    internal_mod(b, mlen * 2, m, mlen, NULL, recip, rshift);
 
- 	    if ((exp[exp[0] - i] & ((BignumInt)1 << j)) != 0) {
 
- 		internal_mul(b + mlen, n, a, mlen, scratch);
 
- 		internal_mod(a, mlen * 2, m, mlen, NULL, recip, rshift);
 
- 	    } else {
 
- 		BignumInt *t;
 
- 		t = a;
 
- 		a = b;
 
- 		b = t;
 
- 	    }
 
- 	    j--;
 
- 	}
 
- 	i++;
 
- 	j = BIGNUM_INT_BITS-1;
 
-     }
 
-     /* Copy result to buffer */
 
-     result = newbn(mod[0]);
 
-     for (i = 0; i < mlen; i++)
 
- 	result[result[0] - i] = a[i + mlen];
 
-     while (result[0] > 1 && result[result[0]] == 0)
 
- 	result[0]--;
 
-     /* Free temporary arrays */
 
-     smemclr(a, 2 * mlen * sizeof(*a));
 
-     sfree(a);
 
-     smemclr(scratch, scratchlen * sizeof(*scratch));
 
-     sfree(scratch);
 
-     smemclr(b, 2 * mlen * sizeof(*b));
 
-     sfree(b);
 
-     smemclr(m, mlen * sizeof(*m));
 
-     sfree(m);
 
-     smemclr(n, mlen * sizeof(*n));
 
-     sfree(n);
 
-     freebn(base);
 
-     return result;
 
- }
 
- /*
 
-  * Compute (base ^ exp) % mod. Uses the Montgomery multiplication
 
-  * technique where possible, falling back to modpow_simple otherwise.
 
-  */
 
- Bignum modpow(Bignum base_in, Bignum exp, Bignum mod)
 
- {
 
-     BignumInt *a, *b, *x, *n, *mninv, *scratch;
 
-     int len, scratchlen, i, j;
 
-     Bignum base, base2, r, rn, inv, result;
 
-     /*
 
-      * The most significant word of mod needs to be non-zero. It
 
-      * should already be, but let's make sure.
 
-      */
 
-     assert(mod[mod[0]] != 0);
 
-     /*
 
-      * mod had better be odd, or we can't do Montgomery multiplication
 
-      * using a power of two at all.
 
-      */
 
-     if (!(mod[1] & 1))
 
-         return modpow_simple(base_in, exp, mod);
 
-     /*
 
-      * Make sure the base is smaller than the modulus, by reducing
 
-      * it modulo the modulus if not.
 
-      */
 
-     base = bigmod(base_in, mod);
 
-     /*
 
-      * Compute the inverse of n mod r, for monty_reduce. (In fact we
 
-      * want the inverse of _minus_ n mod r, but we'll sort that out
 
-      * below.)
 
-      */
 
-     len = mod[0];
 
-     r = bn_power_2(BIGNUM_INT_BITS * len);
 
-     inv = modinv(mod, r);
 
-     assert(inv); /* cannot fail, since mod is odd and r is a power of 2 */
 
-     /*
 
-      * Multiply the base by r mod n, to get it into Montgomery
 
-      * representation.
 
-      */
 
-     base2 = modmul(base, r, mod);
 
-     freebn(base);
 
-     base = base2;
 
-     rn = bigmod(r, mod);               /* r mod n, i.e. Montgomerified 1 */
 
-     freebn(r);                         /* won't need this any more */
 
-     /*
 
-      * Set up internal arrays of the right lengths, in big-endian
 
-      * format, containing the base, the modulus, and the modulus's
 
-      * inverse.
 
-      */
 
-     n = snewn(len, BignumInt);
 
-     for (j = 0; j < len; j++)
 
- 	n[len - 1 - j] = mod[j + 1];
 
-     mninv = snewn(len, BignumInt);
 
-     for (j = 0; j < len; j++)
 
- 	mninv[len - 1 - j] = (j < (int)inv[0] ? inv[j + 1] : 0);
 
-     freebn(inv);         /* we don't need this copy of it any more */
 
-     /* Now negate mninv mod r, so it's the inverse of -n rather than +n. */
 
-     x = snewn(len, BignumInt);
 
-     for (j = 0; j < len; j++)
 
-         x[j] = 0;
 
-     internal_sub(x, mninv, mninv, len);
 
-     /* x = snewn(len, BignumInt); */ /* already done above */
 
-     for (j = 0; j < len; j++)
 
- 	x[len - 1 - j] = (j < (int)base[0] ? base[j + 1] : 0);
 
-     freebn(base);        /* we don't need this copy of it any more */
 
-     a = snewn(2*len, BignumInt);
 
-     b = snewn(2*len, BignumInt);
 
-     for (j = 0; j < len; j++)
 
- 	a[2*len - 1 - j] = (j < (int)rn[0] ? rn[j + 1] : 0);
 
-     freebn(rn);
 
-     /* Scratch space for multiplies */
 
-     scratchlen = 3*len + mul_compute_scratch(len);
 
-     scratch = snewn(scratchlen, BignumInt);
 
-     /* Skip leading zero bits of exp. */
 
-     i = 0;
 
-     j = BIGNUM_INT_BITS-1;
 
-     while (i < (int)exp[0] && (exp[exp[0] - i] & ((BignumInt)1 << j)) == 0) {
 
- 	j--;
 
- 	if (j < 0) {
 
- 	    i++;
 
- 	    j = BIGNUM_INT_BITS-1;
 
- 	}
 
-     }
 
-     /* Main computation */
 
-     while (i < (int)exp[0]) {
 
- 	while (j >= 0) {
 
- 	    internal_mul(a + len, a + len, b, len, scratch);
 
-             monty_reduce(b, n, mninv, scratch, len);
 
- 	    if ((exp[exp[0] - i] & ((BignumInt)1 << j)) != 0) {
 
-                 internal_mul(b + len, x, a, len,  scratch);
 
-                 monty_reduce(a, n, mninv, scratch, len);
 
- 	    } else {
 
- 		BignumInt *t;
 
- 		t = a;
 
- 		a = b;
 
- 		b = t;
 
- 	    }
 
- 	    j--;
 
- 	}
 
- 	i++;
 
- 	j = BIGNUM_INT_BITS-1;
 
-     }
 
-     /*
 
-      * Final monty_reduce to get back from the adjusted Montgomery
 
-      * representation.
 
-      */
 
-     monty_reduce(a, n, mninv, scratch, len);
 
-     /* Copy result to buffer */
 
-     result = newbn(mod[0]);
 
-     for (i = 0; i < len; i++)
 
- 	result[result[0] - i] = a[i + len];
 
-     while (result[0] > 1 && result[result[0]] == 0)
 
- 	result[0]--;
 
-     /* Free temporary arrays */
 
-     smemclr(scratch, scratchlen * sizeof(*scratch));
 
-     sfree(scratch);
 
-     smemclr(a, 2 * len * sizeof(*a));
 
-     sfree(a);
 
-     smemclr(b, 2 * len * sizeof(*b));
 
-     sfree(b);
 
-     smemclr(mninv, len * sizeof(*mninv));
 
-     sfree(mninv);
 
-     smemclr(n, len * sizeof(*n));
 
-     sfree(n);
 
-     smemclr(x, len * sizeof(*x));
 
-     sfree(x);
 
-     return result;
 
- }
 
- /*
 
-  * Compute (p * q) % mod.
 
-  * The most significant word of mod MUST be non-zero.
 
-  * We assume that the result array is the same size as the mod array.
 
-  */
 
- Bignum modmul(Bignum p, Bignum q, Bignum mod)
 
- {
 
-     BignumInt *a, *n, *m, *o, *scratch;
 
-     BignumInt recip;
 
-     int rshift, scratchlen;
 
-     int pqlen, mlen, rlen, i, j;
 
-     Bignum result;
 
-     /*
 
-      * The most significant word of mod needs to be non-zero. It
 
-      * should already be, but let's make sure.
 
-      */
 
-     assert(mod[mod[0]] != 0);
 
-     /* Allocate m of size mlen, copy mod to m */
 
-     /* We use big endian internally */
 
-     mlen = mod[0];
 
-     m = snewn(mlen, BignumInt);
 
-     for (j = 0; j < mlen; j++)
 
- 	m[j] = mod[mod[0] - j];
 
-     pqlen = (p[0] > q[0] ? p[0] : q[0]);
 
-     /*
 
-      * Make sure that we're allowing enough space. The shifting below
 
-      * will underflow the vectors we allocate if pqlen is too small.
 
-      */
 
-     if (2*pqlen <= mlen)
 
-         pqlen = mlen/2 + 1;
 
-     /* Allocate n of size pqlen, copy p to n */
 
-     n = snewn(pqlen, BignumInt);
 
-     i = pqlen - p[0];
 
-     for (j = 0; j < i; j++)
 
- 	n[j] = 0;
 
-     for (j = 0; j < (int)p[0]; j++)
 
- 	n[i + j] = p[p[0] - j];
 
-     /* Allocate o of size pqlen, copy q to o */
 
-     o = snewn(pqlen, BignumInt);
 
-     i = pqlen - q[0];
 
-     for (j = 0; j < i; j++)
 
- 	o[j] = 0;
 
-     for (j = 0; j < (int)q[0]; j++)
 
- 	o[i + j] = q[q[0] - j];
 
-     /* Allocate a of size 2*pqlen for result */
 
-     a = snewn(2 * pqlen, BignumInt);
 
-     /* Scratch space for multiplies */
 
-     scratchlen = mul_compute_scratch(pqlen);
 
-     scratch = snewn(scratchlen, BignumInt);
 
-     /* Compute reciprocal of the top full word of the modulus */
 
-     {
 
-         BignumInt m0 = m[0];
 
-         rshift = bn_clz(m0);
 
-         if (rshift) {
 
-             m0 <<= rshift;
 
-             if (mlen > 1)
 
-                 m0 |= m[1] >> (BIGNUM_INT_BITS - rshift);
 
-         }
 
-         recip = reciprocal_word(m0);
 
-     }
 
-     /* Main computation */
 
-     internal_mul(n, o, a, pqlen, scratch);
 
-     internal_mod(a, pqlen * 2, m, mlen, NULL, recip, rshift);
 
-     /* Copy result to buffer */
 
-     rlen = (mlen < pqlen * 2 ? mlen : pqlen * 2);
 
-     result = newbn(rlen);
 
-     for (i = 0; i < rlen; i++)
 
- 	result[result[0] - i] = a[i + 2 * pqlen - rlen];
 
-     while (result[0] > 1 && result[result[0]] == 0)
 
- 	result[0]--;
 
-     /* Free temporary arrays */
 
-     smemclr(scratch, scratchlen * sizeof(*scratch));
 
-     sfree(scratch);
 
-     smemclr(a, 2 * pqlen * sizeof(*a));
 
-     sfree(a);
 
-     smemclr(m, mlen * sizeof(*m));
 
-     sfree(m);
 
-     smemclr(n, pqlen * sizeof(*n));
 
-     sfree(n);
 
-     smemclr(o, pqlen * sizeof(*o));
 
-     sfree(o);
 
-     return result;
 
- }
 
- Bignum modsub(const Bignum a, const Bignum b, const Bignum n)
 
- {
 
-     Bignum a1, b1, ret;
 
-     if (bignum_cmp(a, n) >= 0) a1 = bigmod(a, n);
 
-     else a1 = a;
 
-     if (bignum_cmp(b, n) >= 0) b1 = bigmod(b, n);
 
-     else b1 = b;
 
-     if (bignum_cmp(a1, b1) >= 0) /* a >= b */
 
-     {
 
-         ret = bigsub(a1, b1);
 
-     }
 
-     else
 
-     {
 
-         /* Handle going round the corner of the modulus without having
 
-          * negative support in Bignum */
 
-         Bignum tmp = bigsub(n, b1);
 
-         assert(tmp);
 
-         ret = bigadd(tmp, a1);
 
-         freebn(tmp);
 
-     }
 
-     if (a != a1) freebn(a1);
 
-     if (b != b1) freebn(b1);
 
-     return ret;
 
- }
 
- /*
 
-  * Compute p % mod.
 
-  * The most significant word of mod MUST be non-zero.
 
-  * We assume that the result array is the same size as the mod array.
 
-  * We optionally write out a quotient if `quotient' is non-NULL.
 
-  * We can avoid writing out the result if `result' is NULL.
 
-  */
 
- static void bigdivmod(Bignum p, Bignum mod, Bignum result, Bignum quotient)
 
- {
 
-     BignumInt *n, *m;
 
-     BignumInt recip;
 
-     int rshift;
 
-     int plen, mlen, i, j;
 
-     /*
 
-      * The most significant word of mod needs to be non-zero. It
 
-      * should already be, but let's make sure.
 
-      */
 
-     assert(mod[mod[0]] != 0);
 
-     /* Allocate m of size mlen, copy mod to m */
 
-     /* We use big endian internally */
 
-     mlen = mod[0];
 
-     m = snewn(mlen, BignumInt);
 
-     for (j = 0; j < mlen; j++)
 
- 	m[j] = mod[mod[0] - j];
 
-     plen = p[0];
 
-     /* Ensure plen > mlen */
 
-     if (plen <= mlen)
 
- 	plen = mlen + 1;
 
-     /* Allocate n of size plen, copy p to n */
 
-     n = snewn(plen, BignumInt);
 
-     for (j = 0; j < plen; j++)
 
- 	n[j] = 0;
 
-     for (j = 1; j <= (int)p[0]; j++)
 
- 	n[plen - j] = p[j];
 
-     /* Compute reciprocal of the top full word of the modulus */
 
-     {
 
-         BignumInt m0 = m[0];
 
-         rshift = bn_clz(m0);
 
-         if (rshift) {
 
-             m0 <<= rshift;
 
-             if (mlen > 1)
 
-                 m0 |= m[1] >> (BIGNUM_INT_BITS - rshift);
 
-         }
 
-         recip = reciprocal_word(m0);
 
-     }
 
-     /* Main computation */
 
-     internal_mod(n, plen, m, mlen, quotient, recip, rshift);
 
-     /* Copy result to buffer */
 
-     if (result) {
 
- 	for (i = 1; i <= (int)result[0]; i++) {
 
- 	    int j = plen - i;
 
- 	    result[i] = j >= 0 ? n[j] : 0;
 
- 	}
 
-     }
 
-     /* Free temporary arrays */
 
-     smemclr(m, mlen * sizeof(*m));
 
-     sfree(m);
 
-     smemclr(n, plen * sizeof(*n));
 
-     sfree(n);
 
- }
 
- /*
 
-  * Decrement a number.
 
-  */
 
- void decbn(Bignum bn)
 
- {
 
-     int i = 1;
 
-     while (i < (int)bn[0] && bn[i] == 0)
 
- 	bn[i++] = BIGNUM_INT_MASK;
 
-     bn[i]--;
 
- }
 
- Bignum bignum_from_bytes(const void *vdata, int nbytes)
 
- {
 
-     const unsigned char *data = (const unsigned char *)vdata;
 
-     Bignum result;
 
-     int w, i;
 
-     assert(nbytes >= 0 && nbytes < INT_MAX/8);
 
-     w = (nbytes + BIGNUM_INT_BYTES - 1) / BIGNUM_INT_BYTES; /* bytes->words */
 
-     result = newbn(w);
 
-     for (i = 1; i <= w; i++)
 
- 	result[i] = 0;
 
-     for (i = nbytes; i--;) {
 
- 	unsigned char byte = *data++;
 
- 	result[1 + i / BIGNUM_INT_BYTES] |=
 
-             (BignumInt)byte << (8*i % BIGNUM_INT_BITS);
 
-     }
 
-     bn_restore_invariant(result);
 
-     return result;
 
- }
 
- Bignum bignum_from_bytes_le(const void *vdata, int nbytes)
 
- {
 
-     const unsigned char *data = (const unsigned char *)vdata;
 
-     Bignum result;
 
-     int w, i;
 
-     assert(nbytes >= 0 && nbytes < INT_MAX/8);
 
-     w = (nbytes + BIGNUM_INT_BYTES - 1) / BIGNUM_INT_BYTES; /* bytes->words */
 
-     result = newbn(w);
 
-     for (i = 1; i <= w; i++)
 
-         result[i] = 0;
 
-     for (i = 0; i < nbytes; ++i) {
 
-         unsigned char byte = *data++;
 
-         result[1 + i / BIGNUM_INT_BYTES] |=
 
-             (BignumInt)byte << (8*i % BIGNUM_INT_BITS);
 
-     }
 
-     bn_restore_invariant(result);
 
-     return result;
 
- }
 
- Bignum bignum_from_decimal(const char *decimal)
 
- {
 
-     Bignum result = copybn(Zero);
 
-     while (*decimal) {
 
-         Bignum tmp, tmp2;
 
-         if (!isdigit((unsigned char)*decimal)) {
 
-             freebn(result);
 
-             return 0;
 
-         }
 
-         tmp = bigmul(result, Ten);
 
-         tmp2 = bignum_from_long(*decimal - '0');
 
-         freebn(result);
 
-         result = bigadd(tmp, tmp2);
 
-         freebn(tmp);
 
-         freebn(tmp2);
 
-         decimal++;
 
-     }
 
-     return result;
 
- }
 
- Bignum bignum_random_in_range(const Bignum lower, const Bignum upper)
 
- {
 
-     Bignum ret = NULL;
 
-     unsigned char *bytes;
 
-     int upper_len = bignum_bitcount(upper);
 
-     int upper_bytes = upper_len / 8;
 
-     int upper_bits = upper_len % 8;
 
-     if (upper_bits) ++upper_bytes;
 
-     bytes = snewn(upper_bytes, unsigned char);
 
-     do {
 
-         int i;
 
-         if (ret) freebn(ret);
 
-         for (i = 0; i < upper_bytes; ++i)
 
-         {
 
-             bytes[i] = (unsigned char)random_byte();
 
-         }
 
-         /* Mask the top to reduce failure rate to 50/50 */
 
-         if (upper_bits)
 
-         {
 
-             bytes[i - 1] &= 0xFF >> (8 - upper_bits);
 
-         }
 
-         ret = bignum_from_bytes(bytes, upper_bytes);
 
-     } while (bignum_cmp(ret, lower) < 0 || bignum_cmp(ret, upper) > 0);
 
-     smemclr(bytes, upper_bytes);
 
-     sfree(bytes);
 
-     return ret;
 
- }
 
- /*
 
-  * Return the bit count of a bignum.
 
-  */
 
- int bignum_bitcount(Bignum bn)
 
- {
 
-     int bitcount = bn[0] * BIGNUM_INT_BITS - 1;
 
-     while (bitcount >= 0
 
- 	   && (bn[bitcount / BIGNUM_INT_BITS + 1] >> (bitcount % BIGNUM_INT_BITS)) == 0) bitcount--;
 
-     return bitcount + 1;
 
- }
 
- /*
 
-  * Return a byte from a bignum; 0 is least significant, etc.
 
-  */
 
- int bignum_byte(Bignum bn, int i)
 
- {
 
-     if (i < 0 || i >= (int)(BIGNUM_INT_BYTES * bn[0]))
 
- 	return 0;		       /* beyond the end */
 
-     else
 
- 	return (bn[i / BIGNUM_INT_BYTES + 1] >>
 
- 		((i % BIGNUM_INT_BYTES)*8)) & 0xFF;
 
- }
 
- /*
 
-  * Return a bit from a bignum; 0 is least significant, etc.
 
-  */
 
- int bignum_bit(Bignum bn, int i)
 
- {
 
-     if (i < 0 || i >= (int)(BIGNUM_INT_BITS * bn[0]))
 
- 	return 0;		       /* beyond the end */
 
-     else
 
- 	return (bn[i / BIGNUM_INT_BITS + 1] >> (i % BIGNUM_INT_BITS)) & 1;
 
- }
 
- /*
 
-  * Set a bit in a bignum; 0 is least significant, etc.
 
-  */
 
- void bignum_set_bit(Bignum bn, int bitnum, int value)
 
- {
 
-     if (bitnum < 0 || bitnum >= (int)(BIGNUM_INT_BITS * bn[0])) {
 
-         if (value) abort();		       /* beyond the end */
 
-     } else {
 
- 	int v = bitnum / BIGNUM_INT_BITS + 1;
 
- 	BignumInt mask = (BignumInt)1 << (bitnum % BIGNUM_INT_BITS);
 
- 	if (value)
 
- 	    bn[v] |= mask;
 
- 	else
 
- 	    bn[v] &= ~mask;
 
-     }
 
- }
 
- void BinarySink_put_mp_ssh1(BinarySink *bs, Bignum bn)
 
- {
 
-     int bits = bignum_bitcount(bn);
 
-     int bytes = (bits + 7) / 8;
 
-     int i;
 
-     put_uint16(bs, bits);
 
-     for (i = bytes; i--;)
 
-         put_byte(bs, bignum_byte(bn, i));
 
- }
 
- void BinarySink_put_mp_ssh2(BinarySink *bs, Bignum bn)
 
- {
 
-     int bytes = (bignum_bitcount(bn) + 8) / 8;
 
-     int i;
 
-     put_uint32(bs, bytes);
 
-     for (i = bytes; i--;)
 
-         put_byte(bs, bignum_byte(bn, i));
 
- }
 
- Bignum BinarySource_get_mp_ssh1(BinarySource *src)
 
- {
 
-     unsigned bitc = get_uint16(src);
 
-     ptrlen bytes = get_data(src, (bitc + 7) / 8);
 
-     if (get_err(src)) {
 
-         return bignum_from_long(0);
 
-     } else {
 
-         Bignum toret = bignum_from_bytes(bytes.ptr, bytes.len);
 
-         if (bignum_bitcount(toret) != bitc) {
 
-             src->err = BSE_INVALID;
 
-             freebn(toret);
 
-             toret = bignum_from_long(0);
 
-         }
 
-         return toret;
 
-     }
 
- }
 
- Bignum BinarySource_get_mp_ssh2(BinarySource *src)
 
- {
 
-     ptrlen bytes = get_string(src);
 
-     if (get_err(src)) {
 
-         return bignum_from_long(0);
 
-     } else {
 
-         const unsigned char *p = bytes.ptr;
 
-         if ((bytes.len > 0 &&
 
-              ((p[0] & 0x80) ||
 
-               (p[0] == 0 && (bytes.len <= 1 || !(p[1] & 0x80)))))) {
 
-             src->err = BSE_INVALID;
 
-             return bignum_from_long(0);
 
-         }
 
-         return bignum_from_bytes(bytes.ptr, bytes.len);
 
-     }
 
- }
 
- /*
 
-  * Compare two bignums. Returns like strcmp.
 
-  */
 
- int bignum_cmp(Bignum a, Bignum b)
 
- {
 
-     int amax = a[0], bmax = b[0];
 
-     int i;
 
-     /* Annoyingly we have two representations of zero */
 
-     if (amax == 1 && a[amax] == 0)
 
-         amax = 0;
 
-     if (bmax == 1 && b[bmax] == 0)
 
-         bmax = 0;
 
-     assert(amax == 0 || a[amax] != 0);
 
-     assert(bmax == 0 || b[bmax] != 0);
 
-     i = (amax > bmax ? amax : bmax);
 
-     while (i) {
 
- 	BignumInt aval = (i > amax ? 0 : a[i]);
 
- 	BignumInt bval = (i > bmax ? 0 : b[i]);
 
- 	if (aval < bval)
 
- 	    return -1;
 
- 	if (aval > bval)
 
- 	    return +1;
 
- 	i--;
 
-     }
 
-     return 0;
 
- }
 
- /*
 
-  * Right-shift one bignum to form another.
 
-  */
 
- Bignum bignum_rshift(Bignum a, int shift)
 
- {
 
-     Bignum ret;
 
-     int i, shiftw, shiftb, shiftbb, bits;
 
-     BignumInt ai, ai1;
 
-     assert(shift >= 0);
 
-     bits = bignum_bitcount(a) - shift;
 
-     ret = newbn((bits + BIGNUM_INT_BITS - 1) / BIGNUM_INT_BITS);
 
-     if (ret) {
 
- 	shiftw = shift / BIGNUM_INT_BITS;
 
- 	shiftb = shift % BIGNUM_INT_BITS;
 
- 	shiftbb = BIGNUM_INT_BITS - shiftb;
 
- 	ai1 = a[shiftw + 1];
 
- 	for (i = 1; i <= (int)ret[0]; i++) {
 
- 	    ai = ai1;
 
- 	    ai1 = (i + shiftw + 1 <= (int)a[0] ? a[i + shiftw + 1] : 0);
 
- 	    ret[i] = ((ai >> shiftb) | (ai1 << shiftbb)) & BIGNUM_INT_MASK;
 
- 	}
 
-     }
 
-     return ret;
 
- }
 
- /*
 
-  * Left-shift one bignum to form another.
 
-  */
 
- Bignum bignum_lshift(Bignum a, int shift)
 
- {
 
-     Bignum ret;
 
-     int bits, shiftWords, shiftBits;
 
-     assert(shift >= 0);
 
-     bits = bignum_bitcount(a) + shift;
 
-     ret = newbn((bits + BIGNUM_INT_BITS - 1) / BIGNUM_INT_BITS);
 
-     shiftWords = shift / BIGNUM_INT_BITS;
 
-     shiftBits = shift % BIGNUM_INT_BITS;
 
-     if (shiftBits == 0)
 
-     {
 
-         memcpy(&ret[1 + shiftWords], &a[1], sizeof(BignumInt) * a[0]);
 
-     }
 
-     else
 
-     {
 
-         int i;
 
-         BignumInt carry = 0;
 
-         /* Remember that Bignum[0] is length, so add 1 */
 
-         for (i = shiftWords + 1; i < ((int)a[0]) + shiftWords + 1; ++i)
 
-         {
 
-             BignumInt from = a[i - shiftWords];
 
-             ret[i] = (from << shiftBits) | carry;
 
-             carry = from >> (BIGNUM_INT_BITS - shiftBits);
 
-         }
 
-         if (carry) ret[i] = carry;
 
-     }
 
-     return ret;
 
- }
 
- /*
 
-  * Non-modular multiplication and addition.
 
-  */
 
- Bignum bigmuladd(Bignum a, Bignum b, Bignum addend)
 
- {
 
-     int alen = a[0], blen = b[0];
 
-     int mlen = (alen > blen ? alen : blen);
 
-     int rlen, i, maxspot;
 
-     int wslen;
 
-     BignumInt *workspace;
 
-     Bignum ret;
 
-     /* mlen space for a, mlen space for b, 2*mlen for result,
 
-      * plus scratch space for multiplication */
 
-     wslen = mlen * 4 + mul_compute_scratch(mlen);
 
-     workspace = snewn(wslen, BignumInt);
 
-     for (i = 0; i < mlen; i++) {
 
- 	workspace[0 * mlen + i] = (mlen - i <= (int)a[0] ? a[mlen - i] : 0);
 
- 	workspace[1 * mlen + i] = (mlen - i <= (int)b[0] ? b[mlen - i] : 0);
 
-     }
 
-     internal_mul(workspace + 0 * mlen, workspace + 1 * mlen,
 
- 		 workspace + 2 * mlen, mlen, workspace + 4 * mlen);
 
-     /* now just copy the result back */
 
-     rlen = alen + blen + 1;
 
-     if (addend && rlen <= (int)addend[0])
 
- 	rlen = addend[0] + 1;
 
-     ret = newbn(rlen);
 
-     maxspot = 0;
 
-     for (i = 1; i <= (int)ret[0]; i++) {
 
- 	ret[i] = (i <= 2 * mlen ? workspace[4 * mlen - i] : 0);
 
- 	if (ret[i] != 0)
 
- 	    maxspot = i;
 
-     }
 
-     ret[0] = maxspot;
 
-     /* now add in the addend, if any */
 
-     if (addend) {
 
- 	BignumCarry carry = 0;
 
- 	for (i = 1; i <= rlen; i++) {
 
-             BignumInt retword = (i <= (int)ret[0] ? ret[i] : 0);
 
-             BignumInt addword = (i <= (int)addend[0] ? addend[i] : 0);
 
-             BignumADC(ret[i], carry, retword, addword, carry);
 
- 	    if (ret[i] != 0 && i > maxspot)
 
- 		maxspot = i;
 
- 	}
 
-     }
 
-     ret[0] = maxspot;
 
-     smemclr(workspace, wslen * sizeof(*workspace));
 
-     sfree(workspace);
 
-     return ret;
 
- }
 
- /*
 
-  * Non-modular multiplication.
 
-  */
 
- Bignum bigmul(Bignum a, Bignum b)
 
- {
 
-     return bigmuladd(a, b, NULL);
 
- }
 
- /*
 
-  * Simple addition.
 
-  */
 
- Bignum bigadd(Bignum a, Bignum b)
 
- {
 
-     int alen = a[0], blen = b[0];
 
-     int rlen = (alen > blen ? alen : blen) + 1;
 
-     int i, maxspot;
 
-     Bignum ret;
 
-     BignumCarry carry;
 
-     ret = newbn(rlen);
 
-     carry = 0;
 
-     maxspot = 0;
 
-     for (i = 1; i <= rlen; i++) {
 
-         BignumInt aword = (i <= (int)a[0] ? a[i] : 0);
 
-         BignumInt bword = (i <= (int)b[0] ? b[i] : 0);
 
-         BignumADC(ret[i], carry, aword, bword, carry);
 
-         if (ret[i] != 0 && i > maxspot)
 
-             maxspot = i;
 
-     }
 
-     ret[0] = maxspot;
 
-     return ret;
 
- }
 
- /*
 
-  * Subtraction. Returns a-b, or NULL if the result would come out
 
-  * negative (recall that this entire bignum module only handles
 
-  * positive numbers).
 
-  */
 
- Bignum bigsub(Bignum a, Bignum b)
 
- {
 
-     int alen = a[0], blen = b[0];
 
-     int rlen = (alen > blen ? alen : blen);
 
-     int i, maxspot;
 
-     Bignum ret;
 
-     BignumCarry carry;
 
-     ret = newbn(rlen);
 
-     carry = 1;
 
-     maxspot = 0;
 
-     for (i = 1; i <= rlen; i++) {
 
-         BignumInt aword = (i <= (int)a[0] ? a[i] : 0);
 
-         BignumInt bword = (i <= (int)b[0] ? b[i] : 0);
 
-         BignumADC(ret[i], carry, aword, ~bword, carry);
 
-         if (ret[i] != 0 && i > maxspot)
 
-             maxspot = i;
 
-     }
 
-     ret[0] = maxspot;
 
-     if (!carry) {
 
-         freebn(ret);
 
-         return NULL;
 
-     }
 
-     return ret;
 
- }
 
- /*
 
-  * Create a bignum which is the bitmask covering another one. That
 
-  * is, the smallest integer which is >= N and is also one less than
 
-  * a power of two.
 
-  */
 
- Bignum bignum_bitmask(Bignum n)
 
- {
 
-     Bignum ret = copybn(n);
 
-     int i;
 
-     BignumInt j;
 
-     i = ret[0];
 
-     while (n[i] == 0 && i > 0)
 
- 	i--;
 
-     if (i <= 0)
 
- 	return ret;		       /* input was zero */
 
-     j = 1;
 
-     while (j < n[i])
 
- 	j = 2 * j + 1;
 
-     ret[i] = j;
 
-     while (--i > 0)
 
- 	ret[i] = BIGNUM_INT_MASK;
 
-     return ret;
 
- }
 
- /*
 
-  * Convert an unsigned long into a bignum.
 
-  */
 
- Bignum bignum_from_long(unsigned long n)
 
- {
 
-     const int maxwords =
 
-         (sizeof(unsigned long) + sizeof(BignumInt) - 1) / sizeof(BignumInt);
 
-     Bignum ret;
 
-     int i;
 
-     ret = newbn(maxwords);
 
-     ret[0] = 0;
 
-     for (i = 0; i < maxwords; i++) {
 
-         ret[i+1] = n >> (i * BIGNUM_INT_BITS);
 
-         if (ret[i+1] != 0)
 
-             ret[0] = i+1;
 
-     }
 
-     return ret;
 
- }
 
- /*
 
-  * Add a long to a bignum.
 
-  */
 
- Bignum bignum_add_long(Bignum number, unsigned long n)
 
- {
 
-     const int maxwords =
 
-         (sizeof(unsigned long) + sizeof(BignumInt) - 1) / sizeof(BignumInt);
 
-     Bignum ret;
 
-     int words, i;
 
-     BignumCarry carry;
 
-     words = number[0];
 
-     if (words < maxwords)
 
-         words = maxwords;
 
-     words++;
 
-     ret = newbn(words);
 
-     carry = 0;
 
-     ret[0] = 0;
 
-     for (i = 0; i < words; i++) {
 
-         BignumInt nword = (i < maxwords ? n >> (i * BIGNUM_INT_BITS) : 0);
 
-         BignumInt numword = (i < number[0] ? number[i+1] : 0);
 
-         BignumADC(ret[i+1], carry, numword, nword, carry);
 
- 	if (ret[i+1] != 0)
 
-             ret[0] = i+1;
 
-     }
 
-     return ret;
 
- }
 
- /*
 
-  * Compute the residue of a bignum, modulo a (max 16-bit) short.
 
-  */
 
- unsigned short bignum_mod_short(Bignum number, unsigned short modulus)
 
- {
 
-     unsigned long mod = modulus, r = 0;
 
-     /* Precompute (BIGNUM_INT_MASK+1) % mod */
 
-     unsigned long base_r = (BIGNUM_INT_MASK - modulus + 1) % mod;
 
-     int i;
 
-     for (i = number[0]; i > 0; i--) {
 
-         /*
 
-          * Conceptually, ((r << BIGNUM_INT_BITS) + number[i]) % mod
 
-          */
 
-         r = ((r * base_r) + (number[i] % mod)) % mod;
 
-     }
 
-     return (unsigned short) r;
 
- }
 
- #ifdef DEBUG
 
- void diagbn(char *prefix, Bignum md)
 
- {
 
-     int i, nibbles, morenibbles;
 
-     static const char hex[] = "0123456789ABCDEF";
 
-     debug(("%s0x", prefix ? prefix : ""));
 
-     nibbles = (3 + bignum_bitcount(md)) / 4;
 
-     if (nibbles < 1)
 
- 	nibbles = 1;
 
-     morenibbles = 4 * md[0] - nibbles;
 
-     for (i = 0; i < morenibbles; i++)
 
- 	debug(("-"));
 
-     for (i = nibbles; i--;)
 
- 	debug(("%c",
 
- 	       hex[(bignum_byte(md, i / 2) >> (4 * (i % 2))) & 0xF]));
 
-     if (prefix)
 
- 	debug(("\n"));
 
- }
 
- #endif
 
- /*
 
-  * Simple division.
 
-  */
 
- Bignum bigdiv(Bignum a, Bignum b)
 
- {
 
-     Bignum q = newbn(a[0]);
 
-     bigdivmod(a, b, NULL, q);
 
-     while (q[0] > 1 && q[q[0]] == 0)
 
-         q[0]--;
 
-     return q;
 
- }
 
- /*
 
-  * Simple remainder.
 
-  */
 
- Bignum bigmod(Bignum a, Bignum b)
 
- {
 
-     Bignum r = newbn(b[0]);
 
-     bigdivmod(a, b, r, NULL);
 
-     while (r[0] > 1 && r[r[0]] == 0)
 
-         r[0]--;
 
-     return r;
 
- }
 
- /*
 
-  * Greatest common divisor.
 
-  */
 
- Bignum biggcd(Bignum av, Bignum bv)
 
- {
 
-     Bignum a = copybn(av);
 
-     Bignum b = copybn(bv);
 
-     while (bignum_cmp(b, Zero) != 0) {
 
- 	Bignum t = newbn(b[0]);
 
- 	bigdivmod(a, b, t, NULL);
 
- 	while (t[0] > 1 && t[t[0]] == 0)
 
- 	    t[0]--;
 
- 	freebn(a);
 
- 	a = b;
 
- 	b = t;
 
-     }
 
-     freebn(b);
 
-     return a;
 
- }
 
- /*
 
-  * Modular inverse, using Euclid's extended algorithm.
 
-  */
 
- Bignum modinv(Bignum number, Bignum modulus)
 
- {
 
-     Bignum a = copybn(modulus);
 
-     Bignum b = copybn(number);
 
-     Bignum xp = copybn(Zero);
 
-     Bignum x = copybn(One);
 
-     int sign = +1;
 
-     assert(number[number[0]] != 0);
 
-     assert(modulus[modulus[0]] != 0);
 
-     while (bignum_cmp(b, One) != 0) {
 
- 	Bignum t, q;
 
-         if (bignum_cmp(b, Zero) == 0) {
 
-             /*
 
-              * Found a common factor between the inputs, so we cannot
 
-              * return a modular inverse at all.
 
-              */
 
-             freebn(b);
 
-             freebn(a);
 
-             freebn(xp);
 
-             freebn(x);
 
-             return NULL;
 
-         }
 
-         t = newbn(b[0]);
 
- 	q = newbn(a[0]);
 
- 	bigdivmod(a, b, t, q);
 
- 	while (t[0] > 1 && t[t[0]] == 0)
 
- 	    t[0]--;
 
- 	while (q[0] > 1 && q[q[0]] == 0)
 
- 	    q[0]--;
 
- 	freebn(a);
 
- 	a = b;
 
- 	b = t;
 
- 	t = xp;
 
- 	xp = x;
 
- 	x = bigmuladd(q, xp, t);
 
- 	sign = -sign;
 
- 	freebn(t);
 
- 	freebn(q);
 
-     }
 
-     freebn(b);
 
-     freebn(a);
 
-     freebn(xp);
 
-     /* now we know that sign * x == 1, and that x < modulus */
 
-     if (sign < 0) {
 
- 	/* set a new x to be modulus - x */
 
- 	Bignum newx = newbn(modulus[0]);
 
- 	BignumInt carry = 0;
 
- 	int maxspot = 1;
 
- 	int i;
 
- 	for (i = 1; i <= (int)newx[0]; i++) {
 
- 	    BignumInt aword = (i <= (int)modulus[0] ? modulus[i] : 0);
 
- 	    BignumInt bword = (i <= (int)x[0] ? x[i] : 0);
 
- 	    newx[i] = aword - bword - carry;
 
- 	    bword = ~bword;
 
- 	    carry = carry ? (newx[i] >= bword) : (newx[i] > bword);
 
- 	    if (newx[i] != 0)
 
- 		maxspot = i;
 
- 	}
 
- 	newx[0] = maxspot;
 
- 	freebn(x);
 
- 	x = newx;
 
-     }
 
-     /* and return. */
 
-     return x;
 
- }
 
- /*
 
-  * Render a bignum into decimal. Return a malloced string holding
 
-  * the decimal representation.
 
-  */
 
- char *bignum_decimal(Bignum x)
 
- {
 
-     int ndigits, ndigit;
 
-     int i, iszero;
 
-     BignumInt carry;
 
-     char *ret;
 
-     BignumInt *workspace;
 
-     /*
 
-      * First, estimate the number of digits. Since log(10)/log(2)
 
-      * is just greater than 93/28 (the joys of continued fraction
 
-      * approximations...) we know that for every 93 bits, we need
 
-      * at most 28 digits. This will tell us how much to malloc.
 
-      *
 
-      * Formally: if x has i bits, that means x is strictly less
 
-      * than 2^i. Since 2 is less than 10^(28/93), this is less than
 
-      * 10^(28i/93). We need an integer power of ten, so we must
 
-      * round up (rounding down might make it less than x again).
 
-      * Therefore if we multiply the bit count by 28/93, rounding
 
-      * up, we will have enough digits.
 
-      *
 
-      * i=0 (i.e., x=0) is an irritating special case.
 
-      */
 
-     i = bignum_bitcount(x);
 
-     if (!i)
 
- 	ndigits = 1;		       /* x = 0 */
 
-     else
 
- 	ndigits = (28 * i + 92) / 93;  /* multiply by 28/93 and round up */
 
-     ndigits++;			       /* allow for trailing \0 */
 
-     ret = snewn(ndigits, char);
 
-     /*
 
-      * Now allocate some workspace to hold the binary form as we
 
-      * repeatedly divide it by ten. Initialise this to the
 
-      * big-endian form of the number.
 
-      */
 
-     workspace = snewn(x[0], BignumInt);
 
-     for (i = 0; i < (int)x[0]; i++)
 
- 	workspace[i] = x[x[0] - i];
 
-     /*
 
-      * Next, write the decimal number starting with the last digit.
 
-      * We use ordinary short division, dividing 10 into the
 
-      * workspace.
 
-      */
 
-     ndigit = ndigits - 1;
 
-     ret[ndigit] = '\0';
 
-     do {
 
- 	iszero = 1;
 
- 	carry = 0;
 
- 	for (i = 0; i < (int)x[0]; i++) {
 
-             /*
 
-              * Conceptually, we want to compute
 
-              *
 
-              *   (carry << BIGNUM_INT_BITS) + workspace[i]
 
-              *   -----------------------------------------
 
-              *                      10
 
-              *
 
-              * but we don't have an integer type longer than BignumInt
 
-              * to work with. So we have to do it in pieces.
 
-              */
 
-             BignumInt q, r;
 
-             q = workspace[i] / 10;
 
-             r = workspace[i] % 10;
 
-             /* I want (BIGNUM_INT_MASK+1)/10 but can't say so directly! */
 
-             q += carry * ((BIGNUM_INT_MASK-9) / 10 + 1);
 
-             r += carry * ((BIGNUM_INT_MASK-9) % 10);
 
-             q += r / 10;
 
-             r %= 10;
 
- 	    workspace[i] = q;
 
- 	    carry = r;
 
- 	    if (workspace[i])
 
- 		iszero = 0;
 
- 	}
 
- 	ret[--ndigit] = (char) (carry + '0');
 
-     } while (!iszero);
 
-     /*
 
-      * There's a chance we've fallen short of the start of the
 
-      * string. Correct if so.
 
-      */
 
-     if (ndigit > 0)
 
- 	memmove(ret, ret + ndigit, ndigits - ndigit);
 
-     /*
 
-      * Done.
 
-      */
 
-     smemclr(workspace, x[0] * sizeof(*workspace));
 
-     sfree(workspace);
 
-     return ret;
 
- }
 
 
  |