| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507 |
- /*
- * Digital Signature Standard implementation for PuTTY.
- */
- #include <stdio.h>
- #include <stdlib.h>
- #include <assert.h>
- #include "ssh.h"
- #include "misc.h"
- static void dss_freekey(ssh_key *key); /* forward reference */
- static ssh_key *dss_new_pub(const ssh_keyalg *self, ptrlen data)
- {
- BinarySource src[1];
- struct dss_key *dss;
- BinarySource_BARE_INIT(src, data.ptr, data.len);
- if (!ptrlen_eq_string(get_string(src), "ssh-dss"))
- return NULL;
- dss = snew(struct dss_key);
- dss->sshk = &ssh_dss;
- dss->p = get_mp_ssh2(src);
- dss->q = get_mp_ssh2(src);
- dss->g = get_mp_ssh2(src);
- dss->y = get_mp_ssh2(src);
- dss->x = NULL;
- if (get_err(src) ||
- !bignum_cmp(dss->q, Zero) || !bignum_cmp(dss->p, Zero)) {
- /* Invalid key. */
- dss_freekey(&dss->sshk);
- return NULL;
- }
- return &dss->sshk;
- }
- static void dss_freekey(ssh_key *key)
- {
- struct dss_key *dss = container_of(key, struct dss_key, sshk);
- if (dss->p)
- freebn(dss->p);
- if (dss->q)
- freebn(dss->q);
- if (dss->g)
- freebn(dss->g);
- if (dss->y)
- freebn(dss->y);
- if (dss->x)
- freebn(dss->x);
- sfree(dss);
- }
- static char *dss_cache_str(ssh_key *key)
- {
- struct dss_key *dss = container_of(key, struct dss_key, sshk);
- char *p;
- int len, i, pos, nibbles;
- static const char hex[] = "0123456789abcdef";
- if (!dss->p)
- return NULL;
- len = 8 + 4 + 1; /* 4 x "0x", punctuation, \0 */
- len += 4 * (bignum_bitcount(dss->p) + 15) / 16;
- len += 4 * (bignum_bitcount(dss->q) + 15) / 16;
- len += 4 * (bignum_bitcount(dss->g) + 15) / 16;
- len += 4 * (bignum_bitcount(dss->y) + 15) / 16;
- p = snewn(len, char);
- if (!p)
- return NULL;
- pos = 0;
- pos += sprintf(p + pos, "0x");
- nibbles = (3 + bignum_bitcount(dss->p)) / 4;
- if (nibbles < 1)
- nibbles = 1;
- for (i = nibbles; i--;)
- p[pos++] =
- hex[(bignum_byte(dss->p, i / 2) >> (4 * (i % 2))) & 0xF];
- pos += sprintf(p + pos, ",0x");
- nibbles = (3 + bignum_bitcount(dss->q)) / 4;
- if (nibbles < 1)
- nibbles = 1;
- for (i = nibbles; i--;)
- p[pos++] =
- hex[(bignum_byte(dss->q, i / 2) >> (4 * (i % 2))) & 0xF];
- pos += sprintf(p + pos, ",0x");
- nibbles = (3 + bignum_bitcount(dss->g)) / 4;
- if (nibbles < 1)
- nibbles = 1;
- for (i = nibbles; i--;)
- p[pos++] =
- hex[(bignum_byte(dss->g, i / 2) >> (4 * (i % 2))) & 0xF];
- pos += sprintf(p + pos, ",0x");
- nibbles = (3 + bignum_bitcount(dss->y)) / 4;
- if (nibbles < 1)
- nibbles = 1;
- for (i = nibbles; i--;)
- p[pos++] =
- hex[(bignum_byte(dss->y, i / 2) >> (4 * (i % 2))) & 0xF];
- p[pos] = '\0';
- return p;
- }
- static int dss_verify(ssh_key *key, ptrlen sig, ptrlen data)
- {
- struct dss_key *dss = container_of(key, struct dss_key, sshk);
- BinarySource src[1];
- unsigned char hash[20];
- Bignum r, s, w, gu1p, yu2p, gu1yu2p, u1, u2, sha, v;
- int ret;
- if (!dss->p)
- return 0;
- BinarySource_BARE_INIT(src, sig.ptr, sig.len);
- /*
- * Commercial SSH (2.0.13) and OpenSSH disagree over the format
- * of a DSA signature. OpenSSH is in line with RFC 4253:
- * it uses a string "ssh-dss", followed by a 40-byte string
- * containing two 160-bit integers end-to-end. Commercial SSH
- * can't be bothered with the header bit, and considers a DSA
- * signature blob to be _just_ the 40-byte string containing
- * the two 160-bit integers. We tell them apart by measuring
- * the length: length 40 means the commercial-SSH bug, anything
- * else is assumed to be RFC-compliant.
- */
- if (sig.len != 40) { /* bug not present; read admin fields */
- ptrlen type = get_string(src);
- sig = get_string(src);
- if (get_err(src) || !ptrlen_eq_string(type, "ssh-dss") ||
- sig.len != 40)
- return 0;
- }
- /* Now we're sitting on a 40-byte string for sure. */
- r = bignum_from_bytes(sig.ptr, 20);
- s = bignum_from_bytes((const char *)sig.ptr + 20, 20);
- if (!r || !s) {
- if (r)
- freebn(r);
- if (s)
- freebn(s);
- return 0;
- }
- if (!bignum_cmp(s, Zero)) {
- freebn(r);
- freebn(s);
- return 0;
- }
- /*
- * Step 1. w <- s^-1 mod q.
- */
- w = modinv(s, dss->q);
- if (!w) {
- freebn(r);
- freebn(s);
- return 0;
- }
- /*
- * Step 2. u1 <- SHA(message) * w mod q.
- */
- SHA_Simple(data.ptr, data.len, hash);
- sha = bignum_from_bytes(hash, 20);
- u1 = modmul(sha, w, dss->q);
- /*
- * Step 3. u2 <- r * w mod q.
- */
- u2 = modmul(r, w, dss->q);
- /*
- * Step 4. v <- (g^u1 * y^u2 mod p) mod q.
- */
- gu1p = modpow(dss->g, u1, dss->p);
- yu2p = modpow(dss->y, u2, dss->p);
- gu1yu2p = modmul(gu1p, yu2p, dss->p);
- v = modmul(gu1yu2p, One, dss->q);
- /*
- * Step 5. v should now be equal to r.
- */
- ret = !bignum_cmp(v, r);
- freebn(w);
- freebn(sha);
- freebn(u1);
- freebn(u2);
- freebn(gu1p);
- freebn(yu2p);
- freebn(gu1yu2p);
- freebn(v);
- freebn(r);
- freebn(s);
- return ret;
- }
- static void dss_public_blob(ssh_key *key, BinarySink *bs)
- {
- struct dss_key *dss = container_of(key, struct dss_key, sshk);
- put_stringz(bs, "ssh-dss");
- put_mp_ssh2(bs, dss->p);
- put_mp_ssh2(bs, dss->q);
- put_mp_ssh2(bs, dss->g);
- put_mp_ssh2(bs, dss->y);
- }
- static void dss_private_blob(ssh_key *key, BinarySink *bs)
- {
- struct dss_key *dss = container_of(key, struct dss_key, sshk);
- put_mp_ssh2(bs, dss->x);
- }
- static ssh_key *dss_new_priv(const ssh_keyalg *self, ptrlen pub, ptrlen priv)
- {
- BinarySource src[1];
- ssh_key *sshk;
- struct dss_key *dss;
- ptrlen hash;
- SHA_State s;
- unsigned char digest[20];
- Bignum ytest;
- sshk = dss_new_pub(self, pub);
- if (!sshk)
- return NULL;
- dss = container_of(sshk, struct dss_key, sshk);
- BinarySource_BARE_INIT(src, priv.ptr, priv.len);
- dss->x = get_mp_ssh2(src);
- if (get_err(src)) {
- dss_freekey(&dss->sshk);
- return NULL;
- }
- /*
- * Check the obsolete hash in the old DSS key format.
- */
- hash = get_string(src);
- if (hash.len == 20) {
- SHA_Init(&s);
- put_mp_ssh2(&s, dss->p);
- put_mp_ssh2(&s, dss->q);
- put_mp_ssh2(&s, dss->g);
- SHA_Final(&s, digest);
- if (0 != memcmp(hash.ptr, digest, 20)) {
- dss_freekey(&dss->sshk);
- return NULL;
- }
- }
- /*
- * Now ensure g^x mod p really is y.
- */
- ytest = modpow(dss->g, dss->x, dss->p);
- if (0 != bignum_cmp(ytest, dss->y)) {
- dss_freekey(&dss->sshk);
- freebn(ytest);
- return NULL;
- }
- freebn(ytest);
- return &dss->sshk;
- }
- static ssh_key *dss_new_priv_openssh(const ssh_keyalg *self,
- BinarySource *src)
- {
- struct dss_key *dss;
- dss = snew(struct dss_key);
- dss->sshk = &ssh_dss;
- dss->p = get_mp_ssh2(src);
- dss->q = get_mp_ssh2(src);
- dss->g = get_mp_ssh2(src);
- dss->y = get_mp_ssh2(src);
- dss->x = get_mp_ssh2(src);
- if (get_err(src) ||
- !bignum_cmp(dss->q, Zero) || !bignum_cmp(dss->p, Zero)) {
- /* Invalid key. */
- dss_freekey(&dss->sshk);
- return NULL;
- }
- return &dss->sshk;
- }
- static void dss_openssh_blob(ssh_key *key, BinarySink *bs)
- {
- struct dss_key *dss = container_of(key, struct dss_key, sshk);
- put_mp_ssh2(bs, dss->p);
- put_mp_ssh2(bs, dss->q);
- put_mp_ssh2(bs, dss->g);
- put_mp_ssh2(bs, dss->y);
- put_mp_ssh2(bs, dss->x);
- }
- static int dss_pubkey_bits(const ssh_keyalg *self, ptrlen pub)
- {
- ssh_key *sshk;
- struct dss_key *dss;
- int ret;
- sshk = dss_new_pub(self, pub);
- if (!sshk)
- return -1;
- dss = container_of(sshk, struct dss_key, sshk);
- ret = bignum_bitcount(dss->p);
- dss_freekey(&dss->sshk);
- return ret;
- }
- Bignum *dss_gen_k(const char *id_string, Bignum modulus, Bignum private_key,
- unsigned char *digest, int digest_len)
- {
- /*
- * The basic DSS signing algorithm is:
- *
- * - invent a random k between 1 and q-1 (exclusive).
- * - Compute r = (g^k mod p) mod q.
- * - Compute s = k^-1 * (hash + x*r) mod q.
- *
- * This has the dangerous properties that:
- *
- * - if an attacker in possession of the public key _and_ the
- * signature (for example, the host you just authenticated
- * to) can guess your k, he can reverse the computation of s
- * and work out x = r^-1 * (s*k - hash) mod q. That is, he
- * can deduce the private half of your key, and masquerade
- * as you for as long as the key is still valid.
- *
- * - since r is a function purely of k and the public key, if
- * the attacker only has a _range of possibilities_ for k
- * it's easy for him to work through them all and check each
- * one against r; he'll never be unsure of whether he's got
- * the right one.
- *
- * - if you ever sign two different hashes with the same k, it
- * will be immediately obvious because the two signatures
- * will have the same r, and moreover an attacker in
- * possession of both signatures (and the public key of
- * course) can compute k = (hash1-hash2) * (s1-s2)^-1 mod q,
- * and from there deduce x as before.
- *
- * - the Bleichenbacher attack on DSA makes use of methods of
- * generating k which are significantly non-uniformly
- * distributed; in particular, generating a 160-bit random
- * number and reducing it mod q is right out.
- *
- * For this reason we must be pretty careful about how we
- * generate our k. Since this code runs on Windows, with no
- * particularly good system entropy sources, we can't trust our
- * RNG itself to produce properly unpredictable data. Hence, we
- * use a totally different scheme instead.
- *
- * What we do is to take a SHA-512 (_big_) hash of the private
- * key x, and then feed this into another SHA-512 hash that
- * also includes the message hash being signed. That is:
- *
- * proto_k = SHA512 ( SHA512(x) || SHA160(message) )
- *
- * This number is 512 bits long, so reducing it mod q won't be
- * noticeably non-uniform. So
- *
- * k = proto_k mod q
- *
- * This has the interesting property that it's _deterministic_:
- * signing the same hash twice with the same key yields the
- * same signature.
- *
- * Despite this determinism, it's still not predictable to an
- * attacker, because in order to repeat the SHA-512
- * construction that created it, the attacker would have to
- * know the private key value x - and by assumption he doesn't,
- * because if he knew that he wouldn't be attacking k!
- *
- * (This trick doesn't, _per se_, protect against reuse of k.
- * Reuse of k is left to chance; all it does is prevent
- * _excessively high_ chances of reuse of k due to entropy
- * problems.)
- *
- * Thanks to Colin Plumb for the general idea of using x to
- * ensure k is hard to guess, and to the Cambridge University
- * Computer Security Group for helping to argue out all the
- * fine details.
- */
- SHA512_State ss;
- unsigned char digest512[64];
- Bignum proto_k, k;
- /*
- * Hash some identifying text plus x.
- */
- SHA512_Init(&ss);
- put_asciz(&ss, id_string);
- put_mp_ssh2(&ss, private_key);
- SHA512_Final(&ss, digest512);
- /*
- * Now hash that digest plus the message hash.
- */
- SHA512_Init(&ss);
- put_data(&ss, digest512, sizeof(digest512));
- put_data(&ss, digest, digest_len);
- while (1) {
- SHA512_State ss2 = ss; /* structure copy */
- SHA512_Final(&ss2, digest512);
- smemclr(&ss2, sizeof(ss2));
- /*
- * Now convert the result into a bignum, and reduce it mod q.
- */
- proto_k = bignum_from_bytes(digest512, 64);
- k = bigmod(proto_k, modulus);
- freebn(proto_k);
- if (bignum_cmp(k, One) != 0 && bignum_cmp(k, Zero) != 0) {
- smemclr(&ss, sizeof(ss));
- smemclr(digest512, sizeof(digest512));
- return k;
- }
- /* Very unlikely we get here, but if so, k was unsuitable. */
- freebn(k);
- /* Perturb the hash to think of a different k. */
- put_byte(&ss, 'x');
- /* Go round and try again. */
- }
- }
- static void dss_sign(ssh_key *key, const void *data, int datalen,
- BinarySink *bs)
- {
- struct dss_key *dss = container_of(key, struct dss_key, sshk);
- Bignum k, gkp, hash, kinv, hxr, r, s;
- unsigned char digest[20];
- int i;
- SHA_Simple(data, datalen, digest);
- k = dss_gen_k("DSA deterministic k generator", dss->q, dss->x,
- digest, sizeof(digest));
- kinv = modinv(k, dss->q); /* k^-1 mod q */
- assert(kinv);
- /*
- * Now we have k, so just go ahead and compute the signature.
- */
- gkp = modpow(dss->g, k, dss->p); /* g^k mod p */
- r = bigmod(gkp, dss->q); /* r = (g^k mod p) mod q */
- freebn(gkp);
- hash = bignum_from_bytes(digest, 20);
- hxr = bigmuladd(dss->x, r, hash); /* hash + x*r */
- s = modmul(kinv, hxr, dss->q); /* s = k^-1 * (hash + x*r) mod q */
- freebn(hxr);
- freebn(kinv);
- freebn(k);
- freebn(hash);
- put_stringz(bs, "ssh-dss");
- put_uint32(bs, 40);
- for (i = 0; i < 20; i++)
- put_byte(bs, bignum_byte(r, 19 - i));
- for (i = 0; i < 20; i++)
- put_byte(bs, bignum_byte(s, 19 - i));
- freebn(r);
- freebn(s);
- }
- const ssh_keyalg ssh_dss = {
- dss_new_pub,
- dss_new_priv,
- dss_new_priv_openssh,
- dss_freekey,
- dss_sign,
- dss_verify,
- dss_public_blob,
- dss_private_blob,
- dss_openssh_blob,
- dss_cache_str,
- dss_pubkey_bits,
- "ssh-dss",
- "dss",
- NULL,
- };
|