| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656 |
- /*
- * SHA-1 algorithm as described at
- *
- * http://csrc.nist.gov/cryptval/shs.html
- */
- #include "ssh.h"
- #include <assert.h>
- /*
- * Start by deciding whether we can support hardware SHA at all.
- */
- #define HW_SHA1_NONE 0
- #define HW_SHA1_NI 1
- #ifdef _FORCE_SHA_NI
- # define HW_SHA1 HW_SHA1_NI
- #elif defined(__clang__)
- # if __has_attribute(target) && __has_include(<wmmintrin.h>) && \
- (defined(__x86_64__) || defined(__i386))
- # define HW_SHA1 HW_SHA1_NI
- # endif
- #elif defined(__GNUC__)
- # if (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 4)) && \
- (defined(__x86_64__) || defined(__i386))
- # define HW_SHA1 HW_SHA1_NI
- # endif
- #elif defined (_MSC_VER)
- # if (defined(_M_X64) || defined(_M_IX86)) && _MSC_FULL_VER >= 150030729
- # define HW_SHA1 HW_SHA1_NI
- # endif
- #endif
- #if defined _FORCE_SOFTWARE_SHA || !defined HW_SHA1
- # undef HW_SHA1
- # define HW_SHA1 HW_SHA1_NONE
- #endif
- /*
- * The actual query function that asks if hardware acceleration is
- * available.
- */
- static bool sha1_hw_available(void);
- /*
- * The top-level selection function, caching the results of
- * sha1_hw_available() so it only has to run once.
- */
- static bool sha1_hw_available_cached(void)
- {
- static bool initialised = false;
- static bool hw_available;
- if (!initialised) {
- hw_available = sha1_hw_available();
- initialised = true;
- }
- return hw_available;
- }
- static ssh_hash *sha1_select(const ssh_hashalg *alg)
- {
- const ssh_hashalg *real_alg =
- sha1_hw_available_cached() ? &ssh_sha1_hw : &ssh_sha1_sw;
- return ssh_hash_new(real_alg);
- }
- const ssh_hashalg ssh_sha1 = {
- sha1_select, NULL, NULL, NULL,
- 20, 64, "SHA-1",
- };
- /* ----------------------------------------------------------------------
- * Definitions likely to be helpful to multiple implementations.
- */
- static const uint32_t sha1_initial_state[] = {
- 0x67452301, 0xefcdab89, 0x98badcfe, 0x10325476, 0xc3d2e1f0,
- };
- #define SHA1_ROUNDS_PER_STAGE 20
- #define SHA1_STAGE0_CONSTANT 0x5a827999
- #define SHA1_STAGE1_CONSTANT 0x6ed9eba1
- #define SHA1_STAGE2_CONSTANT 0x8f1bbcdc
- #define SHA1_STAGE3_CONSTANT 0xca62c1d6
- #define SHA1_ROUNDS (4 * SHA1_ROUNDS_PER_STAGE)
- typedef struct sha1_block sha1_block;
- struct sha1_block {
- uint8_t block[64];
- size_t used;
- uint64_t len;
- };
- static inline void sha1_block_setup(sha1_block *blk)
- {
- blk->used = 0;
- blk->len = 0;
- }
- static inline bool sha1_block_write(
- sha1_block *blk, const void **vdata, size_t *len)
- {
- size_t blkleft = sizeof(blk->block) - blk->used;
- size_t chunk = *len < blkleft ? *len : blkleft;
- const uint8_t *p = *vdata;
- memcpy(blk->block + blk->used, p, chunk);
- *vdata = p + chunk;
- *len -= chunk;
- blk->used += chunk;
- blk->len += chunk;
- if (blk->used == sizeof(blk->block)) {
- blk->used = 0;
- return true;
- }
- return false;
- }
- static inline void sha1_block_pad(sha1_block *blk, BinarySink *bs)
- {
- uint64_t final_len = blk->len << 3;
- size_t pad = 1 + (63 & (55 - blk->used));
- put_byte(bs, 0x80);
- for (size_t i = 1; i < pad; i++)
- put_byte(bs, 0);
- put_uint64(bs, final_len);
- assert(blk->used == 0 && "Should have exactly hit a block boundary");
- }
- /* ----------------------------------------------------------------------
- * Software implementation of SHA-1.
- */
- static inline uint32_t rol(uint32_t x, unsigned y)
- {
- return (x << (31 & y)) | (x >> (31 & -y));
- }
- static inline uint32_t Ch(uint32_t ctrl, uint32_t if1, uint32_t if0)
- {
- return if0 ^ (ctrl & (if1 ^ if0));
- }
- static inline uint32_t Maj(uint32_t x, uint32_t y, uint32_t z)
- {
- return (x & y) | (z & (x | y));
- }
- static inline uint32_t Par(uint32_t x, uint32_t y, uint32_t z)
- {
- return (x ^ y ^ z);
- }
- static inline void sha1_sw_round(
- unsigned round_index, const uint32_t *schedule,
- uint32_t *a, uint32_t *b, uint32_t *c, uint32_t *d, uint32_t *e,
- uint32_t f, uint32_t constant)
- {
- *e = rol(*a, 5) + f + *e + schedule[round_index] + constant;
- *b = rol(*b, 30);
- }
- static void sha1_sw_block(uint32_t *core, const uint8_t *block)
- {
- uint32_t w[SHA1_ROUNDS];
- uint32_t a,b,c,d,e;
- for (size_t t = 0; t < 16; t++)
- w[t] = GET_32BIT_MSB_FIRST(block + 4*t);
- for (size_t t = 16; t < SHA1_ROUNDS; t++)
- w[t] = rol(w[t - 3] ^ w[t - 8] ^ w[t - 14] ^ w[t - 16], 1);
- a = core[0]; b = core[1]; c = core[2]; d = core[3];
- e = core[4];
- size_t t = 0;
- for (size_t u = 0; u < SHA1_ROUNDS_PER_STAGE/5; u++) {
- sha1_sw_round(t++,w, &a,&b,&c,&d,&e, Ch(b,c,d), SHA1_STAGE0_CONSTANT);
- sha1_sw_round(t++,w, &e,&a,&b,&c,&d, Ch(a,b,c), SHA1_STAGE0_CONSTANT);
- sha1_sw_round(t++,w, &d,&e,&a,&b,&c, Ch(e,a,b), SHA1_STAGE0_CONSTANT);
- sha1_sw_round(t++,w, &c,&d,&e,&a,&b, Ch(d,e,a), SHA1_STAGE0_CONSTANT);
- sha1_sw_round(t++,w, &b,&c,&d,&e,&a, Ch(c,d,e), SHA1_STAGE0_CONSTANT);
- }
- for (size_t u = 0; u < SHA1_ROUNDS_PER_STAGE/5; u++) {
- sha1_sw_round(t++,w, &a,&b,&c,&d,&e, Par(b,c,d), SHA1_STAGE1_CONSTANT);
- sha1_sw_round(t++,w, &e,&a,&b,&c,&d, Par(a,b,c), SHA1_STAGE1_CONSTANT);
- sha1_sw_round(t++,w, &d,&e,&a,&b,&c, Par(e,a,b), SHA1_STAGE1_CONSTANT);
- sha1_sw_round(t++,w, &c,&d,&e,&a,&b, Par(d,e,a), SHA1_STAGE1_CONSTANT);
- sha1_sw_round(t++,w, &b,&c,&d,&e,&a, Par(c,d,e), SHA1_STAGE1_CONSTANT);
- }
- for (size_t u = 0; u < SHA1_ROUNDS_PER_STAGE/5; u++) {
- sha1_sw_round(t++,w, &a,&b,&c,&d,&e, Maj(b,c,d), SHA1_STAGE2_CONSTANT);
- sha1_sw_round(t++,w, &e,&a,&b,&c,&d, Maj(a,b,c), SHA1_STAGE2_CONSTANT);
- sha1_sw_round(t++,w, &d,&e,&a,&b,&c, Maj(e,a,b), SHA1_STAGE2_CONSTANT);
- sha1_sw_round(t++,w, &c,&d,&e,&a,&b, Maj(d,e,a), SHA1_STAGE2_CONSTANT);
- sha1_sw_round(t++,w, &b,&c,&d,&e,&a, Maj(c,d,e), SHA1_STAGE2_CONSTANT);
- }
- for (size_t u = 0; u < SHA1_ROUNDS_PER_STAGE/5; u++) {
- sha1_sw_round(t++,w, &a,&b,&c,&d,&e, Par(b,c,d), SHA1_STAGE3_CONSTANT);
- sha1_sw_round(t++,w, &e,&a,&b,&c,&d, Par(a,b,c), SHA1_STAGE3_CONSTANT);
- sha1_sw_round(t++,w, &d,&e,&a,&b,&c, Par(e,a,b), SHA1_STAGE3_CONSTANT);
- sha1_sw_round(t++,w, &c,&d,&e,&a,&b, Par(d,e,a), SHA1_STAGE3_CONSTANT);
- sha1_sw_round(t++,w, &b,&c,&d,&e,&a, Par(c,d,e), SHA1_STAGE3_CONSTANT);
- }
- core[0] += a; core[1] += b; core[2] += c; core[3] += d; core[4] += e;
- smemclr(w, sizeof(w));
- }
- typedef struct sha1_sw {
- uint32_t core[5];
- sha1_block blk;
- BinarySink_IMPLEMENTATION;
- ssh_hash hash;
- } sha1_sw;
- static void sha1_sw_write(BinarySink *bs, const void *vp, size_t len);
- static ssh_hash *sha1_sw_new(const ssh_hashalg *alg)
- {
- sha1_sw *s = snew(sha1_sw);
- memcpy(s->core, sha1_initial_state, sizeof(s->core));
- sha1_block_setup(&s->blk);
- s->hash.vt = alg;
- BinarySink_INIT(s, sha1_sw_write);
- BinarySink_DELEGATE_INIT(&s->hash, s);
- return &s->hash;
- }
- static ssh_hash *sha1_sw_copy(ssh_hash *hash)
- {
- sha1_sw *s = container_of(hash, sha1_sw, hash);
- sha1_sw *copy = snew(sha1_sw);
- memcpy(copy, s, sizeof(*copy));
- BinarySink_COPIED(copy);
- BinarySink_DELEGATE_INIT(©->hash, copy);
- return ©->hash;
- }
- static void sha1_sw_free(ssh_hash *hash)
- {
- sha1_sw *s = container_of(hash, sha1_sw, hash);
- smemclr(s, sizeof(*s));
- sfree(s);
- }
- static void sha1_sw_write(BinarySink *bs, const void *vp, size_t len)
- {
- sha1_sw *s = BinarySink_DOWNCAST(bs, sha1_sw);
- while (len > 0)
- if (sha1_block_write(&s->blk, &vp, &len))
- sha1_sw_block(s->core, s->blk.block);
- }
- static void sha1_sw_final(ssh_hash *hash, uint8_t *digest)
- {
- sha1_sw *s = container_of(hash, sha1_sw, hash);
- sha1_block_pad(&s->blk, BinarySink_UPCAST(s));
- for (size_t i = 0; i < 5; i++)
- PUT_32BIT_MSB_FIRST(digest + 4*i, s->core[i]);
- sha1_sw_free(hash);
- }
- const ssh_hashalg ssh_sha1_sw = {
- sha1_sw_new, sha1_sw_copy, sha1_sw_final, sha1_sw_free,
- 20, 64, "SHA-1",
- };
- /* ----------------------------------------------------------------------
- * Hardware-accelerated implementation of SHA-1 using x86 SHA-NI.
- */
- #if HW_SHA1 == HW_SHA1_NI
- /*
- * Set target architecture for Clang and GCC
- */
- #if !defined(__clang__) && defined(__GNUC__)
- # pragma GCC target("sha")
- # pragma GCC target("sse4.1")
- #endif
- #if defined(__clang__) || (defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)))
- # define FUNC_ISA __attribute__ ((target("sse4.1,sha")))
- #else
- # define FUNC_ISA
- #endif
- #include <wmmintrin.h>
- #include <smmintrin.h>
- #include <immintrin.h>
- #if defined(__clang__) || defined(__GNUC__)
- #include <shaintrin.h>
- #endif
- #if defined(__clang__) || defined(__GNUC__)
- #include <cpuid.h>
- #define GET_CPU_ID_0(out) \
- __cpuid(0, (out)[0], (out)[1], (out)[2], (out)[3])
- #define GET_CPU_ID_7(out) \
- __cpuid_count(7, 0, (out)[0], (out)[1], (out)[2], (out)[3])
- #else
- #define GET_CPU_ID_0(out) __cpuid(out, 0)
- #define GET_CPU_ID_7(out) __cpuidex(out, 7, 0)
- #endif
- static bool sha1_hw_available(void)
- {
- unsigned int CPUInfo[4];
- GET_CPU_ID_0(CPUInfo);
- if (CPUInfo[0] < 7)
- return false;
- GET_CPU_ID_7(CPUInfo);
- return CPUInfo[1] & (1 << 29); /* Check SHA */
- }
- /* SHA1 implementation using new instructions
- The code is based on Jeffrey Walton's SHA1 implementation:
- https://github.com/noloader/SHA-Intrinsics
- */
- FUNC_ISA
- static inline void sha1_ni_block(__m128i *core, const uint8_t *p)
- {
- __m128i ABCD, E0, E1, MSG0, MSG1, MSG2, MSG3;
- const __m128i MASK = _mm_set_epi64x(
- 0x0001020304050607ULL, 0x08090a0b0c0d0e0fULL);
- const __m128i *block = (const __m128i *)p;
- /* Load initial values */
- ABCD = core[0];
- E0 = core[1];
- /* Rounds 0-3 */
- MSG0 = _mm_loadu_si128(block);
- MSG0 = _mm_shuffle_epi8(MSG0, MASK);
- E0 = _mm_add_epi32(E0, MSG0);
- E1 = ABCD;
- ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 0);
- /* Rounds 4-7 */
- MSG1 = _mm_loadu_si128(block + 1);
- MSG1 = _mm_shuffle_epi8(MSG1, MASK);
- E1 = _mm_sha1nexte_epu32(E1, MSG1);
- E0 = ABCD;
- ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 0);
- MSG0 = _mm_sha1msg1_epu32(MSG0, MSG1);
- /* Rounds 8-11 */
- MSG2 = _mm_loadu_si128(block + 2);
- MSG2 = _mm_shuffle_epi8(MSG2, MASK);
- E0 = _mm_sha1nexte_epu32(E0, MSG2);
- E1 = ABCD;
- ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 0);
- MSG1 = _mm_sha1msg1_epu32(MSG1, MSG2);
- MSG0 = _mm_xor_si128(MSG0, MSG2);
- /* Rounds 12-15 */
- MSG3 = _mm_loadu_si128(block + 3);
- MSG3 = _mm_shuffle_epi8(MSG3, MASK);
- E1 = _mm_sha1nexte_epu32(E1, MSG3);
- E0 = ABCD;
- MSG0 = _mm_sha1msg2_epu32(MSG0, MSG3);
- ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 0);
- MSG2 = _mm_sha1msg1_epu32(MSG2, MSG3);
- MSG1 = _mm_xor_si128(MSG1, MSG3);
- /* Rounds 16-19 */
- E0 = _mm_sha1nexte_epu32(E0, MSG0);
- E1 = ABCD;
- MSG1 = _mm_sha1msg2_epu32(MSG1, MSG0);
- ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 0);
- MSG3 = _mm_sha1msg1_epu32(MSG3, MSG0);
- MSG2 = _mm_xor_si128(MSG2, MSG0);
- /* Rounds 20-23 */
- E1 = _mm_sha1nexte_epu32(E1, MSG1);
- E0 = ABCD;
- MSG2 = _mm_sha1msg2_epu32(MSG2, MSG1);
- ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 1);
- MSG0 = _mm_sha1msg1_epu32(MSG0, MSG1);
- MSG3 = _mm_xor_si128(MSG3, MSG1);
- /* Rounds 24-27 */
- E0 = _mm_sha1nexte_epu32(E0, MSG2);
- E1 = ABCD;
- MSG3 = _mm_sha1msg2_epu32(MSG3, MSG2);
- ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 1);
- MSG1 = _mm_sha1msg1_epu32(MSG1, MSG2);
- MSG0 = _mm_xor_si128(MSG0, MSG2);
- /* Rounds 28-31 */
- E1 = _mm_sha1nexte_epu32(E1, MSG3);
- E0 = ABCD;
- MSG0 = _mm_sha1msg2_epu32(MSG0, MSG3);
- ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 1);
- MSG2 = _mm_sha1msg1_epu32(MSG2, MSG3);
- MSG1 = _mm_xor_si128(MSG1, MSG3);
- /* Rounds 32-35 */
- E0 = _mm_sha1nexte_epu32(E0, MSG0);
- E1 = ABCD;
- MSG1 = _mm_sha1msg2_epu32(MSG1, MSG0);
- ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 1);
- MSG3 = _mm_sha1msg1_epu32(MSG3, MSG0);
- MSG2 = _mm_xor_si128(MSG2, MSG0);
- /* Rounds 36-39 */
- E1 = _mm_sha1nexte_epu32(E1, MSG1);
- E0 = ABCD;
- MSG2 = _mm_sha1msg2_epu32(MSG2, MSG1);
- ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 1);
- MSG0 = _mm_sha1msg1_epu32(MSG0, MSG1);
- MSG3 = _mm_xor_si128(MSG3, MSG1);
- /* Rounds 40-43 */
- E0 = _mm_sha1nexte_epu32(E0, MSG2);
- E1 = ABCD;
- MSG3 = _mm_sha1msg2_epu32(MSG3, MSG2);
- ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 2);
- MSG1 = _mm_sha1msg1_epu32(MSG1, MSG2);
- MSG0 = _mm_xor_si128(MSG0, MSG2);
- /* Rounds 44-47 */
- E1 = _mm_sha1nexte_epu32(E1, MSG3);
- E0 = ABCD;
- MSG0 = _mm_sha1msg2_epu32(MSG0, MSG3);
- ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 2);
- MSG2 = _mm_sha1msg1_epu32(MSG2, MSG3);
- MSG1 = _mm_xor_si128(MSG1, MSG3);
- /* Rounds 48-51 */
- E0 = _mm_sha1nexte_epu32(E0, MSG0);
- E1 = ABCD;
- MSG1 = _mm_sha1msg2_epu32(MSG1, MSG0);
- ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 2);
- MSG3 = _mm_sha1msg1_epu32(MSG3, MSG0);
- MSG2 = _mm_xor_si128(MSG2, MSG0);
- /* Rounds 52-55 */
- E1 = _mm_sha1nexte_epu32(E1, MSG1);
- E0 = ABCD;
- MSG2 = _mm_sha1msg2_epu32(MSG2, MSG1);
- ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 2);
- MSG0 = _mm_sha1msg1_epu32(MSG0, MSG1);
- MSG3 = _mm_xor_si128(MSG3, MSG1);
- /* Rounds 56-59 */
- E0 = _mm_sha1nexte_epu32(E0, MSG2);
- E1 = ABCD;
- MSG3 = _mm_sha1msg2_epu32(MSG3, MSG2);
- ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 2);
- MSG1 = _mm_sha1msg1_epu32(MSG1, MSG2);
- MSG0 = _mm_xor_si128(MSG0, MSG2);
- /* Rounds 60-63 */
- E1 = _mm_sha1nexte_epu32(E1, MSG3);
- E0 = ABCD;
- MSG0 = _mm_sha1msg2_epu32(MSG0, MSG3);
- ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 3);
- MSG2 = _mm_sha1msg1_epu32(MSG2, MSG3);
- MSG1 = _mm_xor_si128(MSG1, MSG3);
- /* Rounds 64-67 */
- E0 = _mm_sha1nexte_epu32(E0, MSG0);
- E1 = ABCD;
- MSG1 = _mm_sha1msg2_epu32(MSG1, MSG0);
- ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 3);
- MSG3 = _mm_sha1msg1_epu32(MSG3, MSG0);
- MSG2 = _mm_xor_si128(MSG2, MSG0);
- /* Rounds 68-71 */
- E1 = _mm_sha1nexte_epu32(E1, MSG1);
- E0 = ABCD;
- MSG2 = _mm_sha1msg2_epu32(MSG2, MSG1);
- ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 3);
- MSG3 = _mm_xor_si128(MSG3, MSG1);
- /* Rounds 72-75 */
- E0 = _mm_sha1nexte_epu32(E0, MSG2);
- E1 = ABCD;
- MSG3 = _mm_sha1msg2_epu32(MSG3, MSG2);
- ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 3);
- /* Rounds 76-79 */
- E1 = _mm_sha1nexte_epu32(E1, MSG3);
- E0 = ABCD;
- ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 3);
- /* Combine state */
- core[0] = _mm_add_epi32(ABCD, core[0]);
- core[1] = _mm_sha1nexte_epu32(E0, core[1]);
- }
- typedef struct sha1_ni {
- /*
- * core[0] stores the first four words of the SHA-1 state. core[1]
- * stores just the fifth word, in the vector lane at the highest
- * address.
- */
- __m128i core[2];
- sha1_block blk;
- void *pointer_to_free;
- BinarySink_IMPLEMENTATION;
- ssh_hash hash;
- } sha1_ni;
- static void sha1_ni_write(BinarySink *bs, const void *vp, size_t len);
- static sha1_ni *sha1_ni_alloc(void)
- {
- /*
- * The __m128i variables in the context structure need to be
- * 16-byte aligned, but not all malloc implementations that this
- * code has to work with will guarantee to return a 16-byte
- * aligned pointer. So we over-allocate, manually realign the
- * pointer ourselves, and store the original one inside the
- * context so we know how to free it later.
- */
- void *allocation = smalloc(sizeof(sha1_ni) + 15);
- uintptr_t alloc_address = (uintptr_t)allocation;
- uintptr_t aligned_address = (alloc_address + 15) & ~15;
- sha1_ni *s = (sha1_ni *)aligned_address;
- s->pointer_to_free = allocation;
- return s;
- }
- FUNC_ISA static ssh_hash *sha1_ni_new(const ssh_hashalg *alg)
- {
- if (!sha1_hw_available_cached())
- return NULL;
- sha1_ni *s = sha1_ni_alloc();
- /* Initialise the core vectors in their storage order */
- s->core[0] = _mm_set_epi64x(
- 0x67452301efcdab89ULL, 0x98badcfe10325476ULL);
- s->core[1] = _mm_set_epi32(0xc3d2e1f0, 0, 0, 0);
- sha1_block_setup(&s->blk);
- s->hash.vt = alg;
- BinarySink_INIT(s, sha1_ni_write);
- BinarySink_DELEGATE_INIT(&s->hash, s);
- return &s->hash;
- }
- static ssh_hash *sha1_ni_copy(ssh_hash *hash)
- {
- sha1_ni *s = container_of(hash, sha1_ni, hash);
- sha1_ni *copy = sha1_ni_alloc();
- void *ptf_save = copy->pointer_to_free;
- *copy = *s; /* structure copy */
- copy->pointer_to_free = ptf_save;
- BinarySink_COPIED(copy);
- BinarySink_DELEGATE_INIT(©->hash, copy);
- return ©->hash;
- }
- static void sha1_ni_free(ssh_hash *hash)
- {
- sha1_ni *s = container_of(hash, sha1_ni, hash);
- void *ptf = s->pointer_to_free;
- smemclr(s, sizeof(*s));
- sfree(ptf);
- }
- static void sha1_ni_write(BinarySink *bs, const void *vp, size_t len)
- {
- sha1_ni *s = BinarySink_DOWNCAST(bs, sha1_ni);
- while (len > 0)
- if (sha1_block_write(&s->blk, &vp, &len))
- sha1_ni_block(s->core, s->blk.block);
- }
- FUNC_ISA static void sha1_ni_final(ssh_hash *hash, uint8_t *digest)
- {
- sha1_ni *s = container_of(hash, sha1_ni, hash);
- sha1_block_pad(&s->blk, BinarySink_UPCAST(s));
- /* Rearrange the first vector into its output order */
- __m128i abcd = _mm_shuffle_epi32(s->core[0], 0x1B);
- /* Byte-swap it into the output endianness */
- const __m128i mask = _mm_setr_epi8(3,2,1,0,7,6,5,4,11,10,9,8,15,14,13,12);
- abcd = _mm_shuffle_epi8(abcd, mask);
- /* And store it */
- _mm_storeu_si128((__m128i *)digest, abcd);
- /* Finally, store the leftover word */
- uint32_t e = _mm_extract_epi32(s->core[1], 3);
- PUT_32BIT_MSB_FIRST(digest + 16, e);
- sha1_ni_free(hash);
- }
- const ssh_hashalg ssh_sha1_hw = {
- sha1_ni_new, sha1_ni_copy, sha1_ni_final, sha1_ni_free,
- 20, 64, "SHA-1",
- };
- /* ----------------------------------------------------------------------
- * Stub functions if we have no hardware-accelerated SHA-1. In this
- * case, sha1_hw_new returns NULL (though it should also never be
- * selected by sha1_select, so the only thing that should even be
- * _able_ to call it is testcrypt). As a result, the remaining vtable
- * functions should never be called at all.
- */
- #elif HW_SHA1 == HW_SHA1_NONE
- static bool sha1_hw_available(void)
- {
- return false;
- }
- static ssh_hash *sha1_stub_new(const ssh_hashalg *alg)
- {
- return NULL;
- }
- #define STUB_BODY { unreachable("Should never be called"); }
- static ssh_hash *sha1_stub_copy(ssh_hash *hash) STUB_BODY
- static void sha1_stub_free(ssh_hash *hash) STUB_BODY
- static void sha1_stub_final(ssh_hash *hash, uint8_t *digest) STUB_BODY
- const ssh_hashalg ssh_sha1_hw = {
- sha1_stub_new, sha1_stub_copy, sha1_stub_final, sha1_stub_free,
- 20, 64, "SHA-1",
- };
- #endif /* HW_SHA1 */
|