v3_addr.c 36 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338
  1. /*
  2. * Contributed to the OpenSSL Project by the American Registry for
  3. * Internet Numbers ("ARIN").
  4. */
  5. /* ====================================================================
  6. * Copyright (c) 2006 The OpenSSL Project. All rights reserved.
  7. *
  8. * Redistribution and use in source and binary forms, with or without
  9. * modification, are permitted provided that the following conditions
  10. * are met:
  11. *
  12. * 1. Redistributions of source code must retain the above copyright
  13. * notice, this list of conditions and the following disclaimer.
  14. *
  15. * 2. Redistributions in binary form must reproduce the above copyright
  16. * notice, this list of conditions and the following disclaimer in
  17. * the documentation and/or other materials provided with the
  18. * distribution.
  19. *
  20. * 3. All advertising materials mentioning features or use of this
  21. * software must display the following acknowledgment:
  22. * "This product includes software developed by the OpenSSL Project
  23. * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
  24. *
  25. * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
  26. * endorse or promote products derived from this software without
  27. * prior written permission. For written permission, please contact
  28. * [email protected].
  29. *
  30. * 5. Products derived from this software may not be called "OpenSSL"
  31. * nor may "OpenSSL" appear in their names without prior written
  32. * permission of the OpenSSL Project.
  33. *
  34. * 6. Redistributions of any form whatsoever must retain the following
  35. * acknowledgment:
  36. * "This product includes software developed by the OpenSSL Project
  37. * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
  38. *
  39. * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
  40. * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  41. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
  42. * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
  43. * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  44. * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  45. * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  46. * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  47. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
  48. * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  49. * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
  50. * OF THE POSSIBILITY OF SUCH DAMAGE.
  51. * ====================================================================
  52. *
  53. * This product includes cryptographic software written by Eric Young
  54. * ([email protected]). This product includes software written by Tim
  55. * Hudson ([email protected]).
  56. */
  57. /*
  58. * Implementation of RFC 3779 section 2.2.
  59. */
  60. #include <stdio.h>
  61. #include <stdlib.h>
  62. #include "cryptlib.h"
  63. #include <openssl/conf.h>
  64. #include <openssl/asn1.h>
  65. #include <openssl/asn1t.h>
  66. #include <openssl/buffer.h>
  67. #include <openssl/x509v3.h>
  68. #ifndef OPENSSL_NO_RFC3779
  69. /*
  70. * OpenSSL ASN.1 template translation of RFC 3779 2.2.3.
  71. */
  72. ASN1_SEQUENCE(IPAddressRange) = {
  73. ASN1_SIMPLE(IPAddressRange, min, ASN1_BIT_STRING),
  74. ASN1_SIMPLE(IPAddressRange, max, ASN1_BIT_STRING)
  75. } ASN1_SEQUENCE_END(IPAddressRange)
  76. ASN1_CHOICE(IPAddressOrRange) = {
  77. ASN1_SIMPLE(IPAddressOrRange, u.addressPrefix, ASN1_BIT_STRING),
  78. ASN1_SIMPLE(IPAddressOrRange, u.addressRange, IPAddressRange)
  79. } ASN1_CHOICE_END(IPAddressOrRange)
  80. ASN1_CHOICE(IPAddressChoice) = {
  81. ASN1_SIMPLE(IPAddressChoice, u.inherit, ASN1_NULL),
  82. ASN1_SEQUENCE_OF(IPAddressChoice, u.addressesOrRanges, IPAddressOrRange)
  83. } ASN1_CHOICE_END(IPAddressChoice)
  84. ASN1_SEQUENCE(IPAddressFamily) = {
  85. ASN1_SIMPLE(IPAddressFamily, addressFamily, ASN1_OCTET_STRING),
  86. ASN1_SIMPLE(IPAddressFamily, ipAddressChoice, IPAddressChoice)
  87. } ASN1_SEQUENCE_END(IPAddressFamily)
  88. ASN1_ITEM_TEMPLATE(IPAddrBlocks) =
  89. ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0,
  90. IPAddrBlocks, IPAddressFamily)
  91. ASN1_ITEM_TEMPLATE_END(IPAddrBlocks)
  92. IMPLEMENT_ASN1_FUNCTIONS(IPAddressRange)
  93. IMPLEMENT_ASN1_FUNCTIONS(IPAddressOrRange)
  94. IMPLEMENT_ASN1_FUNCTIONS(IPAddressChoice)
  95. IMPLEMENT_ASN1_FUNCTIONS(IPAddressFamily)
  96. /*
  97. * How much buffer space do we need for a raw address?
  98. */
  99. #define ADDR_RAW_BUF_LEN 16
  100. /*
  101. * What's the address length associated with this AFI?
  102. */
  103. static int length_from_afi(const unsigned afi)
  104. {
  105. switch (afi) {
  106. case IANA_AFI_IPV4:
  107. return 4;
  108. case IANA_AFI_IPV6:
  109. return 16;
  110. default:
  111. return 0;
  112. }
  113. }
  114. /*
  115. * Extract the AFI from an IPAddressFamily.
  116. */
  117. unsigned int v3_addr_get_afi(const IPAddressFamily *f)
  118. {
  119. return ((f != NULL &&
  120. f->addressFamily != NULL &&
  121. f->addressFamily->data != NULL)
  122. ? ((f->addressFamily->data[0] << 8) |
  123. (f->addressFamily->data[1]))
  124. : 0);
  125. }
  126. /*
  127. * Expand the bitstring form of an address into a raw byte array.
  128. * At the moment this is coded for simplicity, not speed.
  129. */
  130. static int addr_expand(unsigned char *addr,
  131. const ASN1_BIT_STRING *bs,
  132. const int length,
  133. const unsigned char fill)
  134. {
  135. if (bs->length < 0 || bs->length > length)
  136. return 0;
  137. if (bs->length > 0) {
  138. memcpy(addr, bs->data, bs->length);
  139. if ((bs->flags & 7) != 0) {
  140. unsigned char mask = 0xFF >> (8 - (bs->flags & 7));
  141. if (fill == 0)
  142. addr[bs->length - 1] &= ~mask;
  143. else
  144. addr[bs->length - 1] |= mask;
  145. }
  146. }
  147. memset(addr + bs->length, fill, length - bs->length);
  148. return 1;
  149. }
  150. /*
  151. * Extract the prefix length from a bitstring.
  152. */
  153. #define addr_prefixlen(bs) ((int) ((bs)->length * 8 - ((bs)->flags & 7)))
  154. /*
  155. * i2r handler for one address bitstring.
  156. */
  157. static int i2r_address(BIO *out,
  158. const unsigned afi,
  159. const unsigned char fill,
  160. const ASN1_BIT_STRING *bs)
  161. {
  162. unsigned char addr[ADDR_RAW_BUF_LEN];
  163. int i, n;
  164. if (bs->length < 0)
  165. return 0;
  166. switch (afi) {
  167. case IANA_AFI_IPV4:
  168. if (!addr_expand(addr, bs, 4, fill))
  169. return 0;
  170. BIO_printf(out, "%d.%d.%d.%d", addr[0], addr[1], addr[2], addr[3]);
  171. break;
  172. case IANA_AFI_IPV6:
  173. if (!addr_expand(addr, bs, 16, fill))
  174. return 0;
  175. for (n = 16; n > 1 && addr[n-1] == 0x00 && addr[n-2] == 0x00; n -= 2)
  176. ;
  177. for (i = 0; i < n; i += 2)
  178. BIO_printf(out, "%x%s", (addr[i] << 8) | addr[i+1], (i < 14 ? ":" : ""));
  179. if (i < 16)
  180. BIO_puts(out, ":");
  181. if (i == 0)
  182. BIO_puts(out, ":");
  183. break;
  184. default:
  185. for (i = 0; i < bs->length; i++)
  186. BIO_printf(out, "%s%02x", (i > 0 ? ":" : ""), bs->data[i]);
  187. BIO_printf(out, "[%d]", (int) (bs->flags & 7));
  188. break;
  189. }
  190. return 1;
  191. }
  192. /*
  193. * i2r handler for a sequence of addresses and ranges.
  194. */
  195. static int i2r_IPAddressOrRanges(BIO *out,
  196. const int indent,
  197. const IPAddressOrRanges *aors,
  198. const unsigned afi)
  199. {
  200. int i;
  201. for (i = 0; i < sk_IPAddressOrRange_num(aors); i++) {
  202. const IPAddressOrRange *aor = sk_IPAddressOrRange_value(aors, i);
  203. BIO_printf(out, "%*s", indent, "");
  204. switch (aor->type) {
  205. case IPAddressOrRange_addressPrefix:
  206. if (!i2r_address(out, afi, 0x00, aor->u.addressPrefix))
  207. return 0;
  208. BIO_printf(out, "/%d\n", addr_prefixlen(aor->u.addressPrefix));
  209. continue;
  210. case IPAddressOrRange_addressRange:
  211. if (!i2r_address(out, afi, 0x00, aor->u.addressRange->min))
  212. return 0;
  213. BIO_puts(out, "-");
  214. if (!i2r_address(out, afi, 0xFF, aor->u.addressRange->max))
  215. return 0;
  216. BIO_puts(out, "\n");
  217. continue;
  218. }
  219. }
  220. return 1;
  221. }
  222. /*
  223. * i2r handler for an IPAddrBlocks extension.
  224. */
  225. static int i2r_IPAddrBlocks(const X509V3_EXT_METHOD *method,
  226. void *ext,
  227. BIO *out,
  228. int indent)
  229. {
  230. const IPAddrBlocks *addr = ext;
  231. int i;
  232. for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
  233. IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
  234. const unsigned int afi = v3_addr_get_afi(f);
  235. switch (afi) {
  236. case IANA_AFI_IPV4:
  237. BIO_printf(out, "%*sIPv4", indent, "");
  238. break;
  239. case IANA_AFI_IPV6:
  240. BIO_printf(out, "%*sIPv6", indent, "");
  241. break;
  242. default:
  243. BIO_printf(out, "%*sUnknown AFI %u", indent, "", afi);
  244. break;
  245. }
  246. if (f->addressFamily->length > 2) {
  247. switch (f->addressFamily->data[2]) {
  248. case 1:
  249. BIO_puts(out, " (Unicast)");
  250. break;
  251. case 2:
  252. BIO_puts(out, " (Multicast)");
  253. break;
  254. case 3:
  255. BIO_puts(out, " (Unicast/Multicast)");
  256. break;
  257. case 4:
  258. BIO_puts(out, " (MPLS)");
  259. break;
  260. case 64:
  261. BIO_puts(out, " (Tunnel)");
  262. break;
  263. case 65:
  264. BIO_puts(out, " (VPLS)");
  265. break;
  266. case 66:
  267. BIO_puts(out, " (BGP MDT)");
  268. break;
  269. case 128:
  270. BIO_puts(out, " (MPLS-labeled VPN)");
  271. break;
  272. default:
  273. BIO_printf(out, " (Unknown SAFI %u)",
  274. (unsigned) f->addressFamily->data[2]);
  275. break;
  276. }
  277. }
  278. switch (f->ipAddressChoice->type) {
  279. case IPAddressChoice_inherit:
  280. BIO_puts(out, ": inherit\n");
  281. break;
  282. case IPAddressChoice_addressesOrRanges:
  283. BIO_puts(out, ":\n");
  284. if (!i2r_IPAddressOrRanges(out,
  285. indent + 2,
  286. f->ipAddressChoice->u.addressesOrRanges,
  287. afi))
  288. return 0;
  289. break;
  290. }
  291. }
  292. return 1;
  293. }
  294. /*
  295. * Sort comparison function for a sequence of IPAddressOrRange
  296. * elements.
  297. *
  298. * There's no sane answer we can give if addr_expand() fails, and an
  299. * assertion failure on externally supplied data is seriously uncool,
  300. * so we just arbitrarily declare that if given invalid inputs this
  301. * function returns -1. If this messes up your preferred sort order
  302. * for garbage input, tough noogies.
  303. */
  304. static int IPAddressOrRange_cmp(const IPAddressOrRange *a,
  305. const IPAddressOrRange *b,
  306. const int length)
  307. {
  308. unsigned char addr_a[ADDR_RAW_BUF_LEN], addr_b[ADDR_RAW_BUF_LEN];
  309. int prefixlen_a = 0, prefixlen_b = 0;
  310. int r;
  311. switch (a->type) {
  312. case IPAddressOrRange_addressPrefix:
  313. if (!addr_expand(addr_a, a->u.addressPrefix, length, 0x00))
  314. return -1;
  315. prefixlen_a = addr_prefixlen(a->u.addressPrefix);
  316. break;
  317. case IPAddressOrRange_addressRange:
  318. if (!addr_expand(addr_a, a->u.addressRange->min, length, 0x00))
  319. return -1;
  320. prefixlen_a = length * 8;
  321. break;
  322. }
  323. switch (b->type) {
  324. case IPAddressOrRange_addressPrefix:
  325. if (!addr_expand(addr_b, b->u.addressPrefix, length, 0x00))
  326. return -1;
  327. prefixlen_b = addr_prefixlen(b->u.addressPrefix);
  328. break;
  329. case IPAddressOrRange_addressRange:
  330. if (!addr_expand(addr_b, b->u.addressRange->min, length, 0x00))
  331. return -1;
  332. prefixlen_b = length * 8;
  333. break;
  334. }
  335. if ((r = memcmp(addr_a, addr_b, length)) != 0)
  336. return r;
  337. else
  338. return prefixlen_a - prefixlen_b;
  339. }
  340. /*
  341. * IPv4-specific closure over IPAddressOrRange_cmp, since sk_sort()
  342. * comparision routines are only allowed two arguments.
  343. */
  344. static int v4IPAddressOrRange_cmp(const IPAddressOrRange * const *a,
  345. const IPAddressOrRange * const *b)
  346. {
  347. return IPAddressOrRange_cmp(*a, *b, 4);
  348. }
  349. /*
  350. * IPv6-specific closure over IPAddressOrRange_cmp, since sk_sort()
  351. * comparision routines are only allowed two arguments.
  352. */
  353. static int v6IPAddressOrRange_cmp(const IPAddressOrRange * const *a,
  354. const IPAddressOrRange * const *b)
  355. {
  356. return IPAddressOrRange_cmp(*a, *b, 16);
  357. }
  358. /*
  359. * Calculate whether a range collapses to a prefix.
  360. * See last paragraph of RFC 3779 2.2.3.7.
  361. */
  362. static int range_should_be_prefix(const unsigned char *min,
  363. const unsigned char *max,
  364. const int length)
  365. {
  366. unsigned char mask;
  367. int i, j;
  368. OPENSSL_assert(memcmp(min, max, length) <= 0);
  369. for (i = 0; i < length && min[i] == max[i]; i++)
  370. ;
  371. for (j = length - 1; j >= 0 && min[j] == 0x00 && max[j] == 0xFF; j--)
  372. ;
  373. if (i < j)
  374. return -1;
  375. if (i > j)
  376. return i * 8;
  377. mask = min[i] ^ max[i];
  378. switch (mask) {
  379. case 0x01: j = 7; break;
  380. case 0x03: j = 6; break;
  381. case 0x07: j = 5; break;
  382. case 0x0F: j = 4; break;
  383. case 0x1F: j = 3; break;
  384. case 0x3F: j = 2; break;
  385. case 0x7F: j = 1; break;
  386. default: return -1;
  387. }
  388. if ((min[i] & mask) != 0 || (max[i] & mask) != mask)
  389. return -1;
  390. else
  391. return i * 8 + j;
  392. }
  393. /*
  394. * Construct a prefix.
  395. */
  396. static int make_addressPrefix(IPAddressOrRange **result,
  397. unsigned char *addr,
  398. const int prefixlen)
  399. {
  400. int bytelen = (prefixlen + 7) / 8, bitlen = prefixlen % 8;
  401. IPAddressOrRange *aor = IPAddressOrRange_new();
  402. if (aor == NULL)
  403. return 0;
  404. aor->type = IPAddressOrRange_addressPrefix;
  405. if (aor->u.addressPrefix == NULL &&
  406. (aor->u.addressPrefix = ASN1_BIT_STRING_new()) == NULL)
  407. goto err;
  408. if (!ASN1_BIT_STRING_set(aor->u.addressPrefix, addr, bytelen))
  409. goto err;
  410. aor->u.addressPrefix->flags &= ~7;
  411. aor->u.addressPrefix->flags |= ASN1_STRING_FLAG_BITS_LEFT;
  412. if (bitlen > 0) {
  413. aor->u.addressPrefix->data[bytelen - 1] &= ~(0xFF >> bitlen);
  414. aor->u.addressPrefix->flags |= 8 - bitlen;
  415. }
  416. *result = aor;
  417. return 1;
  418. err:
  419. IPAddressOrRange_free(aor);
  420. return 0;
  421. }
  422. /*
  423. * Construct a range. If it can be expressed as a prefix,
  424. * return a prefix instead. Doing this here simplifies
  425. * the rest of the code considerably.
  426. */
  427. static int make_addressRange(IPAddressOrRange **result,
  428. unsigned char *min,
  429. unsigned char *max,
  430. const int length)
  431. {
  432. IPAddressOrRange *aor;
  433. int i, prefixlen;
  434. if ((prefixlen = range_should_be_prefix(min, max, length)) >= 0)
  435. return make_addressPrefix(result, min, prefixlen);
  436. if ((aor = IPAddressOrRange_new()) == NULL)
  437. return 0;
  438. aor->type = IPAddressOrRange_addressRange;
  439. OPENSSL_assert(aor->u.addressRange == NULL);
  440. if ((aor->u.addressRange = IPAddressRange_new()) == NULL)
  441. goto err;
  442. if (aor->u.addressRange->min == NULL &&
  443. (aor->u.addressRange->min = ASN1_BIT_STRING_new()) == NULL)
  444. goto err;
  445. if (aor->u.addressRange->max == NULL &&
  446. (aor->u.addressRange->max = ASN1_BIT_STRING_new()) == NULL)
  447. goto err;
  448. for (i = length; i > 0 && min[i - 1] == 0x00; --i)
  449. ;
  450. if (!ASN1_BIT_STRING_set(aor->u.addressRange->min, min, i))
  451. goto err;
  452. aor->u.addressRange->min->flags &= ~7;
  453. aor->u.addressRange->min->flags |= ASN1_STRING_FLAG_BITS_LEFT;
  454. if (i > 0) {
  455. unsigned char b = min[i - 1];
  456. int j = 1;
  457. while ((b & (0xFFU >> j)) != 0)
  458. ++j;
  459. aor->u.addressRange->min->flags |= 8 - j;
  460. }
  461. for (i = length; i > 0 && max[i - 1] == 0xFF; --i)
  462. ;
  463. if (!ASN1_BIT_STRING_set(aor->u.addressRange->max, max, i))
  464. goto err;
  465. aor->u.addressRange->max->flags &= ~7;
  466. aor->u.addressRange->max->flags |= ASN1_STRING_FLAG_BITS_LEFT;
  467. if (i > 0) {
  468. unsigned char b = max[i - 1];
  469. int j = 1;
  470. while ((b & (0xFFU >> j)) != (0xFFU >> j))
  471. ++j;
  472. aor->u.addressRange->max->flags |= 8 - j;
  473. }
  474. *result = aor;
  475. return 1;
  476. err:
  477. IPAddressOrRange_free(aor);
  478. return 0;
  479. }
  480. /*
  481. * Construct a new address family or find an existing one.
  482. */
  483. static IPAddressFamily *make_IPAddressFamily(IPAddrBlocks *addr,
  484. const unsigned afi,
  485. const unsigned *safi)
  486. {
  487. IPAddressFamily *f;
  488. unsigned char key[3];
  489. unsigned keylen;
  490. int i;
  491. key[0] = (afi >> 8) & 0xFF;
  492. key[1] = afi & 0xFF;
  493. if (safi != NULL) {
  494. key[2] = *safi & 0xFF;
  495. keylen = 3;
  496. } else {
  497. keylen = 2;
  498. }
  499. for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
  500. f = sk_IPAddressFamily_value(addr, i);
  501. OPENSSL_assert(f->addressFamily->data != NULL);
  502. if (f->addressFamily->length == keylen &&
  503. !memcmp(f->addressFamily->data, key, keylen))
  504. return f;
  505. }
  506. if ((f = IPAddressFamily_new()) == NULL)
  507. goto err;
  508. if (f->ipAddressChoice == NULL &&
  509. (f->ipAddressChoice = IPAddressChoice_new()) == NULL)
  510. goto err;
  511. if (f->addressFamily == NULL &&
  512. (f->addressFamily = ASN1_OCTET_STRING_new()) == NULL)
  513. goto err;
  514. if (!ASN1_OCTET_STRING_set(f->addressFamily, key, keylen))
  515. goto err;
  516. if (!sk_IPAddressFamily_push(addr, f))
  517. goto err;
  518. return f;
  519. err:
  520. IPAddressFamily_free(f);
  521. return NULL;
  522. }
  523. /*
  524. * Add an inheritance element.
  525. */
  526. int v3_addr_add_inherit(IPAddrBlocks *addr,
  527. const unsigned afi,
  528. const unsigned *safi)
  529. {
  530. IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi);
  531. if (f == NULL ||
  532. f->ipAddressChoice == NULL ||
  533. (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges &&
  534. f->ipAddressChoice->u.addressesOrRanges != NULL))
  535. return 0;
  536. if (f->ipAddressChoice->type == IPAddressChoice_inherit &&
  537. f->ipAddressChoice->u.inherit != NULL)
  538. return 1;
  539. if (f->ipAddressChoice->u.inherit == NULL &&
  540. (f->ipAddressChoice->u.inherit = ASN1_NULL_new()) == NULL)
  541. return 0;
  542. f->ipAddressChoice->type = IPAddressChoice_inherit;
  543. return 1;
  544. }
  545. /*
  546. * Construct an IPAddressOrRange sequence, or return an existing one.
  547. */
  548. static IPAddressOrRanges *make_prefix_or_range(IPAddrBlocks *addr,
  549. const unsigned afi,
  550. const unsigned *safi)
  551. {
  552. IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi);
  553. IPAddressOrRanges *aors = NULL;
  554. if (f == NULL ||
  555. f->ipAddressChoice == NULL ||
  556. (f->ipAddressChoice->type == IPAddressChoice_inherit &&
  557. f->ipAddressChoice->u.inherit != NULL))
  558. return NULL;
  559. if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges)
  560. aors = f->ipAddressChoice->u.addressesOrRanges;
  561. if (aors != NULL)
  562. return aors;
  563. if ((aors = sk_IPAddressOrRange_new_null()) == NULL)
  564. return NULL;
  565. switch (afi) {
  566. case IANA_AFI_IPV4:
  567. (void) sk_IPAddressOrRange_set_cmp_func(aors, v4IPAddressOrRange_cmp);
  568. break;
  569. case IANA_AFI_IPV6:
  570. (void) sk_IPAddressOrRange_set_cmp_func(aors, v6IPAddressOrRange_cmp);
  571. break;
  572. }
  573. f->ipAddressChoice->type = IPAddressChoice_addressesOrRanges;
  574. f->ipAddressChoice->u.addressesOrRanges = aors;
  575. return aors;
  576. }
  577. /*
  578. * Add a prefix.
  579. */
  580. int v3_addr_add_prefix(IPAddrBlocks *addr,
  581. const unsigned afi,
  582. const unsigned *safi,
  583. unsigned char *a,
  584. const int prefixlen)
  585. {
  586. IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi);
  587. IPAddressOrRange *aor;
  588. if (aors == NULL || !make_addressPrefix(&aor, a, prefixlen))
  589. return 0;
  590. if (sk_IPAddressOrRange_push(aors, aor))
  591. return 1;
  592. IPAddressOrRange_free(aor);
  593. return 0;
  594. }
  595. /*
  596. * Add a range.
  597. */
  598. int v3_addr_add_range(IPAddrBlocks *addr,
  599. const unsigned afi,
  600. const unsigned *safi,
  601. unsigned char *min,
  602. unsigned char *max)
  603. {
  604. IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi);
  605. IPAddressOrRange *aor;
  606. int length = length_from_afi(afi);
  607. if (aors == NULL)
  608. return 0;
  609. if (!make_addressRange(&aor, min, max, length))
  610. return 0;
  611. if (sk_IPAddressOrRange_push(aors, aor))
  612. return 1;
  613. IPAddressOrRange_free(aor);
  614. return 0;
  615. }
  616. /*
  617. * Extract min and max values from an IPAddressOrRange.
  618. */
  619. static int extract_min_max(IPAddressOrRange *aor,
  620. unsigned char *min,
  621. unsigned char *max,
  622. int length)
  623. {
  624. if (aor == NULL || min == NULL || max == NULL)
  625. return 0;
  626. switch (aor->type) {
  627. case IPAddressOrRange_addressPrefix:
  628. return (addr_expand(min, aor->u.addressPrefix, length, 0x00) &&
  629. addr_expand(max, aor->u.addressPrefix, length, 0xFF));
  630. case IPAddressOrRange_addressRange:
  631. return (addr_expand(min, aor->u.addressRange->min, length, 0x00) &&
  632. addr_expand(max, aor->u.addressRange->max, length, 0xFF));
  633. }
  634. return 0;
  635. }
  636. /*
  637. * Public wrapper for extract_min_max().
  638. */
  639. int v3_addr_get_range(IPAddressOrRange *aor,
  640. const unsigned afi,
  641. unsigned char *min,
  642. unsigned char *max,
  643. const int length)
  644. {
  645. int afi_length = length_from_afi(afi);
  646. if (aor == NULL || min == NULL || max == NULL ||
  647. afi_length == 0 || length < afi_length ||
  648. (aor->type != IPAddressOrRange_addressPrefix &&
  649. aor->type != IPAddressOrRange_addressRange) ||
  650. !extract_min_max(aor, min, max, afi_length))
  651. return 0;
  652. return afi_length;
  653. }
  654. /*
  655. * Sort comparision function for a sequence of IPAddressFamily.
  656. *
  657. * The last paragraph of RFC 3779 2.2.3.3 is slightly ambiguous about
  658. * the ordering: I can read it as meaning that IPv6 without a SAFI
  659. * comes before IPv4 with a SAFI, which seems pretty weird. The
  660. * examples in appendix B suggest that the author intended the
  661. * null-SAFI rule to apply only within a single AFI, which is what I
  662. * would have expected and is what the following code implements.
  663. */
  664. static int IPAddressFamily_cmp(const IPAddressFamily * const *a_,
  665. const IPAddressFamily * const *b_)
  666. {
  667. const ASN1_OCTET_STRING *a = (*a_)->addressFamily;
  668. const ASN1_OCTET_STRING *b = (*b_)->addressFamily;
  669. int len = ((a->length <= b->length) ? a->length : b->length);
  670. int cmp = memcmp(a->data, b->data, len);
  671. return cmp ? cmp : a->length - b->length;
  672. }
  673. /*
  674. * Check whether an IPAddrBLocks is in canonical form.
  675. */
  676. int v3_addr_is_canonical(IPAddrBlocks *addr)
  677. {
  678. unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
  679. unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN];
  680. IPAddressOrRanges *aors;
  681. int i, j, k;
  682. /*
  683. * Empty extension is cannonical.
  684. */
  685. if (addr == NULL)
  686. return 1;
  687. /*
  688. * Check whether the top-level list is in order.
  689. */
  690. for (i = 0; i < sk_IPAddressFamily_num(addr) - 1; i++) {
  691. const IPAddressFamily *a = sk_IPAddressFamily_value(addr, i);
  692. const IPAddressFamily *b = sk_IPAddressFamily_value(addr, i + 1);
  693. if (IPAddressFamily_cmp(&a, &b) >= 0)
  694. return 0;
  695. }
  696. /*
  697. * Top level's ok, now check each address family.
  698. */
  699. for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
  700. IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
  701. int length = length_from_afi(v3_addr_get_afi(f));
  702. /*
  703. * Inheritance is canonical. Anything other than inheritance or
  704. * a SEQUENCE OF IPAddressOrRange is an ASN.1 error or something.
  705. */
  706. if (f == NULL || f->ipAddressChoice == NULL)
  707. return 0;
  708. switch (f->ipAddressChoice->type) {
  709. case IPAddressChoice_inherit:
  710. continue;
  711. case IPAddressChoice_addressesOrRanges:
  712. break;
  713. default:
  714. return 0;
  715. }
  716. /*
  717. * It's an IPAddressOrRanges sequence, check it.
  718. */
  719. aors = f->ipAddressChoice->u.addressesOrRanges;
  720. if (sk_IPAddressOrRange_num(aors) == 0)
  721. return 0;
  722. for (j = 0; j < sk_IPAddressOrRange_num(aors) - 1; j++) {
  723. IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
  724. IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, j + 1);
  725. if (!extract_min_max(a, a_min, a_max, length) ||
  726. !extract_min_max(b, b_min, b_max, length))
  727. return 0;
  728. /*
  729. * Punt misordered list, overlapping start, or inverted range.
  730. */
  731. if (memcmp(a_min, b_min, length) >= 0 ||
  732. memcmp(a_min, a_max, length) > 0 ||
  733. memcmp(b_min, b_max, length) > 0)
  734. return 0;
  735. /*
  736. * Punt if adjacent or overlapping. Check for adjacency by
  737. * subtracting one from b_min first.
  738. */
  739. for (k = length - 1; k >= 0 && b_min[k]-- == 0x00; k--)
  740. ;
  741. if (memcmp(a_max, b_min, length) >= 0)
  742. return 0;
  743. /*
  744. * Check for range that should be expressed as a prefix.
  745. */
  746. if (a->type == IPAddressOrRange_addressRange &&
  747. range_should_be_prefix(a_min, a_max, length) >= 0)
  748. return 0;
  749. }
  750. /*
  751. * Check range to see if it's inverted or should be a
  752. * prefix.
  753. */
  754. j = sk_IPAddressOrRange_num(aors) - 1;
  755. {
  756. IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
  757. if (a != NULL && a->type == IPAddressOrRange_addressRange) {
  758. if (!extract_min_max(a, a_min, a_max, length))
  759. return 0;
  760. if (memcmp(a_min, a_max, length) > 0 ||
  761. range_should_be_prefix(a_min, a_max, length) >= 0)
  762. return 0;
  763. }
  764. }
  765. }
  766. /*
  767. * If we made it through all that, we're happy.
  768. */
  769. return 1;
  770. }
  771. /*
  772. * Whack an IPAddressOrRanges into canonical form.
  773. */
  774. static int IPAddressOrRanges_canonize(IPAddressOrRanges *aors,
  775. const unsigned afi)
  776. {
  777. int i, j, length = length_from_afi(afi);
  778. /*
  779. * Sort the IPAddressOrRanges sequence.
  780. */
  781. sk_IPAddressOrRange_sort(aors);
  782. /*
  783. * Clean up representation issues, punt on duplicates or overlaps.
  784. */
  785. for (i = 0; i < sk_IPAddressOrRange_num(aors) - 1; i++) {
  786. IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, i);
  787. IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, i + 1);
  788. unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
  789. unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN];
  790. if (!extract_min_max(a, a_min, a_max, length) ||
  791. !extract_min_max(b, b_min, b_max, length))
  792. return 0;
  793. /*
  794. * Punt inverted ranges.
  795. */
  796. if (memcmp(a_min, a_max, length) > 0 ||
  797. memcmp(b_min, b_max, length) > 0)
  798. return 0;
  799. /*
  800. * Punt overlaps.
  801. */
  802. if (memcmp(a_max, b_min, length) >= 0)
  803. return 0;
  804. /*
  805. * Merge if a and b are adjacent. We check for
  806. * adjacency by subtracting one from b_min first.
  807. */
  808. for (j = length - 1; j >= 0 && b_min[j]-- == 0x00; j--)
  809. ;
  810. if (memcmp(a_max, b_min, length) == 0) {
  811. IPAddressOrRange *merged;
  812. if (!make_addressRange(&merged, a_min, b_max, length))
  813. return 0;
  814. (void) sk_IPAddressOrRange_set(aors, i, merged);
  815. (void) sk_IPAddressOrRange_delete(aors, i + 1);
  816. IPAddressOrRange_free(a);
  817. IPAddressOrRange_free(b);
  818. --i;
  819. continue;
  820. }
  821. }
  822. /*
  823. * Check for inverted final range.
  824. */
  825. j = sk_IPAddressOrRange_num(aors) - 1;
  826. {
  827. IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
  828. if (a != NULL && a->type == IPAddressOrRange_addressRange) {
  829. unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
  830. extract_min_max(a, a_min, a_max, length);
  831. if (memcmp(a_min, a_max, length) > 0)
  832. return 0;
  833. }
  834. }
  835. return 1;
  836. }
  837. /*
  838. * Whack an IPAddrBlocks extension into canonical form.
  839. */
  840. int v3_addr_canonize(IPAddrBlocks *addr)
  841. {
  842. int i;
  843. for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
  844. IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
  845. if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges &&
  846. !IPAddressOrRanges_canonize(f->ipAddressChoice->u.addressesOrRanges,
  847. v3_addr_get_afi(f)))
  848. return 0;
  849. }
  850. (void) sk_IPAddressFamily_set_cmp_func(addr, IPAddressFamily_cmp);
  851. sk_IPAddressFamily_sort(addr);
  852. OPENSSL_assert(v3_addr_is_canonical(addr));
  853. return 1;
  854. }
  855. /*
  856. * v2i handler for the IPAddrBlocks extension.
  857. */
  858. static void *v2i_IPAddrBlocks(const struct v3_ext_method *method,
  859. struct v3_ext_ctx *ctx,
  860. STACK_OF(CONF_VALUE) *values)
  861. {
  862. static const char v4addr_chars[] = "0123456789.";
  863. static const char v6addr_chars[] = "0123456789.:abcdefABCDEF";
  864. IPAddrBlocks *addr = NULL;
  865. char *s = NULL, *t;
  866. int i;
  867. if ((addr = sk_IPAddressFamily_new(IPAddressFamily_cmp)) == NULL) {
  868. X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
  869. return NULL;
  870. }
  871. for (i = 0; i < sk_CONF_VALUE_num(values); i++) {
  872. CONF_VALUE *val = sk_CONF_VALUE_value(values, i);
  873. unsigned char min[ADDR_RAW_BUF_LEN], max[ADDR_RAW_BUF_LEN];
  874. unsigned afi, *safi = NULL, safi_;
  875. const char *addr_chars;
  876. int prefixlen, i1, i2, delim, length;
  877. if ( !name_cmp(val->name, "IPv4")) {
  878. afi = IANA_AFI_IPV4;
  879. } else if (!name_cmp(val->name, "IPv6")) {
  880. afi = IANA_AFI_IPV6;
  881. } else if (!name_cmp(val->name, "IPv4-SAFI")) {
  882. afi = IANA_AFI_IPV4;
  883. safi = &safi_;
  884. } else if (!name_cmp(val->name, "IPv6-SAFI")) {
  885. afi = IANA_AFI_IPV6;
  886. safi = &safi_;
  887. } else {
  888. X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_NAME_ERROR);
  889. X509V3_conf_err(val);
  890. goto err;
  891. }
  892. switch (afi) {
  893. case IANA_AFI_IPV4:
  894. addr_chars = v4addr_chars;
  895. break;
  896. case IANA_AFI_IPV6:
  897. addr_chars = v6addr_chars;
  898. break;
  899. }
  900. length = length_from_afi(afi);
  901. /*
  902. * Handle SAFI, if any, and BUF_strdup() so we can null-terminate
  903. * the other input values.
  904. */
  905. if (safi != NULL) {
  906. *safi = strtoul(val->value, &t, 0);
  907. t += strspn(t, " \t");
  908. if (*safi > 0xFF || *t++ != ':') {
  909. X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_SAFI);
  910. X509V3_conf_err(val);
  911. goto err;
  912. }
  913. t += strspn(t, " \t");
  914. s = BUF_strdup(t);
  915. } else {
  916. s = BUF_strdup(val->value);
  917. }
  918. if (s == NULL) {
  919. X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
  920. goto err;
  921. }
  922. /*
  923. * Check for inheritance. Not worth additional complexity to
  924. * optimize this (seldom-used) case.
  925. */
  926. if (!strcmp(s, "inherit")) {
  927. if (!v3_addr_add_inherit(addr, afi, safi)) {
  928. X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_INHERITANCE);
  929. X509V3_conf_err(val);
  930. goto err;
  931. }
  932. OPENSSL_free(s);
  933. s = NULL;
  934. continue;
  935. }
  936. i1 = strspn(s, addr_chars);
  937. i2 = i1 + strspn(s + i1, " \t");
  938. delim = s[i2++];
  939. s[i1] = '\0';
  940. if (a2i_ipadd(min, s) != length) {
  941. X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_IPADDRESS);
  942. X509V3_conf_err(val);
  943. goto err;
  944. }
  945. switch (delim) {
  946. case '/':
  947. prefixlen = (int) strtoul(s + i2, &t, 10);
  948. if (t == s + i2 || *t != '\0') {
  949. X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_VALUE_ERROR);
  950. X509V3_conf_err(val);
  951. goto err;
  952. }
  953. if (!v3_addr_add_prefix(addr, afi, safi, min, prefixlen)) {
  954. X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
  955. goto err;
  956. }
  957. break;
  958. case '-':
  959. i1 = i2 + strspn(s + i2, " \t");
  960. i2 = i1 + strspn(s + i1, addr_chars);
  961. if (i1 == i2 || s[i2] != '\0') {
  962. X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_VALUE_ERROR);
  963. X509V3_conf_err(val);
  964. goto err;
  965. }
  966. if (a2i_ipadd(max, s + i1) != length) {
  967. X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_IPADDRESS);
  968. X509V3_conf_err(val);
  969. goto err;
  970. }
  971. if (memcmp(min, max, length_from_afi(afi)) > 0) {
  972. X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_VALUE_ERROR);
  973. X509V3_conf_err(val);
  974. goto err;
  975. }
  976. if (!v3_addr_add_range(addr, afi, safi, min, max)) {
  977. X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
  978. goto err;
  979. }
  980. break;
  981. case '\0':
  982. if (!v3_addr_add_prefix(addr, afi, safi, min, length * 8)) {
  983. X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
  984. goto err;
  985. }
  986. break;
  987. default:
  988. X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_VALUE_ERROR);
  989. X509V3_conf_err(val);
  990. goto err;
  991. }
  992. OPENSSL_free(s);
  993. s = NULL;
  994. }
  995. /*
  996. * Canonize the result, then we're done.
  997. */
  998. if (!v3_addr_canonize(addr))
  999. goto err;
  1000. return addr;
  1001. err:
  1002. OPENSSL_free(s);
  1003. sk_IPAddressFamily_pop_free(addr, IPAddressFamily_free);
  1004. return NULL;
  1005. }
  1006. /*
  1007. * OpenSSL dispatch
  1008. */
  1009. const X509V3_EXT_METHOD v3_addr = {
  1010. NID_sbgp_ipAddrBlock, /* nid */
  1011. 0, /* flags */
  1012. ASN1_ITEM_ref(IPAddrBlocks), /* template */
  1013. 0, 0, 0, 0, /* old functions, ignored */
  1014. 0, /* i2s */
  1015. 0, /* s2i */
  1016. 0, /* i2v */
  1017. v2i_IPAddrBlocks, /* v2i */
  1018. i2r_IPAddrBlocks, /* i2r */
  1019. 0, /* r2i */
  1020. NULL /* extension-specific data */
  1021. };
  1022. /*
  1023. * Figure out whether extension sues inheritance.
  1024. */
  1025. int v3_addr_inherits(IPAddrBlocks *addr)
  1026. {
  1027. int i;
  1028. if (addr == NULL)
  1029. return 0;
  1030. for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
  1031. IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
  1032. if (f->ipAddressChoice->type == IPAddressChoice_inherit)
  1033. return 1;
  1034. }
  1035. return 0;
  1036. }
  1037. /*
  1038. * Figure out whether parent contains child.
  1039. */
  1040. static int addr_contains(IPAddressOrRanges *parent,
  1041. IPAddressOrRanges *child,
  1042. int length)
  1043. {
  1044. unsigned char p_min[ADDR_RAW_BUF_LEN], p_max[ADDR_RAW_BUF_LEN];
  1045. unsigned char c_min[ADDR_RAW_BUF_LEN], c_max[ADDR_RAW_BUF_LEN];
  1046. int p, c;
  1047. if (child == NULL || parent == child)
  1048. return 1;
  1049. if (parent == NULL)
  1050. return 0;
  1051. p = 0;
  1052. for (c = 0; c < sk_IPAddressOrRange_num(child); c++) {
  1053. if (!extract_min_max(sk_IPAddressOrRange_value(child, c),
  1054. c_min, c_max, length))
  1055. return -1;
  1056. for (;; p++) {
  1057. if (p >= sk_IPAddressOrRange_num(parent))
  1058. return 0;
  1059. if (!extract_min_max(sk_IPAddressOrRange_value(parent, p),
  1060. p_min, p_max, length))
  1061. return 0;
  1062. if (memcmp(p_max, c_max, length) < 0)
  1063. continue;
  1064. if (memcmp(p_min, c_min, length) > 0)
  1065. return 0;
  1066. break;
  1067. }
  1068. }
  1069. return 1;
  1070. }
  1071. /*
  1072. * Test whether a is a subset of b.
  1073. */
  1074. int v3_addr_subset(IPAddrBlocks *a, IPAddrBlocks *b)
  1075. {
  1076. int i;
  1077. if (a == NULL || a == b)
  1078. return 1;
  1079. if (b == NULL || v3_addr_inherits(a) || v3_addr_inherits(b))
  1080. return 0;
  1081. (void) sk_IPAddressFamily_set_cmp_func(b, IPAddressFamily_cmp);
  1082. for (i = 0; i < sk_IPAddressFamily_num(a); i++) {
  1083. IPAddressFamily *fa = sk_IPAddressFamily_value(a, i);
  1084. int j = sk_IPAddressFamily_find(b, fa);
  1085. IPAddressFamily *fb;
  1086. fb = sk_IPAddressFamily_value(b, j);
  1087. if (fb == NULL)
  1088. return 0;
  1089. if (!addr_contains(fb->ipAddressChoice->u.addressesOrRanges,
  1090. fa->ipAddressChoice->u.addressesOrRanges,
  1091. length_from_afi(v3_addr_get_afi(fb))))
  1092. return 0;
  1093. }
  1094. return 1;
  1095. }
  1096. /*
  1097. * Validation error handling via callback.
  1098. */
  1099. #define validation_err(_err_) \
  1100. do { \
  1101. if (ctx != NULL) { \
  1102. ctx->error = _err_; \
  1103. ctx->error_depth = i; \
  1104. ctx->current_cert = x; \
  1105. ret = ctx->verify_cb(0, ctx); \
  1106. } else { \
  1107. ret = 0; \
  1108. } \
  1109. if (!ret) \
  1110. goto done; \
  1111. } while (0)
  1112. /*
  1113. * Core code for RFC 3779 2.3 path validation.
  1114. */
  1115. static int v3_addr_validate_path_internal(X509_STORE_CTX *ctx,
  1116. STACK_OF(X509) *chain,
  1117. IPAddrBlocks *ext)
  1118. {
  1119. IPAddrBlocks *child = NULL;
  1120. int i, j, ret = 1;
  1121. X509 *x;
  1122. OPENSSL_assert(chain != NULL && sk_X509_num(chain) > 0);
  1123. OPENSSL_assert(ctx != NULL || ext != NULL);
  1124. OPENSSL_assert(ctx == NULL || ctx->verify_cb != NULL);
  1125. /*
  1126. * Figure out where to start. If we don't have an extension to
  1127. * check, we're done. Otherwise, check canonical form and
  1128. * set up for walking up the chain.
  1129. */
  1130. if (ext != NULL) {
  1131. i = -1;
  1132. x = NULL;
  1133. } else {
  1134. i = 0;
  1135. x = sk_X509_value(chain, i);
  1136. OPENSSL_assert(x != NULL);
  1137. if ((ext = x->rfc3779_addr) == NULL)
  1138. goto done;
  1139. }
  1140. if (!v3_addr_is_canonical(ext))
  1141. validation_err(X509_V_ERR_INVALID_EXTENSION);
  1142. (void) sk_IPAddressFamily_set_cmp_func(ext, IPAddressFamily_cmp);
  1143. if ((child = sk_IPAddressFamily_dup(ext)) == NULL) {
  1144. X509V3err(X509V3_F_V3_ADDR_VALIDATE_PATH_INTERNAL, ERR_R_MALLOC_FAILURE);
  1145. ret = 0;
  1146. goto done;
  1147. }
  1148. /*
  1149. * Now walk up the chain. No cert may list resources that its
  1150. * parent doesn't list.
  1151. */
  1152. for (i++; i < sk_X509_num(chain); i++) {
  1153. x = sk_X509_value(chain, i);
  1154. OPENSSL_assert(x != NULL);
  1155. if (!v3_addr_is_canonical(x->rfc3779_addr))
  1156. validation_err(X509_V_ERR_INVALID_EXTENSION);
  1157. if (x->rfc3779_addr == NULL) {
  1158. for (j = 0; j < sk_IPAddressFamily_num(child); j++) {
  1159. IPAddressFamily *fc = sk_IPAddressFamily_value(child, j);
  1160. if (fc->ipAddressChoice->type != IPAddressChoice_inherit) {
  1161. validation_err(X509_V_ERR_UNNESTED_RESOURCE);
  1162. break;
  1163. }
  1164. }
  1165. continue;
  1166. }
  1167. (void) sk_IPAddressFamily_set_cmp_func(x->rfc3779_addr, IPAddressFamily_cmp);
  1168. for (j = 0; j < sk_IPAddressFamily_num(child); j++) {
  1169. IPAddressFamily *fc = sk_IPAddressFamily_value(child, j);
  1170. int k = sk_IPAddressFamily_find(x->rfc3779_addr, fc);
  1171. IPAddressFamily *fp = sk_IPAddressFamily_value(x->rfc3779_addr, k);
  1172. if (fp == NULL) {
  1173. if (fc->ipAddressChoice->type == IPAddressChoice_addressesOrRanges) {
  1174. validation_err(X509_V_ERR_UNNESTED_RESOURCE);
  1175. break;
  1176. }
  1177. continue;
  1178. }
  1179. if (fp->ipAddressChoice->type == IPAddressChoice_addressesOrRanges) {
  1180. if (fc->ipAddressChoice->type == IPAddressChoice_inherit ||
  1181. addr_contains(fp->ipAddressChoice->u.addressesOrRanges,
  1182. fc->ipAddressChoice->u.addressesOrRanges,
  1183. length_from_afi(v3_addr_get_afi(fc))))
  1184. sk_IPAddressFamily_set(child, j, fp);
  1185. else
  1186. validation_err(X509_V_ERR_UNNESTED_RESOURCE);
  1187. }
  1188. }
  1189. }
  1190. /*
  1191. * Trust anchor can't inherit.
  1192. */
  1193. OPENSSL_assert(x != NULL);
  1194. if (x->rfc3779_addr != NULL) {
  1195. for (j = 0; j < sk_IPAddressFamily_num(x->rfc3779_addr); j++) {
  1196. IPAddressFamily *fp = sk_IPAddressFamily_value(x->rfc3779_addr, j);
  1197. if (fp->ipAddressChoice->type == IPAddressChoice_inherit &&
  1198. sk_IPAddressFamily_find(child, fp) >= 0)
  1199. validation_err(X509_V_ERR_UNNESTED_RESOURCE);
  1200. }
  1201. }
  1202. done:
  1203. sk_IPAddressFamily_free(child);
  1204. return ret;
  1205. }
  1206. #undef validation_err
  1207. /*
  1208. * RFC 3779 2.3 path validation -- called from X509_verify_cert().
  1209. */
  1210. int v3_addr_validate_path(X509_STORE_CTX *ctx)
  1211. {
  1212. return v3_addr_validate_path_internal(ctx, ctx->chain, NULL);
  1213. }
  1214. /*
  1215. * RFC 3779 2.3 path validation of an extension.
  1216. * Test whether chain covers extension.
  1217. */
  1218. int v3_addr_validate_resource_set(STACK_OF(X509) *chain,
  1219. IPAddrBlocks *ext,
  1220. int allow_inheritance)
  1221. {
  1222. if (ext == NULL)
  1223. return 1;
  1224. if (chain == NULL || sk_X509_num(chain) == 0)
  1225. return 0;
  1226. if (!allow_inheritance && v3_addr_inherits(ext))
  1227. return 0;
  1228. return v3_addr_validate_path_internal(NULL, chain, ext);
  1229. }
  1230. #endif /* OPENSSL_NO_RFC3779 */