sha512.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671
  1. /* crypto/sha/sha512.c */
  2. /* ====================================================================
  3. * Copyright (c) 2004 The OpenSSL Project. All rights reserved
  4. * according to the OpenSSL license [found in ../../LICENSE].
  5. * ====================================================================
  6. */
  7. #include <openssl/opensslconf.h>
  8. #if !defined(OPENSSL_NO_SHA) && !defined(OPENSSL_NO_SHA512)
  9. /*-
  10. * IMPLEMENTATION NOTES.
  11. *
  12. * As you might have noticed 32-bit hash algorithms:
  13. *
  14. * - permit SHA_LONG to be wider than 32-bit (case on CRAY);
  15. * - optimized versions implement two transform functions: one operating
  16. * on [aligned] data in host byte order and one - on data in input
  17. * stream byte order;
  18. * - share common byte-order neutral collector and padding function
  19. * implementations, ../md32_common.h;
  20. *
  21. * Neither of the above applies to this SHA-512 implementations. Reasons
  22. * [in reverse order] are:
  23. *
  24. * - it's the only 64-bit hash algorithm for the moment of this writing,
  25. * there is no need for common collector/padding implementation [yet];
  26. * - by supporting only one transform function [which operates on
  27. * *aligned* data in input stream byte order, big-endian in this case]
  28. * we minimize burden of maintenance in two ways: a) collector/padding
  29. * function is simpler; b) only one transform function to stare at;
  30. * - SHA_LONG64 is required to be exactly 64-bit in order to be able to
  31. * apply a number of optimizations to mitigate potential performance
  32. * penalties caused by previous design decision;
  33. *
  34. * Caveat lector.
  35. *
  36. * Implementation relies on the fact that "long long" is 64-bit on
  37. * both 32- and 64-bit platforms. If some compiler vendor comes up
  38. * with 128-bit long long, adjustment to sha.h would be required.
  39. * As this implementation relies on 64-bit integer type, it's totally
  40. * inappropriate for platforms which don't support it, most notably
  41. * 16-bit platforms.
  42. * <[email protected]>
  43. */
  44. # include <stdlib.h>
  45. # include <string.h>
  46. # include <openssl/crypto.h>
  47. # include <openssl/sha.h>
  48. # include <openssl/opensslv.h>
  49. # include "cryptlib.h"
  50. const char SHA512_version[] = "SHA-512" OPENSSL_VERSION_PTEXT;
  51. # if defined(__i386) || defined(__i386__) || defined(_M_IX86) || \
  52. defined(__x86_64) || defined(_M_AMD64) || defined(_M_X64) || \
  53. defined(__s390__) || defined(__s390x__) || \
  54. defined(SHA512_ASM)
  55. # define SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA
  56. # endif
  57. fips_md_init_ctx(SHA384, SHA512)
  58. {
  59. c->h[0] = U64(0xcbbb9d5dc1059ed8);
  60. c->h[1] = U64(0x629a292a367cd507);
  61. c->h[2] = U64(0x9159015a3070dd17);
  62. c->h[3] = U64(0x152fecd8f70e5939);
  63. c->h[4] = U64(0x67332667ffc00b31);
  64. c->h[5] = U64(0x8eb44a8768581511);
  65. c->h[6] = U64(0xdb0c2e0d64f98fa7);
  66. c->h[7] = U64(0x47b5481dbefa4fa4);
  67. c->Nl = 0;
  68. c->Nh = 0;
  69. c->num = 0;
  70. c->md_len = SHA384_DIGEST_LENGTH;
  71. return 1;
  72. }
  73. fips_md_init(SHA512)
  74. {
  75. c->h[0] = U64(0x6a09e667f3bcc908);
  76. c->h[1] = U64(0xbb67ae8584caa73b);
  77. c->h[2] = U64(0x3c6ef372fe94f82b);
  78. c->h[3] = U64(0xa54ff53a5f1d36f1);
  79. c->h[4] = U64(0x510e527fade682d1);
  80. c->h[5] = U64(0x9b05688c2b3e6c1f);
  81. c->h[6] = U64(0x1f83d9abfb41bd6b);
  82. c->h[7] = U64(0x5be0cd19137e2179);
  83. c->Nl = 0;
  84. c->Nh = 0;
  85. c->num = 0;
  86. c->md_len = SHA512_DIGEST_LENGTH;
  87. return 1;
  88. }
  89. # ifndef SHA512_ASM
  90. static
  91. # endif
  92. void sha512_block_data_order(SHA512_CTX *ctx, const void *in, size_t num);
  93. int SHA512_Final(unsigned char *md, SHA512_CTX *c)
  94. {
  95. unsigned char *p = (unsigned char *)c->u.p;
  96. size_t n = c->num;
  97. p[n] = 0x80; /* There always is a room for one */
  98. n++;
  99. if (n > (sizeof(c->u) - 16))
  100. memset(p + n, 0, sizeof(c->u) - n), n = 0,
  101. sha512_block_data_order(c, p, 1);
  102. memset(p + n, 0, sizeof(c->u) - 16 - n);
  103. # ifdef B_ENDIAN
  104. c->u.d[SHA_LBLOCK - 2] = c->Nh;
  105. c->u.d[SHA_LBLOCK - 1] = c->Nl;
  106. # else
  107. p[sizeof(c->u) - 1] = (unsigned char)(c->Nl);
  108. p[sizeof(c->u) - 2] = (unsigned char)(c->Nl >> 8);
  109. p[sizeof(c->u) - 3] = (unsigned char)(c->Nl >> 16);
  110. p[sizeof(c->u) - 4] = (unsigned char)(c->Nl >> 24);
  111. p[sizeof(c->u) - 5] = (unsigned char)(c->Nl >> 32);
  112. p[sizeof(c->u) - 6] = (unsigned char)(c->Nl >> 40);
  113. p[sizeof(c->u) - 7] = (unsigned char)(c->Nl >> 48);
  114. p[sizeof(c->u) - 8] = (unsigned char)(c->Nl >> 56);
  115. p[sizeof(c->u) - 9] = (unsigned char)(c->Nh);
  116. p[sizeof(c->u) - 10] = (unsigned char)(c->Nh >> 8);
  117. p[sizeof(c->u) - 11] = (unsigned char)(c->Nh >> 16);
  118. p[sizeof(c->u) - 12] = (unsigned char)(c->Nh >> 24);
  119. p[sizeof(c->u) - 13] = (unsigned char)(c->Nh >> 32);
  120. p[sizeof(c->u) - 14] = (unsigned char)(c->Nh >> 40);
  121. p[sizeof(c->u) - 15] = (unsigned char)(c->Nh >> 48);
  122. p[sizeof(c->u) - 16] = (unsigned char)(c->Nh >> 56);
  123. # endif
  124. sha512_block_data_order(c, p, 1);
  125. if (md == 0)
  126. return 0;
  127. switch (c->md_len) {
  128. /* Let compiler decide if it's appropriate to unroll... */
  129. case SHA384_DIGEST_LENGTH:
  130. for (n = 0; n < SHA384_DIGEST_LENGTH / 8; n++) {
  131. SHA_LONG64 t = c->h[n];
  132. *(md++) = (unsigned char)(t >> 56);
  133. *(md++) = (unsigned char)(t >> 48);
  134. *(md++) = (unsigned char)(t >> 40);
  135. *(md++) = (unsigned char)(t >> 32);
  136. *(md++) = (unsigned char)(t >> 24);
  137. *(md++) = (unsigned char)(t >> 16);
  138. *(md++) = (unsigned char)(t >> 8);
  139. *(md++) = (unsigned char)(t);
  140. }
  141. break;
  142. case SHA512_DIGEST_LENGTH:
  143. for (n = 0; n < SHA512_DIGEST_LENGTH / 8; n++) {
  144. SHA_LONG64 t = c->h[n];
  145. *(md++) = (unsigned char)(t >> 56);
  146. *(md++) = (unsigned char)(t >> 48);
  147. *(md++) = (unsigned char)(t >> 40);
  148. *(md++) = (unsigned char)(t >> 32);
  149. *(md++) = (unsigned char)(t >> 24);
  150. *(md++) = (unsigned char)(t >> 16);
  151. *(md++) = (unsigned char)(t >> 8);
  152. *(md++) = (unsigned char)(t);
  153. }
  154. break;
  155. /* ... as well as make sure md_len is not abused. */
  156. default:
  157. return 0;
  158. }
  159. return 1;
  160. }
  161. int SHA384_Final(unsigned char *md, SHA512_CTX *c)
  162. {
  163. return SHA512_Final(md, c);
  164. }
  165. int SHA512_Update(SHA512_CTX *c, const void *_data, size_t len)
  166. {
  167. SHA_LONG64 l;
  168. unsigned char *p = c->u.p;
  169. const unsigned char *data = (const unsigned char *)_data;
  170. if (len == 0)
  171. return 1;
  172. l = (c->Nl + (((SHA_LONG64) len) << 3)) & U64(0xffffffffffffffff);
  173. if (l < c->Nl)
  174. c->Nh++;
  175. if (sizeof(len) >= 8)
  176. c->Nh += (((SHA_LONG64) len) >> 61);
  177. c->Nl = l;
  178. if (c->num != 0) {
  179. size_t n = sizeof(c->u) - c->num;
  180. if (len < n) {
  181. memcpy(p + c->num, data, len), c->num += (unsigned int)len;
  182. return 1;
  183. } else {
  184. memcpy(p + c->num, data, n), c->num = 0;
  185. len -= n, data += n;
  186. sha512_block_data_order(c, p, 1);
  187. }
  188. }
  189. if (len >= sizeof(c->u)) {
  190. # ifndef SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA
  191. if ((size_t)data % sizeof(c->u.d[0]) != 0)
  192. while (len >= sizeof(c->u))
  193. memcpy(p, data, sizeof(c->u)),
  194. sha512_block_data_order(c, p, 1),
  195. len -= sizeof(c->u), data += sizeof(c->u);
  196. else
  197. # endif
  198. sha512_block_data_order(c, data, len / sizeof(c->u)),
  199. data += len, len %= sizeof(c->u), data -= len;
  200. }
  201. if (len != 0)
  202. memcpy(p, data, len), c->num = (int)len;
  203. return 1;
  204. }
  205. int SHA384_Update(SHA512_CTX *c, const void *data, size_t len)
  206. {
  207. return SHA512_Update(c, data, len);
  208. }
  209. void SHA512_Transform(SHA512_CTX *c, const unsigned char *data)
  210. {
  211. # ifndef SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA
  212. if ((size_t)data % sizeof(c->u.d[0]) != 0)
  213. memcpy(c->u.p, data, sizeof(c->u.p)), data = c->u.p;
  214. # endif
  215. sha512_block_data_order(c, data, 1);
  216. }
  217. unsigned char *SHA384(const unsigned char *d, size_t n, unsigned char *md)
  218. {
  219. SHA512_CTX c;
  220. static unsigned char m[SHA384_DIGEST_LENGTH];
  221. if (md == NULL)
  222. md = m;
  223. SHA384_Init(&c);
  224. SHA512_Update(&c, d, n);
  225. SHA512_Final(md, &c);
  226. OPENSSL_cleanse(&c, sizeof(c));
  227. return (md);
  228. }
  229. unsigned char *SHA512(const unsigned char *d, size_t n, unsigned char *md)
  230. {
  231. SHA512_CTX c;
  232. static unsigned char m[SHA512_DIGEST_LENGTH];
  233. if (md == NULL)
  234. md = m;
  235. SHA512_Init(&c);
  236. SHA512_Update(&c, d, n);
  237. SHA512_Final(md, &c);
  238. OPENSSL_cleanse(&c, sizeof(c));
  239. return (md);
  240. }
  241. # ifndef SHA512_ASM
  242. static const SHA_LONG64 K512[80] = {
  243. U64(0x428a2f98d728ae22), U64(0x7137449123ef65cd),
  244. U64(0xb5c0fbcfec4d3b2f), U64(0xe9b5dba58189dbbc),
  245. U64(0x3956c25bf348b538), U64(0x59f111f1b605d019),
  246. U64(0x923f82a4af194f9b), U64(0xab1c5ed5da6d8118),
  247. U64(0xd807aa98a3030242), U64(0x12835b0145706fbe),
  248. U64(0x243185be4ee4b28c), U64(0x550c7dc3d5ffb4e2),
  249. U64(0x72be5d74f27b896f), U64(0x80deb1fe3b1696b1),
  250. U64(0x9bdc06a725c71235), U64(0xc19bf174cf692694),
  251. U64(0xe49b69c19ef14ad2), U64(0xefbe4786384f25e3),
  252. U64(0x0fc19dc68b8cd5b5), U64(0x240ca1cc77ac9c65),
  253. U64(0x2de92c6f592b0275), U64(0x4a7484aa6ea6e483),
  254. U64(0x5cb0a9dcbd41fbd4), U64(0x76f988da831153b5),
  255. U64(0x983e5152ee66dfab), U64(0xa831c66d2db43210),
  256. U64(0xb00327c898fb213f), U64(0xbf597fc7beef0ee4),
  257. U64(0xc6e00bf33da88fc2), U64(0xd5a79147930aa725),
  258. U64(0x06ca6351e003826f), U64(0x142929670a0e6e70),
  259. U64(0x27b70a8546d22ffc), U64(0x2e1b21385c26c926),
  260. U64(0x4d2c6dfc5ac42aed), U64(0x53380d139d95b3df),
  261. U64(0x650a73548baf63de), U64(0x766a0abb3c77b2a8),
  262. U64(0x81c2c92e47edaee6), U64(0x92722c851482353b),
  263. U64(0xa2bfe8a14cf10364), U64(0xa81a664bbc423001),
  264. U64(0xc24b8b70d0f89791), U64(0xc76c51a30654be30),
  265. U64(0xd192e819d6ef5218), U64(0xd69906245565a910),
  266. U64(0xf40e35855771202a), U64(0x106aa07032bbd1b8),
  267. U64(0x19a4c116b8d2d0c8), U64(0x1e376c085141ab53),
  268. U64(0x2748774cdf8eeb99), U64(0x34b0bcb5e19b48a8),
  269. U64(0x391c0cb3c5c95a63), U64(0x4ed8aa4ae3418acb),
  270. U64(0x5b9cca4f7763e373), U64(0x682e6ff3d6b2b8a3),
  271. U64(0x748f82ee5defb2fc), U64(0x78a5636f43172f60),
  272. U64(0x84c87814a1f0ab72), U64(0x8cc702081a6439ec),
  273. U64(0x90befffa23631e28), U64(0xa4506cebde82bde9),
  274. U64(0xbef9a3f7b2c67915), U64(0xc67178f2e372532b),
  275. U64(0xca273eceea26619c), U64(0xd186b8c721c0c207),
  276. U64(0xeada7dd6cde0eb1e), U64(0xf57d4f7fee6ed178),
  277. U64(0x06f067aa72176fba), U64(0x0a637dc5a2c898a6),
  278. U64(0x113f9804bef90dae), U64(0x1b710b35131c471b),
  279. U64(0x28db77f523047d84), U64(0x32caab7b40c72493),
  280. U64(0x3c9ebe0a15c9bebc), U64(0x431d67c49c100d4c),
  281. U64(0x4cc5d4becb3e42b6), U64(0x597f299cfc657e2a),
  282. U64(0x5fcb6fab3ad6faec), U64(0x6c44198c4a475817)
  283. };
  284. # ifndef PEDANTIC
  285. # if defined(__GNUC__) && __GNUC__>=2 && !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM)
  286. # if defined(__x86_64) || defined(__x86_64__)
  287. # define ROTR(a,n) ({ SHA_LONG64 ret; \
  288. asm ("rorq %1,%0" \
  289. : "=r"(ret) \
  290. : "J"(n),"0"(a) \
  291. : "cc"); ret; })
  292. # if !defined(B_ENDIAN)
  293. # define PULL64(x) ({ SHA_LONG64 ret=*((const SHA_LONG64 *)(&(x))); \
  294. asm ("bswapq %0" \
  295. : "=r"(ret) \
  296. : "0"(ret)); ret; })
  297. # endif
  298. # elif (defined(__i386) || defined(__i386__)) && !defined(B_ENDIAN)
  299. # if defined(I386_ONLY)
  300. # define PULL64(x) ({ const unsigned int *p=(const unsigned int *)(&(x));\
  301. unsigned int hi=p[0],lo=p[1]; \
  302. asm("xchgb %%ah,%%al;xchgb %%dh,%%dl;"\
  303. "roll $16,%%eax; roll $16,%%edx; "\
  304. "xchgb %%ah,%%al;xchgb %%dh,%%dl;" \
  305. : "=a"(lo),"=d"(hi) \
  306. : "0"(lo),"1"(hi) : "cc"); \
  307. ((SHA_LONG64)hi)<<32|lo; })
  308. # else
  309. # define PULL64(x) ({ const unsigned int *p=(const unsigned int *)(&(x));\
  310. unsigned int hi=p[0],lo=p[1]; \
  311. asm ("bswapl %0; bswapl %1;" \
  312. : "=r"(lo),"=r"(hi) \
  313. : "0"(lo),"1"(hi)); \
  314. ((SHA_LONG64)hi)<<32|lo; })
  315. # endif
  316. # elif (defined(_ARCH_PPC) && defined(__64BIT__)) || defined(_ARCH_PPC64)
  317. # define ROTR(a,n) ({ SHA_LONG64 ret; \
  318. asm ("rotrdi %0,%1,%2" \
  319. : "=r"(ret) \
  320. : "r"(a),"K"(n)); ret; })
  321. # endif
  322. # elif defined(_MSC_VER)
  323. # if defined(_WIN64) /* applies to both IA-64 and AMD64 */
  324. # pragma intrinsic(_rotr64)
  325. # define ROTR(a,n) _rotr64((a),n)
  326. # endif
  327. # if defined(_M_IX86) && !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM)
  328. # if defined(I386_ONLY)
  329. static SHA_LONG64 __fastcall __pull64be(const void *x)
  330. {
  331. _asm mov edx,[ecx + 0]
  332. _asm mov eax,[ecx + 4]
  333. _asm xchg dh, dl
  334. _asm xchg ah, al
  335. _asm rol edx, 16 _asm rol eax, 16 _asm xchg dh, dl _asm xchg ah, al}
  336. # else
  337. static SHA_LONG64 __fastcall __pull64be(const void *x)
  338. {
  339. _asm mov edx,[ecx + 0]
  340. _asm mov eax,[ecx + 4]
  341. _asm bswap edx _asm bswap eax}
  342. # endif
  343. # define PULL64(x) __pull64be(&(x))
  344. # if _MSC_VER<=1200
  345. # pragma inline_depth(0)
  346. # endif
  347. # endif
  348. # endif
  349. # endif
  350. # ifndef PULL64
  351. # define B(x,j) (((SHA_LONG64)(*(((const unsigned char *)(&x))+j)))<<((7-j)*8))
  352. # define PULL64(x) (B(x,0)|B(x,1)|B(x,2)|B(x,3)|B(x,4)|B(x,5)|B(x,6)|B(x,7))
  353. # endif
  354. # ifndef ROTR
  355. # define ROTR(x,s) (((x)>>s) | (x)<<(64-s))
  356. # endif
  357. # define Sigma0(x) (ROTR((x),28) ^ ROTR((x),34) ^ ROTR((x),39))
  358. # define Sigma1(x) (ROTR((x),14) ^ ROTR((x),18) ^ ROTR((x),41))
  359. # define sigma0(x) (ROTR((x),1) ^ ROTR((x),8) ^ ((x)>>7))
  360. # define sigma1(x) (ROTR((x),19) ^ ROTR((x),61) ^ ((x)>>6))
  361. # define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
  362. # define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
  363. # if defined(__i386) || defined(__i386__) || defined(_M_IX86)
  364. /*
  365. * This code should give better results on 32-bit CPU with less than
  366. * ~24 registers, both size and performance wise...
  367. */ static void sha512_block_data_order(SHA512_CTX *ctx, const void *in,
  368. size_t num)
  369. {
  370. const SHA_LONG64 *W = in;
  371. SHA_LONG64 A, E, T;
  372. SHA_LONG64 X[9 + 80], *F;
  373. int i;
  374. while (num--) {
  375. F = X + 80;
  376. A = ctx->h[0];
  377. F[1] = ctx->h[1];
  378. F[2] = ctx->h[2];
  379. F[3] = ctx->h[3];
  380. E = ctx->h[4];
  381. F[5] = ctx->h[5];
  382. F[6] = ctx->h[6];
  383. F[7] = ctx->h[7];
  384. for (i = 0; i < 16; i++, F--) {
  385. # ifdef B_ENDIAN
  386. T = W[i];
  387. # else
  388. T = PULL64(W[i]);
  389. # endif
  390. F[0] = A;
  391. F[4] = E;
  392. F[8] = T;
  393. T += F[7] + Sigma1(E) + Ch(E, F[5], F[6]) + K512[i];
  394. E = F[3] + T;
  395. A = T + Sigma0(A) + Maj(A, F[1], F[2]);
  396. }
  397. for (; i < 80; i++, F--) {
  398. T = sigma0(F[8 + 16 - 1]);
  399. T += sigma1(F[8 + 16 - 14]);
  400. T += F[8 + 16] + F[8 + 16 - 9];
  401. F[0] = A;
  402. F[4] = E;
  403. F[8] = T;
  404. T += F[7] + Sigma1(E) + Ch(E, F[5], F[6]) + K512[i];
  405. E = F[3] + T;
  406. A = T + Sigma0(A) + Maj(A, F[1], F[2]);
  407. }
  408. ctx->h[0] += A;
  409. ctx->h[1] += F[1];
  410. ctx->h[2] += F[2];
  411. ctx->h[3] += F[3];
  412. ctx->h[4] += E;
  413. ctx->h[5] += F[5];
  414. ctx->h[6] += F[6];
  415. ctx->h[7] += F[7];
  416. W += SHA_LBLOCK;
  417. }
  418. }
  419. # elif defined(OPENSSL_SMALL_FOOTPRINT)
  420. static void sha512_block_data_order(SHA512_CTX *ctx, const void *in,
  421. size_t num)
  422. {
  423. const SHA_LONG64 *W = in;
  424. SHA_LONG64 a, b, c, d, e, f, g, h, s0, s1, T1, T2;
  425. SHA_LONG64 X[16];
  426. int i;
  427. while (num--) {
  428. a = ctx->h[0];
  429. b = ctx->h[1];
  430. c = ctx->h[2];
  431. d = ctx->h[3];
  432. e = ctx->h[4];
  433. f = ctx->h[5];
  434. g = ctx->h[6];
  435. h = ctx->h[7];
  436. for (i = 0; i < 16; i++) {
  437. # ifdef B_ENDIAN
  438. T1 = X[i] = W[i];
  439. # else
  440. T1 = X[i] = PULL64(W[i]);
  441. # endif
  442. T1 += h + Sigma1(e) + Ch(e, f, g) + K512[i];
  443. T2 = Sigma0(a) + Maj(a, b, c);
  444. h = g;
  445. g = f;
  446. f = e;
  447. e = d + T1;
  448. d = c;
  449. c = b;
  450. b = a;
  451. a = T1 + T2;
  452. }
  453. for (; i < 80; i++) {
  454. s0 = X[(i + 1) & 0x0f];
  455. s0 = sigma0(s0);
  456. s1 = X[(i + 14) & 0x0f];
  457. s1 = sigma1(s1);
  458. T1 = X[i & 0xf] += s0 + s1 + X[(i + 9) & 0xf];
  459. T1 += h + Sigma1(e) + Ch(e, f, g) + K512[i];
  460. T2 = Sigma0(a) + Maj(a, b, c);
  461. h = g;
  462. g = f;
  463. f = e;
  464. e = d + T1;
  465. d = c;
  466. c = b;
  467. b = a;
  468. a = T1 + T2;
  469. }
  470. ctx->h[0] += a;
  471. ctx->h[1] += b;
  472. ctx->h[2] += c;
  473. ctx->h[3] += d;
  474. ctx->h[4] += e;
  475. ctx->h[5] += f;
  476. ctx->h[6] += g;
  477. ctx->h[7] += h;
  478. W += SHA_LBLOCK;
  479. }
  480. }
  481. # else
  482. # define ROUND_00_15(i,a,b,c,d,e,f,g,h) do { \
  483. T1 += h + Sigma1(e) + Ch(e,f,g) + K512[i]; \
  484. h = Sigma0(a) + Maj(a,b,c); \
  485. d += T1; h += T1; } while (0)
  486. # define ROUND_16_80(i,j,a,b,c,d,e,f,g,h,X) do { \
  487. s0 = X[(j+1)&0x0f]; s0 = sigma0(s0); \
  488. s1 = X[(j+14)&0x0f]; s1 = sigma1(s1); \
  489. T1 = X[(j)&0x0f] += s0 + s1 + X[(j+9)&0x0f]; \
  490. ROUND_00_15(i+j,a,b,c,d,e,f,g,h); } while (0)
  491. static void sha512_block_data_order(SHA512_CTX *ctx, const void *in,
  492. size_t num)
  493. {
  494. const SHA_LONG64 *W = in;
  495. SHA_LONG64 a, b, c, d, e, f, g, h, s0, s1, T1;
  496. SHA_LONG64 X[16];
  497. int i;
  498. while (num--) {
  499. a = ctx->h[0];
  500. b = ctx->h[1];
  501. c = ctx->h[2];
  502. d = ctx->h[3];
  503. e = ctx->h[4];
  504. f = ctx->h[5];
  505. g = ctx->h[6];
  506. h = ctx->h[7];
  507. # ifdef B_ENDIAN
  508. T1 = X[0] = W[0];
  509. ROUND_00_15(0, a, b, c, d, e, f, g, h);
  510. T1 = X[1] = W[1];
  511. ROUND_00_15(1, h, a, b, c, d, e, f, g);
  512. T1 = X[2] = W[2];
  513. ROUND_00_15(2, g, h, a, b, c, d, e, f);
  514. T1 = X[3] = W[3];
  515. ROUND_00_15(3, f, g, h, a, b, c, d, e);
  516. T1 = X[4] = W[4];
  517. ROUND_00_15(4, e, f, g, h, a, b, c, d);
  518. T1 = X[5] = W[5];
  519. ROUND_00_15(5, d, e, f, g, h, a, b, c);
  520. T1 = X[6] = W[6];
  521. ROUND_00_15(6, c, d, e, f, g, h, a, b);
  522. T1 = X[7] = W[7];
  523. ROUND_00_15(7, b, c, d, e, f, g, h, a);
  524. T1 = X[8] = W[8];
  525. ROUND_00_15(8, a, b, c, d, e, f, g, h);
  526. T1 = X[9] = W[9];
  527. ROUND_00_15(9, h, a, b, c, d, e, f, g);
  528. T1 = X[10] = W[10];
  529. ROUND_00_15(10, g, h, a, b, c, d, e, f);
  530. T1 = X[11] = W[11];
  531. ROUND_00_15(11, f, g, h, a, b, c, d, e);
  532. T1 = X[12] = W[12];
  533. ROUND_00_15(12, e, f, g, h, a, b, c, d);
  534. T1 = X[13] = W[13];
  535. ROUND_00_15(13, d, e, f, g, h, a, b, c);
  536. T1 = X[14] = W[14];
  537. ROUND_00_15(14, c, d, e, f, g, h, a, b);
  538. T1 = X[15] = W[15];
  539. ROUND_00_15(15, b, c, d, e, f, g, h, a);
  540. # else
  541. T1 = X[0] = PULL64(W[0]);
  542. ROUND_00_15(0, a, b, c, d, e, f, g, h);
  543. T1 = X[1] = PULL64(W[1]);
  544. ROUND_00_15(1, h, a, b, c, d, e, f, g);
  545. T1 = X[2] = PULL64(W[2]);
  546. ROUND_00_15(2, g, h, a, b, c, d, e, f);
  547. T1 = X[3] = PULL64(W[3]);
  548. ROUND_00_15(3, f, g, h, a, b, c, d, e);
  549. T1 = X[4] = PULL64(W[4]);
  550. ROUND_00_15(4, e, f, g, h, a, b, c, d);
  551. T1 = X[5] = PULL64(W[5]);
  552. ROUND_00_15(5, d, e, f, g, h, a, b, c);
  553. T1 = X[6] = PULL64(W[6]);
  554. ROUND_00_15(6, c, d, e, f, g, h, a, b);
  555. T1 = X[7] = PULL64(W[7]);
  556. ROUND_00_15(7, b, c, d, e, f, g, h, a);
  557. T1 = X[8] = PULL64(W[8]);
  558. ROUND_00_15(8, a, b, c, d, e, f, g, h);
  559. T1 = X[9] = PULL64(W[9]);
  560. ROUND_00_15(9, h, a, b, c, d, e, f, g);
  561. T1 = X[10] = PULL64(W[10]);
  562. ROUND_00_15(10, g, h, a, b, c, d, e, f);
  563. T1 = X[11] = PULL64(W[11]);
  564. ROUND_00_15(11, f, g, h, a, b, c, d, e);
  565. T1 = X[12] = PULL64(W[12]);
  566. ROUND_00_15(12, e, f, g, h, a, b, c, d);
  567. T1 = X[13] = PULL64(W[13]);
  568. ROUND_00_15(13, d, e, f, g, h, a, b, c);
  569. T1 = X[14] = PULL64(W[14]);
  570. ROUND_00_15(14, c, d, e, f, g, h, a, b);
  571. T1 = X[15] = PULL64(W[15]);
  572. ROUND_00_15(15, b, c, d, e, f, g, h, a);
  573. # endif
  574. for (i = 16; i < 80; i += 16) {
  575. ROUND_16_80(i, 0, a, b, c, d, e, f, g, h, X);
  576. ROUND_16_80(i, 1, h, a, b, c, d, e, f, g, X);
  577. ROUND_16_80(i, 2, g, h, a, b, c, d, e, f, X);
  578. ROUND_16_80(i, 3, f, g, h, a, b, c, d, e, X);
  579. ROUND_16_80(i, 4, e, f, g, h, a, b, c, d, X);
  580. ROUND_16_80(i, 5, d, e, f, g, h, a, b, c, X);
  581. ROUND_16_80(i, 6, c, d, e, f, g, h, a, b, X);
  582. ROUND_16_80(i, 7, b, c, d, e, f, g, h, a, X);
  583. ROUND_16_80(i, 8, a, b, c, d, e, f, g, h, X);
  584. ROUND_16_80(i, 9, h, a, b, c, d, e, f, g, X);
  585. ROUND_16_80(i, 10, g, h, a, b, c, d, e, f, X);
  586. ROUND_16_80(i, 11, f, g, h, a, b, c, d, e, X);
  587. ROUND_16_80(i, 12, e, f, g, h, a, b, c, d, X);
  588. ROUND_16_80(i, 13, d, e, f, g, h, a, b, c, X);
  589. ROUND_16_80(i, 14, c, d, e, f, g, h, a, b, X);
  590. ROUND_16_80(i, 15, b, c, d, e, f, g, h, a, X);
  591. }
  592. ctx->h[0] += a;
  593. ctx->h[1] += b;
  594. ctx->h[2] += c;
  595. ctx->h[3] += d;
  596. ctx->h[4] += e;
  597. ctx->h[5] += f;
  598. ctx->h[6] += g;
  599. ctx->h[7] += h;
  600. W += SHA_LBLOCK;
  601. }
  602. }
  603. # endif
  604. # endif /* SHA512_ASM */
  605. #else /* !OPENSSL_NO_SHA512 */
  606. # if defined(PEDANTIC) || defined(__DECC) || defined(OPENSSL_SYS_MACOSX)
  607. static void *dummy = &dummy;
  608. # endif
  609. #endif /* !OPENSSL_NO_SHA512 */