| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913 | 
							- /*
 
-  * sshaes.c - implementation of AES
 
-  */
 
- #include <assert.h>
 
- #include <stdlib.h>
 
- #include "ssh.h"
 
- #include "mpint_i.h"               /* we reuse the BignumInt system */
 
- /*
 
-  * Start by deciding whether we can support hardware AES at all.
 
-  */
 
- #define HW_AES_NONE 0
 
- #define HW_AES_NI 1
 
- #define HW_AES_NEON 2
 
- #ifdef _FORCE_AES_NI
 
- #   define HW_AES HW_AES_NI
 
- #elif defined(__clang__)
 
- #   if __has_attribute(target) && __has_include(<wmmintrin.h>) &&       \
 
-     (defined(__x86_64__) || defined(__i386))
 
- #       define HW_AES HW_AES_NI
 
- #   endif
 
- #elif defined(__GNUC__)
 
- #    if (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 4)) && \
 
-     (defined(__x86_64__) || defined(__i386))
 
- #       define HW_AES HW_AES_NI
 
- #    endif
 
- #elif defined (_MSC_VER)
 
- #   if (defined(_M_X64) || defined(_M_IX86)) && _MSC_FULL_VER >= 150030729
 
- #      define HW_AES HW_AES_NI
 
- #   endif
 
- #endif
 
- #ifdef _FORCE_AES_NEON
 
- #   define HW_AES HW_AES_NEON
 
- #elif defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
 
-     /* Arm can potentially support both endiannesses, but this code
 
-      * hasn't been tested on anything but little. If anyone wants to
 
-      * run big-endian, they'll need to fix it first. */
 
- #elif defined __ARM_FEATURE_CRYPTO
 
-     /* If the Arm crypto extension is available already, we can
 
-      * support NEON AES without having to enable anything by hand */
 
- #   define HW_AES HW_AES_NEON
 
- #elif defined(__clang__)
 
- #   if __has_attribute(target) && __has_include(<arm_neon.h>) &&       \
 
-     (defined(__aarch64__))
 
-         /* clang can enable the crypto extension in AArch64 using
 
-          * __attribute__((target)) */
 
- #       define HW_AES HW_AES_NEON
 
- #       define USE_CLANG_ATTR_TARGET_AARCH64
 
- #   endif
 
- #elif defined _MSC_VER
 
- #   if defined _M_ARM64
 
- #       define HW_AES HW_AES_NEON
 
-         /* 64-bit Visual Studio uses the header <arm64_neon.h> in place
 
-          * of the standard <arm_neon.h> */
 
- #       define USE_ARM64_NEON_H
 
- #   elif defined _M_ARM
 
- #       define HW_AES HW_AES_NEON
 
-         /* 32-bit Visual Studio uses the right header name, but requires
 
-          * this #define to enable a set of intrinsic definitions that
 
-          * do not omit one of the parameters for vaes[ed]q_u8 */
 
- #       define _ARM_USE_NEW_NEON_INTRINSICS
 
- #   endif
 
- #endif
 
- #if defined _FORCE_SOFTWARE_AES || !defined HW_AES
 
- #   undef HW_AES
 
- #   define HW_AES HW_AES_NONE
 
- #endif
 
- #if HW_AES == HW_AES_NI
 
- #define HW_NAME_SUFFIX " (AES-NI accelerated)"
 
- #elif HW_AES == HW_AES_NEON
 
- #define HW_NAME_SUFFIX " (NEON accelerated)"
 
- #else
 
- #define HW_NAME_SUFFIX " (!NONEXISTENT ACCELERATED VERSION!)"
 
- #endif
 
- /*
 
-  * Vtable collection for AES. For each SSH-level cipher id (i.e.
 
-  * combination of key length and cipher mode), we provide three
 
-  * vtables: one for the pure software implementation, one using
 
-  * hardware acceleration (if available), and a top-level one which is
 
-  * never actually instantiated, and only contains a new() method whose
 
-  * job is to decide which of the other two to return an actual
 
-  * instance of.
 
-  */
 
- static ssh_cipher *aes_select(const ssh_cipheralg *alg);
 
- static ssh_cipher *aes_sw_new(const ssh_cipheralg *alg);
 
- static void aes_sw_free(ssh_cipher *);
 
- static void aes_sw_setiv_cbc(ssh_cipher *, const void *iv);
 
- static void aes_sw_setiv_sdctr(ssh_cipher *, const void *iv);
 
- static void aes_sw_setkey(ssh_cipher *, const void *key);
 
- static ssh_cipher *aes_hw_new(const ssh_cipheralg *alg);
 
- static void aes_hw_free(ssh_cipher *);
 
- static void aes_hw_setiv_cbc(ssh_cipher *, const void *iv);
 
- static void aes_hw_setiv_sdctr(ssh_cipher *, const void *iv);
 
- static void aes_hw_setkey(ssh_cipher *, const void *key);
 
- struct aes_extra {
 
-     const ssh_cipheralg *sw, *hw;
 
- };
 
- #define VTABLES_INNER(cid, pid, bits, name, encsuffix,                  \
 
-                       decsuffix, setivsuffix, flagsval)                 \
 
-     static void cid##_sw##encsuffix(ssh_cipher *, void *blk, int len);  \
 
-     static void cid##_sw##decsuffix(ssh_cipher *, void *blk, int len);  \
 
-     const ssh_cipheralg ssh_##cid##_sw = {                              \
 
-         .new = aes_sw_new,                                              \
 
-         .free = aes_sw_free,                                            \
 
-         .setiv = aes_sw_##setivsuffix,                                  \
 
-         .setkey = aes_sw_setkey,                                        \
 
-         .encrypt = cid##_sw##encsuffix,                                 \
 
-         .decrypt = cid##_sw##decsuffix,                                 \
 
-         .ssh2_id = pid,                                                 \
 
-         .blksize = 16,                                                  \
 
-         .real_keybits = bits,                                           \
 
-         .padded_keybytes = bits/8,                                      \
 
-         .flags = flagsval,                                              \
 
-         .text_name = name " (unaccelerated)",                           \
 
-     };                                                                  \
 
-                                                                         \
 
-     static void cid##_hw##encsuffix(ssh_cipher *, void *blk, int len);  \
 
-     static void cid##_hw##decsuffix(ssh_cipher *, void *blk, int len);  \
 
-     const ssh_cipheralg ssh_##cid##_hw = {                              \
 
-         .new = aes_hw_new,                                              \
 
-         .free = aes_hw_free,                                            \
 
-         .setiv = aes_hw_##setivsuffix,                                  \
 
-         .setkey = aes_hw_setkey,                                        \
 
-         .encrypt = cid##_hw##encsuffix,                                 \
 
-         .decrypt = cid##_hw##decsuffix,                                 \
 
-         .ssh2_id = pid,                                                 \
 
-         .blksize = 16,                                                  \
 
-         .real_keybits = bits,                                           \
 
-         .padded_keybytes = bits/8,                                      \
 
-         .flags = flagsval,                                              \
 
-         .text_name = name HW_NAME_SUFFIX,                               \
 
-     };                                                                  \
 
-                                                                         \
 
-     static const struct aes_extra extra_##cid = {                       \
 
-         &ssh_##cid##_sw, &ssh_##cid##_hw };                             \
 
-                                                                         \
 
-     const ssh_cipheralg ssh_##cid = {                                   \
 
-         .new = aes_select,                                              \
 
-         .ssh2_id = pid,                                                 \
 
-         .blksize = 16,                                                  \
 
-         .real_keybits = bits,                                           \
 
-         .padded_keybytes = bits/8,                                      \
 
-         .flags = flagsval,                                              \
 
-         .text_name = name " (dummy selector vtable)",                   \
 
-         .extra = &extra_##cid                                           \
 
-     };                                                                  \
 
- #define VTABLES(keylen)                                                 \
 
-     VTABLES_INNER(aes ## keylen ## _cbc, "aes" #keylen "-cbc",          \
 
-                   keylen, "AES-" #keylen " CBC", _encrypt, _decrypt,    \
 
-                   setiv_cbc, SSH_CIPHER_IS_CBC)                         \
 
-     VTABLES_INNER(aes ## keylen ## _sdctr, "aes" #keylen "-ctr",        \
 
-                   keylen, "AES-" #keylen " SDCTR",,, setiv_sdctr, 0)
 
- VTABLES(128)
 
- VTABLES(192)
 
- VTABLES(256)
 
- static const ssh_cipheralg ssh_rijndael_lysator = {
 
-     /* Same as aes256_cbc, but with a different protocol ID */
 
-     .new = aes_select,
 
-     .ssh2_id = "[email protected]",
 
-     .blksize = 16,
 
-     .real_keybits = 256,
 
-     .padded_keybytes = 256/8,
 
-     .flags = 0,
 
-     .text_name = "AES-256 CBC (dummy selector vtable)",
 
-     .extra = &extra_aes256_cbc,
 
- };
 
- static const ssh_cipheralg *const aes_list[] = {
 
-     &ssh_aes256_sdctr,
 
-     &ssh_aes256_cbc,
 
-     &ssh_rijndael_lysator,
 
-     &ssh_aes192_sdctr,
 
-     &ssh_aes192_cbc,
 
-     &ssh_aes128_sdctr,
 
-     &ssh_aes128_cbc,
 
- };
 
- const ssh2_ciphers ssh2_aes = { lenof(aes_list), aes_list };
 
- /*
 
-  * The actual query function that asks if hardware acceleration is
 
-  * available.
 
-  */
 
- static bool aes_hw_available(void);
 
- /*
 
-  * The top-level selection function, caching the results of
 
-  * aes_hw_available() so it only has to run once.
 
-  */
 
- static bool aes_hw_available_cached(void)
 
- {
 
-     static bool initialised = false;
 
-     static bool hw_available;
 
-     if (!initialised) {
 
-         hw_available = aes_hw_available();
 
-         initialised = true;
 
-     }
 
-     return hw_available;
 
- }
 
- static ssh_cipher *aes_select(const ssh_cipheralg *alg)
 
- {
 
-     const struct aes_extra *extra = (const struct aes_extra *)alg->extra;
 
-     const ssh_cipheralg *real_alg =
 
-         aes_hw_available_cached() ? extra->hw : extra->sw;
 
-     return ssh_cipher_new(real_alg);
 
- }
 
- /* ----------------------------------------------------------------------
 
-  * Definitions likely to be helpful to multiple implementations.
 
-  */
 
- #define REP2(x) x x
 
- #define REP4(x) REP2(REP2(x))
 
- #define REP8(x) REP2(REP4(x))
 
- #define REP9(x) REP8(x) x
 
- #define REP11(x) REP8(x) REP2(x) x
 
- #define REP13(x) REP8(x) REP4(x) x
 
- static const uint8_t key_setup_round_constants[] = {
 
-     /* The first few powers of X in GF(2^8), used during key setup.
 
-      * This can safely be a lookup table without side channel risks,
 
-      * because key setup iterates through it once in a standard way
 
-      * regardless of the key. */
 
-     0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36,
 
- };
 
- #define MAXROUNDKEYS 15
 
- /* ----------------------------------------------------------------------
 
-  * Software implementation of AES.
 
-  *
 
-  * This implementation uses a bit-sliced representation. Instead of
 
-  * the obvious approach of storing the cipher state so that each byte
 
-  * (or field element, or entry in the cipher matrix) occupies 8
 
-  * contiguous bits in a machine integer somewhere, we organise the
 
-  * cipher state as an array of 8 integers, in such a way that each
 
-  * logical byte of the cipher state occupies one bit in each integer,
 
-  * all at the same position. This allows us to do parallel logic on
 
-  * all bytes of the state by doing bitwise operations between the 8
 
-  * integers; in particular, the S-box (SubBytes) lookup is done this
 
-  * way, which takes about 110 operations - but for those 110 bitwise
 
-  * ops you get 64 S-box lookups, not just one.
 
-  */
 
- #define SLICE_PARALLELISM (BIGNUM_INT_BYTES / 2)
 
- #ifdef BITSLICED_DEBUG
 
- /* Dump function that undoes the bitslicing transform, so you can see
 
-  * the logical data represented by a set of slice words. */
 
- static inline void dumpslices_uint16_t(
 
-     const char *prefix, const uint16_t slices[8])
 
- {
 
-     printf("%-30s", prefix);
 
-     for (unsigned byte = 0; byte < 16; byte++) {
 
-         unsigned byteval = 0;
 
-         for (unsigned bit = 0; bit < 8; bit++)
 
-             byteval |= (1 & (slices[bit] >> byte)) << bit;
 
-         printf("%02x", byteval);
 
-     }
 
-     printf("\n");
 
- }
 
- static inline void dumpslices_BignumInt(
 
-     const char *prefix, const BignumInt slices[8])
 
- {
 
-     printf("%-30s", prefix);
 
-     for (unsigned iter = 0; iter < SLICE_PARALLELISM; iter++) {
 
-         for (unsigned byte = 0; byte < 16; byte++) {
 
-             unsigned byteval = 0;
 
-             for (unsigned bit = 0; bit < 8; bit++)
 
-                 byteval |= (1 & (slices[bit] >> (iter*16+byte))) << bit;
 
-             printf("%02x", byteval);
 
-         }
 
-         if (iter+1 < SLICE_PARALLELISM)
 
-             printf(" ");
 
-     }
 
-     printf("\n");
 
- }
 
- #else
 
- #define dumpslices_uintN_t(prefix, slices) ((void)0)
 
- #define dumpslices_BignumInt(prefix, slices) ((void)0)
 
- #endif
 
- /* -----
 
-  * Bit-slicing transformation: convert between an array of 16 uint8_t
 
-  * and an array of 8 uint16_t, so as to interchange the bit index
 
-  * within each element and the element index within the array. (That
 
-  * is, bit j of input[i] == bit i of output[j].
 
-  */
 
- #define SWAPWORDS(shift) do                                     \
 
-     {                                                           \
 
-         uint64_t mask = ~(uint64_t)0 / ((1ULL << shift) + 1);   \
 
-         uint64_t diff = ((i0 >> shift) ^ i1) & mask;            \
 
-         i0 ^= diff << shift;                                    \
 
-         i1 ^= diff;                                             \
 
-     } while (0)
 
- #define SWAPINWORD(i, bigshift, smallshift) do                  \
 
-     {                                                           \
 
-         uint64_t mask = ~(uint64_t)0;                           \
 
-         mask /= ((1ULL << bigshift) + 1);                       \
 
-         mask /= ((1ULL << smallshift) + 1);                     \
 
-         mask <<= smallshift;                                    \
 
-         unsigned shift = bigshift - smallshift;                 \
 
-         uint64_t diff = ((i >> shift) ^ i) & mask;              \
 
-         i ^= diff ^ (diff << shift);                            \
 
-     } while (0)
 
- #define TO_BITSLICES(slices, bytes, uintN_t, assign_op, shift) do       \
 
-     {                                                                   \
 
-         uint64_t i0 = GET_64BIT_LSB_FIRST(bytes);                       \
 
-         uint64_t i1 = GET_64BIT_LSB_FIRST(bytes + 8);                   \
 
-         SWAPINWORD(i0, 8, 1);                                           \
 
-         SWAPINWORD(i1, 8, 1);                                           \
 
-         SWAPINWORD(i0, 16, 2);                                          \
 
-         SWAPINWORD(i1, 16, 2);                                          \
 
-         SWAPINWORD(i0, 32, 4);                                          \
 
-         SWAPINWORD(i1, 32, 4);                                          \
 
-         SWAPWORDS(8);                                                   \
 
-         slices[0] assign_op (uintN_t)((i0 >>  0) & 0xFFFF) << (shift);  \
 
-         slices[2] assign_op (uintN_t)((i0 >> 16) & 0xFFFF) << (shift);  \
 
-         slices[4] assign_op (uintN_t)((i0 >> 32) & 0xFFFF) << (shift);  \
 
-         slices[6] assign_op (uintN_t)((i0 >> 48) & 0xFFFF) << (shift);  \
 
-         slices[1] assign_op (uintN_t)((i1 >>  0) & 0xFFFF) << (shift);  \
 
-         slices[3] assign_op (uintN_t)((i1 >> 16) & 0xFFFF) << (shift);  \
 
-         slices[5] assign_op (uintN_t)((i1 >> 32) & 0xFFFF) << (shift);  \
 
-         slices[7] assign_op (uintN_t)((i1 >> 48) & 0xFFFF) << (shift);  \
 
-     } while (0)
 
- #define FROM_BITSLICES(bytes, slices, shift) do                 \
 
-     {                                                           \
 
-         uint64_t i1 = ((slices[7] >> (shift)) & 0xFFFF);        \
 
-         i1 = (i1 << 16) | ((slices[5] >> (shift)) & 0xFFFF);    \
 
-         i1 = (i1 << 16) | ((slices[3] >> (shift)) & 0xFFFF);    \
 
-         i1 = (i1 << 16) | ((slices[1] >> (shift)) & 0xFFFF);    \
 
-         uint64_t i0 = ((slices[6] >> (shift)) & 0xFFFF);        \
 
-         i0 = (i0 << 16) | ((slices[4] >> (shift)) & 0xFFFF);    \
 
-         i0 = (i0 << 16) | ((slices[2] >> (shift)) & 0xFFFF);    \
 
-         i0 = (i0 << 16) | ((slices[0] >> (shift)) & 0xFFFF);    \
 
-         SWAPWORDS(8);                                           \
 
-         SWAPINWORD(i0, 32, 4);                                  \
 
-         SWAPINWORD(i1, 32, 4);                                  \
 
-         SWAPINWORD(i0, 16, 2);                                  \
 
-         SWAPINWORD(i1, 16, 2);                                  \
 
-         SWAPINWORD(i0, 8, 1);                                   \
 
-         SWAPINWORD(i1, 8, 1);                                   \
 
-         PUT_64BIT_LSB_FIRST(bytes, i0);                         \
 
-         PUT_64BIT_LSB_FIRST((bytes) + 8, i1);                   \
 
-     } while (0)
 
- /* -----
 
-  * Some macros that will be useful repeatedly.
 
-  */
 
- /* Iterate a unary transformation over all 8 slices. */
 
- #define ITERATE(MACRO, output, input, uintN_t) do       \
 
-     {                                                   \
 
-         MACRO(output[0], input[0], uintN_t);            \
 
-         MACRO(output[1], input[1], uintN_t);            \
 
-         MACRO(output[2], input[2], uintN_t);            \
 
-         MACRO(output[3], input[3], uintN_t);            \
 
-         MACRO(output[4], input[4], uintN_t);            \
 
-         MACRO(output[5], input[5], uintN_t);            \
 
-         MACRO(output[6], input[6], uintN_t);            \
 
-         MACRO(output[7], input[7], uintN_t);            \
 
-     } while (0)
 
- /* Simply add (i.e. XOR) two whole sets of slices together. */
 
- #define BITSLICED_ADD(output, lhs, rhs) do      \
 
-     {                                           \
 
-         output[0] = lhs[0] ^ rhs[0];            \
 
-         output[1] = lhs[1] ^ rhs[1];            \
 
-         output[2] = lhs[2] ^ rhs[2];            \
 
-         output[3] = lhs[3] ^ rhs[3];            \
 
-         output[4] = lhs[4] ^ rhs[4];            \
 
-         output[5] = lhs[5] ^ rhs[5];            \
 
-         output[6] = lhs[6] ^ rhs[6];            \
 
-         output[7] = lhs[7] ^ rhs[7];            \
 
-     } while (0)
 
- /* -----
 
-  * The AES S-box, in pure bitwise logic so that it can be run in
 
-  * parallel on whole words full of bit-sliced field elements.
 
-  *
 
-  * Source: 'A new combinational logic minimization technique with
 
-  * applications to cryptology', https://eprint.iacr.org/2009/191
 
-  *
 
-  * As a minor speed optimisation, I use a modified version of the
 
-  * S-box which omits the additive constant 0x63, i.e. this S-box
 
-  * consists of only the field inversion and linear map components.
 
-  * Instead, the addition of the constant is deferred until after the
 
-  * subsequent ShiftRows and MixColumns stages, so that it happens at
 
-  * the same time as adding the next round key - and then we just make
 
-  * it _part_ of the round key, so it doesn't cost any extra
 
-  * instructions to add.
 
-  *
 
-  * (Obviously adding a constant to each byte commutes with ShiftRows,
 
-  * which only permutes the bytes. It also commutes with MixColumns:
 
-  * that's not quite so obvious, but since the effect of MixColumns is
 
-  * to multiply a constant polynomial M into each column, it is obvious
 
-  * that adding some polynomial K and then multiplying by M is
 
-  * equivalent to multiplying by M and then adding the product KM. And
 
-  * in fact, since the coefficients of M happen to sum to 1, it turns
 
-  * out that KM = K, so we don't even have to change the constant when
 
-  * we move it to the far side of MixColumns.)
 
-  *
 
-  * Of course, one knock-on effect of this is that the use of the S-box
 
-  * *during* key setup has to be corrected by manually adding on the
 
-  * constant afterwards!
 
-  */
 
- /* Initial linear transformation for the forward S-box, from Fig 2 of
 
-  * the paper. */
 
- #define SBOX_FORWARD_TOP_TRANSFORM(input, uintN_t)      \
 
-         uintN_t y14 = input[4] ^ input[2];              \
 
-         uintN_t y13 = input[7] ^ input[1];              \
 
-         uintN_t y9 = input[7] ^ input[4];               \
 
-         uintN_t y8 = input[7] ^ input[2];               \
 
-         uintN_t t0 = input[6] ^ input[5];               \
 
-         uintN_t y1 = t0 ^ input[0];                     \
 
-         uintN_t y4 = y1 ^ input[4];                     \
 
-         uintN_t y12 = y13 ^ y14;                        \
 
-         uintN_t y2 = y1 ^ input[7];                     \
 
-         uintN_t y5 = y1 ^ input[1];                     \
 
-         uintN_t y3 = y5 ^ y8;                           \
 
-         uintN_t t1 = input[3] ^ y12;                    \
 
-         uintN_t y15 = t1 ^ input[2];                    \
 
-         uintN_t y20 = t1 ^ input[6];                    \
 
-         uintN_t y6 = y15 ^ input[0];                    \
 
-         uintN_t y10 = y15 ^ t0;                         \
 
-         uintN_t y11 = y20 ^ y9;                         \
 
-         uintN_t y7 = input[0] ^ y11;                    \
 
-         uintN_t y17 = y10 ^ y11;                        \
 
-         uintN_t y19 = y10 ^ y8;                         \
 
-         uintN_t y16 = t0 ^ y11;                         \
 
-         uintN_t y21 = y13 ^ y16;                        \
 
-         uintN_t y18 = input[7] ^ y16;                   \
 
-         /* Make a copy of input[0] under a new name, because the core
 
-          * will refer to it, and in the inverse version of the S-box
 
-          * the corresponding value will be one of the calculated ones
 
-          * and not in input[0] itself. */               \
 
-         uintN_t i0 = input[0];                          \
 
-         /* end */
 
- /* Core nonlinear component, from Fig 3 of the paper. */
 
- #define SBOX_CORE(uintN_t)                              \
 
-         uintN_t t2 = y12 & y15;                         \
 
-         uintN_t t3 = y3 & y6;                           \
 
-         uintN_t t4 = t3 ^ t2;                           \
 
-         uintN_t t5 = y4 & i0;                           \
 
-         uintN_t t6 = t5 ^ t2;                           \
 
-         uintN_t t7 = y13 & y16;                         \
 
-         uintN_t t8 = y5 & y1;                           \
 
-         uintN_t t9 = t8 ^ t7;                           \
 
-         uintN_t t10 = y2 & y7;                          \
 
-         uintN_t t11 = t10 ^ t7;                         \
 
-         uintN_t t12 = y9 & y11;                         \
 
-         uintN_t t13 = y14 & y17;                        \
 
-         uintN_t t14 = t13 ^ t12;                        \
 
-         uintN_t t15 = y8 & y10;                         \
 
-         uintN_t t16 = t15 ^ t12;                        \
 
-         uintN_t t17 = t4 ^ t14;                         \
 
-         uintN_t t18 = t6 ^ t16;                         \
 
-         uintN_t t19 = t9 ^ t14;                         \
 
-         uintN_t t20 = t11 ^ t16;                        \
 
-         uintN_t t21 = t17 ^ y20;                        \
 
-         uintN_t t22 = t18 ^ y19;                        \
 
-         uintN_t t23 = t19 ^ y21;                        \
 
-         uintN_t t24 = t20 ^ y18;                        \
 
-         uintN_t t25 = t21 ^ t22;                        \
 
-         uintN_t t26 = t21 & t23;                        \
 
-         uintN_t t27 = t24 ^ t26;                        \
 
-         uintN_t t28 = t25 & t27;                        \
 
-         uintN_t t29 = t28 ^ t22;                        \
 
-         uintN_t t30 = t23 ^ t24;                        \
 
-         uintN_t t31 = t22 ^ t26;                        \
 
-         uintN_t t32 = t31 & t30;                        \
 
-         uintN_t t33 = t32 ^ t24;                        \
 
-         uintN_t t34 = t23 ^ t33;                        \
 
-         uintN_t t35 = t27 ^ t33;                        \
 
-         uintN_t t36 = t24 & t35;                        \
 
-         uintN_t t37 = t36 ^ t34;                        \
 
-         uintN_t t38 = t27 ^ t36;                        \
 
-         uintN_t t39 = t29 & t38;                        \
 
-         uintN_t t40 = t25 ^ t39;                        \
 
-         uintN_t t41 = t40 ^ t37;                        \
 
-         uintN_t t42 = t29 ^ t33;                        \
 
-         uintN_t t43 = t29 ^ t40;                        \
 
-         uintN_t t44 = t33 ^ t37;                        \
 
-         uintN_t t45 = t42 ^ t41;                        \
 
-         uintN_t z0 = t44 & y15;                         \
 
-         uintN_t z1 = t37 & y6;                          \
 
-         uintN_t z2 = t33 & i0;                          \
 
-         uintN_t z3 = t43 & y16;                         \
 
-         uintN_t z4 = t40 & y1;                          \
 
-         uintN_t z5 = t29 & y7;                          \
 
-         uintN_t z6 = t42 & y11;                         \
 
-         uintN_t z7 = t45 & y17;                         \
 
-         uintN_t z8 = t41 & y10;                         \
 
-         uintN_t z9 = t44 & y12;                         \
 
-         uintN_t z10 = t37 & y3;                         \
 
-         uintN_t z11 = t33 & y4;                         \
 
-         uintN_t z12 = t43 & y13;                        \
 
-         uintN_t z13 = t40 & y5;                         \
 
-         uintN_t z14 = t29 & y2;                         \
 
-         uintN_t z15 = t42 & y9;                         \
 
-         uintN_t z16 = t45 & y14;                        \
 
-         uintN_t z17 = t41 & y8;                         \
 
-         /* end */
 
- /* Final linear transformation for the forward S-box, from Fig 4 of
 
-  * the paper. */
 
- #define SBOX_FORWARD_BOTTOM_TRANSFORM(output, uintN_t)   \
 
-         uintN_t t46 = z15 ^ z16;                        \
 
-         uintN_t t47 = z10 ^ z11;                        \
 
-         uintN_t t48 = z5 ^ z13;                         \
 
-         uintN_t t49 = z9 ^ z10;                         \
 
-         uintN_t t50 = z2 ^ z12;                         \
 
-         uintN_t t51 = z2 ^ z5;                          \
 
-         uintN_t t52 = z7 ^ z8;                          \
 
-         uintN_t t53 = z0 ^ z3;                          \
 
-         uintN_t t54 = z6 ^ z7;                          \
 
-         uintN_t t55 = z16 ^ z17;                        \
 
-         uintN_t t56 = z12 ^ t48;                        \
 
-         uintN_t t57 = t50 ^ t53;                        \
 
-         uintN_t t58 = z4 ^ t46;                         \
 
-         uintN_t t59 = z3 ^ t54;                         \
 
-         uintN_t t60 = t46 ^ t57;                        \
 
-         uintN_t t61 = z14 ^ t57;                        \
 
-         uintN_t t62 = t52 ^ t58;                        \
 
-         uintN_t t63 = t49 ^ t58;                        \
 
-         uintN_t t64 = z4 ^ t59;                         \
 
-         uintN_t t65 = t61 ^ t62;                        \
 
-         uintN_t t66 = z1 ^ t63;                         \
 
-         output[7] = t59 ^ t63;                          \
 
-         output[1] = t56 ^ t62;                          \
 
-         output[0] = t48 ^ t60;                          \
 
-         uintN_t t67 = t64 ^ t65;                        \
 
-         output[4] = t53 ^ t66;                          \
 
-         output[3] = t51 ^ t66;                          \
 
-         output[2] = t47 ^ t65;                          \
 
-         output[6] = t64 ^ output[4];                    \
 
-         output[5] = t55 ^ t67;                          \
 
-         /* end */
 
- #define BITSLICED_SUBBYTES(output, input, uintN_t) do { \
 
-         SBOX_FORWARD_TOP_TRANSFORM(input, uintN_t);      \
 
-         SBOX_CORE(uintN_t);                             \
 
-         SBOX_FORWARD_BOTTOM_TRANSFORM(output, uintN_t);  \
 
-     } while (0)
 
- /*
 
-  * Initial and final linear transformations for the backward S-box. I
 
-  * generated these myself, by implementing the linear-transform
 
-  * optimisation algorithm in the paper, and applying it to the
 
-  * matrices calculated by _their_ top and bottom transformations, pre-
 
-  * and post-multiplied as appropriate by the linear map in the inverse
 
-  * S_box.
 
-  */
 
- #define SBOX_BACKWARD_TOP_TRANSFORM(input, uintN_t)     \
 
-     uintN_t y5 = input[4] ^ input[6];                   \
 
-     uintN_t y19 = input[3] ^ input[0];                  \
 
-     uintN_t itmp8 = y5 ^ input[0];                      \
 
-     uintN_t y4 = itmp8 ^ input[1];                      \
 
-     uintN_t y9 = input[4] ^ input[3];                   \
 
-     uintN_t y2 = y9 ^ y4;                               \
 
-     uintN_t itmp9 = y2 ^ input[7];                      \
 
-     uintN_t y1 = y9 ^ input[0];                         \
 
-     uintN_t y6 = y5 ^ input[7];                         \
 
-     uintN_t y18 = y9 ^ input[5];                        \
 
-     uintN_t y7 = y18 ^ y2;                              \
 
-     uintN_t y16 = y7 ^ y1;                              \
 
-     uintN_t y21 = y7 ^ input[1];                        \
 
-     uintN_t y3 = input[4] ^ input[7];                   \
 
-     uintN_t y13 = y16 ^ y21;                            \
 
-     uintN_t y8 = input[4] ^ y6;                         \
 
-     uintN_t y10 = y8 ^ y19;                             \
 
-     uintN_t y14 = y8 ^ y9;                              \
 
-     uintN_t y20 = itmp9 ^ input[2];                     \
 
-     uintN_t y11 = y9 ^ y20;                             \
 
-     uintN_t i0 = y11 ^ y7;                              \
 
-     uintN_t y15 = i0 ^ y6;                              \
 
-     uintN_t y17 = y16 ^ y15;                            \
 
-     uintN_t y12 = itmp9 ^ input[3];                     \
 
-     /* end */
 
- #define SBOX_BACKWARD_BOTTOM_TRANSFORM(output, uintN_t) \
 
-     uintN_t otmp18 = z15 ^ z6;                          \
 
-     uintN_t otmp19 = z13 ^ otmp18;                      \
 
-     uintN_t otmp20 = z12 ^ otmp19;                      \
 
-     uintN_t otmp21 = z16 ^ otmp20;                      \
 
-     uintN_t otmp22 = z8 ^ otmp21;                       \
 
-     uintN_t otmp23 = z0 ^ otmp22;                       \
 
-     uintN_t otmp24 = otmp22 ^ z3;                       \
 
-     uintN_t otmp25 = otmp24 ^ z4;                       \
 
-     uintN_t otmp26 = otmp25 ^ z2;                       \
 
-     uintN_t otmp27 = z1 ^ otmp26;                       \
 
-     uintN_t otmp28 = z14 ^ otmp27;                      \
 
-     uintN_t otmp29 = otmp28 ^ z10;                      \
 
-     output[4] = z2 ^ otmp23;                            \
 
-     output[7] = z5 ^ otmp24;                            \
 
-     uintN_t otmp30 = z11 ^ otmp29;                      \
 
-     output[5] = z13 ^ otmp30;                           \
 
-     uintN_t otmp31 = otmp25 ^ z8;                       \
 
-     output[1] = z7 ^ otmp31;                            \
 
-     uintN_t otmp32 = z11 ^ z9;                          \
 
-     uintN_t otmp33 = z17 ^ otmp32;                      \
 
-     uintN_t otmp34 = otmp30 ^ otmp33;                   \
 
-     output[0] = z15 ^ otmp33;                           \
 
-     uintN_t otmp35 = z12 ^ otmp34;                      \
 
-     output[6] = otmp35 ^ z16;                           \
 
-     uintN_t otmp36 = z1 ^ otmp23;                       \
 
-     uintN_t otmp37 = z5 ^ otmp36;                       \
 
-     output[2] = z4 ^ otmp37;                            \
 
-     uintN_t otmp38 = z11 ^ output[1];                   \
 
-     uintN_t otmp39 = z2 ^ otmp38;                       \
 
-     uintN_t otmp40 = z17 ^ otmp39;                      \
 
-     uintN_t otmp41 = z0 ^ otmp40;                       \
 
-     uintN_t otmp42 = z5 ^ otmp41;                       \
 
-     uintN_t otmp43 = otmp42 ^ z10;                      \
 
-     uintN_t otmp44 = otmp43 ^ z3;                       \
 
-     output[3] = otmp44 ^ z16;                           \
 
-     /* end */
 
- #define BITSLICED_INVSUBBYTES(output, input, uintN_t) do {      \
 
-         SBOX_BACKWARD_TOP_TRANSFORM(input, uintN_t);             \
 
-         SBOX_CORE(uintN_t);                                     \
 
-         SBOX_BACKWARD_BOTTOM_TRANSFORM(output, uintN_t);         \
 
-     } while (0)
 
- /* -----
 
-  * The ShiftRows transformation. This operates independently on each
 
-  * bit slice.
 
-  */
 
- #define SINGLE_BITSLICE_SHIFTROWS(output, input, uintN_t) do            \
 
-     {                                                                   \
 
-         uintN_t mask, mask2, mask3, diff, x = (input);                  \
 
-         /* Rotate rows 2 and 3 by 16 bits */                            \
 
-         mask = 0x00CC * (((uintN_t)~(uintN_t)0) / 0xFFFF);              \
 
-         diff = ((x >> 8) ^ x) & mask;                                   \
 
-         x ^= diff ^ (diff << 8);                                        \
 
-         /* Rotate rows 1 and 3 by 8 bits */                             \
 
-         mask  = 0x0AAA * (((uintN_t)~(uintN_t)0) / 0xFFFF);             \
 
-         mask2 = 0xA000 * (((uintN_t)~(uintN_t)0) / 0xFFFF);             \
 
-         mask3 = 0x5555 * (((uintN_t)~(uintN_t)0) / 0xFFFF);             \
 
-         x = ((x >> 4) & mask) | ((x << 12) & mask2) | (x & mask3);      \
 
-         /* Write output */                                              \
 
-         (output) = x;                                                   \
 
-     } while (0)
 
- #define SINGLE_BITSLICE_INVSHIFTROWS(output, input, uintN_t) do         \
 
-     {                                                                   \
 
-         uintN_t mask, mask2, mask3, diff, x = (input);                  \
 
-         /* Rotate rows 2 and 3 by 16 bits */                            \
 
-         mask = 0x00CC * (((uintN_t)~(uintN_t)0) / 0xFFFF);              \
 
-         diff = ((x >> 8) ^ x) & mask;                                   \
 
-         x ^= diff ^ (diff << 8);                                        \
 
-         /* Rotate rows 1 and 3 by 8 bits, the opposite way to ShiftRows */ \
 
-         mask  = 0x000A * (((uintN_t)~(uintN_t)0) / 0xFFFF);             \
 
-         mask2 = 0xAAA0 * (((uintN_t)~(uintN_t)0) / 0xFFFF);             \
 
-         mask3 = 0x5555 * (((uintN_t)~(uintN_t)0) / 0xFFFF);             \
 
-         x = ((x >> 12) & mask) | ((x << 4) & mask2) | (x & mask3);      \
 
-         /* Write output */                                              \
 
-         (output) = x;                                                   \
 
-     } while (0)
 
- #define BITSLICED_SHIFTROWS(output, input, uintN_t) do                  \
 
-     {                                                                   \
 
-         ITERATE(SINGLE_BITSLICE_SHIFTROWS, output, input, uintN_t);     \
 
-     } while (0)
 
- #define BITSLICED_INVSHIFTROWS(output, input, uintN_t) do               \
 
-     {                                                                   \
 
-         ITERATE(SINGLE_BITSLICE_INVSHIFTROWS, output, input, uintN_t);  \
 
-     } while (0)
 
- /* -----
 
-  * The MixColumns transformation. This has to operate on all eight bit
 
-  * slices at once, and also passes data back and forth between the
 
-  * bits in an adjacent group of 4 within each slice.
 
-  *
 
-  * Notation: let F = GF(2)[X]/<X^8+X^4+X^3+X+1> be the finite field
 
-  * used in AES, and let R = F[Y]/<Y^4+1> be the ring whose elements
 
-  * represent the possible contents of a column of the matrix. I use X
 
-  * and Y below in those senses, i.e. X is the value in F that
 
-  * represents the byte 0x02, and Y is the value in R that cycles the
 
-  * four bytes around by one if you multiply by it.
 
-  */
 
- /* Multiply every column by Y^3, i.e. cycle it round one place to the
 
-  * right. Operates on one bit slice at a time; you have to wrap it in
 
-  * ITERATE to affect all the data at once. */
 
- #define BITSLICED_MUL_BY_Y3(output, input, uintN_t) do          \
 
-     {                                                           \
 
-         uintN_t mask, mask2, x;                                 \
 
-         mask  = 0x8 * (((uintN_t)~(uintN_t)0) / 0xF);           \
 
-         mask2 = 0x7 * (((uintN_t)~(uintN_t)0) / 0xF);           \
 
-         x = input;                                              \
 
-         output = ((x << 3) & mask) ^ ((x >> 1) & mask2);        \
 
-     } while (0)
 
- /* Multiply every column by Y^2. */
 
- #define BITSLICED_MUL_BY_Y2(output, input, uintN_t) do          \
 
-     {                                                           \
 
-         uintN_t mask, mask2, x;                                 \
 
-         mask  = 0xC * (((uintN_t)~(uintN_t)0) / 0xF);           \
 
-         mask2 = 0x3 * (((uintN_t)~(uintN_t)0) / 0xF);           \
 
-         x = input;                                              \
 
-         output = ((x << 2) & mask) ^ ((x >> 2) & mask2);        \
 
-     } while (0)
 
- #define BITSLICED_MUL_BY_1_Y3(output, input, uintN_t) do        \
 
-     {                                                           \
 
-         uintN_t tmp = input;                                    \
 
-         BITSLICED_MUL_BY_Y3(tmp, input, uintN_t);               \
 
-         output = input ^ tmp;                                   \
 
-     } while (0)
 
- /* Multiply every column by 1+Y^2. */
 
- #define BITSLICED_MUL_BY_1_Y2(output, input, uintN_t) do        \
 
-     {                                                           \
 
-         uintN_t tmp = input;                                    \
 
-         BITSLICED_MUL_BY_Y2(tmp, input, uintN_t);               \
 
-         output = input ^ tmp;                                   \
 
-     } while (0)
 
- /* Multiply every field element by X. This has to feed data between
 
-  * slices, so it does the whole job in one go without needing ITERATE. */
 
- #define BITSLICED_MUL_BY_X(output, input, uintN_t) do   \
 
-     {                                                   \
 
-         uintN_t bit7 = input[7];                        \
 
-         output[7] = input[6];                           \
 
-         output[6] = input[5];                           \
 
-         output[5] = input[4];                           \
 
-         output[4] = input[3] ^ bit7;                    \
 
-         output[3] = input[2] ^ bit7;                    \
 
-         output[2] = input[1];                           \
 
-         output[1] = input[0] ^ bit7;                    \
 
-         output[0] =            bit7;                    \
 
-     } while (0)
 
- /*
 
-  * The MixColumns constant is
 
-  *   M = X + Y + Y^2 + (X+1)Y^3
 
-  * which we construct by rearranging it into
 
-  *   M = 1 + (1+Y^3) [ X + (1+Y^2) ]
 
-  */
 
- #define BITSLICED_MIXCOLUMNS(output, input, uintN_t) do         \
 
-     {                                                           \
 
-         uintN_t a[8], aX[8], b[8];                              \
 
-         /* a = input * (1+Y^3) */                               \
 
-         ITERATE(BITSLICED_MUL_BY_1_Y3, a, input, uintN_t);      \
 
-         /* aX = a * X */                                        \
 
-         BITSLICED_MUL_BY_X(aX, a, uintN_t);                     \
 
-         /* b = a * (1+Y^2) = input * (1+Y+Y^2+Y^3) */           \
 
-         ITERATE(BITSLICED_MUL_BY_1_Y2, b, a, uintN_t);          \
 
-         /* output = input + aX + b (reusing a as a temp */      \
 
-         BITSLICED_ADD(a, aX, b);                                \
 
-         BITSLICED_ADD(output, input, a);                        \
 
-     } while (0)
 
- /*
 
-  * The InvMixColumns constant, written out longhand, is
 
-  *   I = (X^3+X^2+X) + (X^3+1)Y + (X^3+X^2+1)Y^2 + (X^3+X+1)Y^3
 
-  * We represent this as
 
-  *   I = (X^3+X^2+X+1)(Y^3+Y^2+Y+1) + 1 + X(Y+Y^2) + X^2(Y+Y^3)
 
-  */
 
- #define BITSLICED_INVMIXCOLUMNS(output, input, uintN_t) do      \
 
-     {                                                           \
 
-         /* We need input * X^i for i=1,...,3 */                 \
 
-         uintN_t X[8], X2[8], X3[8];                             \
 
-         BITSLICED_MUL_BY_X(X, input, uintN_t);                  \
 
-         BITSLICED_MUL_BY_X(X2, X, uintN_t);                     \
 
-         BITSLICED_MUL_BY_X(X3, X2, uintN_t);                    \
 
-         /* Sum them all and multiply by 1+Y+Y^2+Y^3. */         \
 
-         uintN_t S[8];                                           \
 
-         BITSLICED_ADD(S, input, X);                             \
 
-         BITSLICED_ADD(S, S, X2);                                \
 
-         BITSLICED_ADD(S, S, X3);                                \
 
-         ITERATE(BITSLICED_MUL_BY_1_Y3, S, S, uintN_t);          \
 
-         ITERATE(BITSLICED_MUL_BY_1_Y2, S, S, uintN_t);          \
 
-         /* Compute the X(Y+Y^2) term. */                        \
 
-         uintN_t A[8];                                           \
 
-         ITERATE(BITSLICED_MUL_BY_1_Y3, A, X, uintN_t);          \
 
-         ITERATE(BITSLICED_MUL_BY_Y2, A, A, uintN_t);            \
 
-         /* Compute the X^2(Y+Y^3) term. */                      \
 
-         uintN_t B[8];                                           \
 
-         ITERATE(BITSLICED_MUL_BY_1_Y2, B, X2, uintN_t);         \
 
-         ITERATE(BITSLICED_MUL_BY_Y3, B, B, uintN_t);            \
 
-         /* And add all the pieces together. */                  \
 
-         BITSLICED_ADD(S, S, input);                             \
 
-         BITSLICED_ADD(S, S, A);                                 \
 
-         BITSLICED_ADD(output, S, B);                            \
 
-     } while (0)
 
- /* -----
 
-  * Put it all together into a cipher round.
 
-  */
 
- /* Dummy macro to get rid of the MixColumns in the final round. */
 
- #define NO_MIXCOLUMNS(out, in, uintN_t) do {} while (0)
 
- #define ENCRYPT_ROUND_FN(suffix, uintN_t, mixcol_macro)                 \
 
-     static void aes_sliced_round_e_##suffix(                            \
 
-         uintN_t output[8], const uintN_t input[8], const uintN_t roundkey[8]) \
 
-     {                                                                   \
 
-         BITSLICED_SUBBYTES(output, input, uintN_t);                     \
 
-         BITSLICED_SHIFTROWS(output, output, uintN_t);                   \
 
-         mixcol_macro(output, output, uintN_t);                          \
 
-         BITSLICED_ADD(output, output, roundkey);                        \
 
-     }
 
- ENCRYPT_ROUND_FN(serial, uint16_t, BITSLICED_MIXCOLUMNS)
 
- ENCRYPT_ROUND_FN(serial_last, uint16_t, NO_MIXCOLUMNS)
 
- ENCRYPT_ROUND_FN(parallel, BignumInt, BITSLICED_MIXCOLUMNS)
 
- ENCRYPT_ROUND_FN(parallel_last, BignumInt, NO_MIXCOLUMNS)
 
- #define DECRYPT_ROUND_FN(suffix, uintN_t, mixcol_macro)                 \
 
-     static void aes_sliced_round_d_##suffix(                            \
 
-         uintN_t output[8], const uintN_t input[8], const uintN_t roundkey[8]) \
 
-     {                                                                   \
 
-         BITSLICED_ADD(output, input, roundkey);                         \
 
-         mixcol_macro(output, output, uintN_t);                          \
 
-         BITSLICED_INVSUBBYTES(output, output, uintN_t);                 \
 
-         BITSLICED_INVSHIFTROWS(output, output, uintN_t);                \
 
-     }
 
- #if 0 /* no cipher mode we support requires serial decryption */
 
- DECRYPT_ROUND_FN(serial, uint16_t, BITSLICED_INVMIXCOLUMNS)
 
- DECRYPT_ROUND_FN(serial_first, uint16_t, NO_MIXCOLUMNS)
 
- #endif
 
- DECRYPT_ROUND_FN(parallel, BignumInt, BITSLICED_INVMIXCOLUMNS)
 
- DECRYPT_ROUND_FN(parallel_first, BignumInt, NO_MIXCOLUMNS)
 
- /* -----
 
-  * Key setup function.
 
-  */
 
- typedef struct aes_sliced_key aes_sliced_key;
 
- struct aes_sliced_key {
 
-     BignumInt roundkeys_parallel[MAXROUNDKEYS * 8];
 
-     uint16_t roundkeys_serial[MAXROUNDKEYS * 8];
 
-     unsigned rounds;
 
- };
 
- static void aes_sliced_key_setup(
 
-     aes_sliced_key *sk, const void *vkey, size_t keybits)
 
- {
 
-     const unsigned char *key = (const unsigned char *)vkey;
 
-     size_t key_words = keybits / 32;
 
-     sk->rounds = key_words + 6;
 
-     size_t sched_words = (sk->rounds + 1) * 4;
 
-     unsigned rconpos = 0;
 
-     uint16_t *outslices = sk->roundkeys_serial;
 
-     unsigned outshift = 0;
 
-     memset(sk->roundkeys_serial, 0, sizeof(sk->roundkeys_serial));
 
-     uint8_t inblk[16];
 
-     memset(inblk, 0, 16);
 
-     uint16_t slices[8];
 
-     for (size_t i = 0; i < sched_words; i++) {
 
-         /*
 
-          * Prepare a word of round key in the low 4 bits of each
 
-          * integer in slices[].
 
-          */
 
-         if (i < key_words) {
 
-             memcpy(inblk, key + 4*i, 4);
 
-             TO_BITSLICES(slices, inblk, uint16_t, =, 0);
 
-         } else {
 
-             unsigned wordindex, bitshift;
 
-             uint16_t *prevslices;
 
-             /* Fetch the (i-1)th key word */
 
-             wordindex = i-1;
 
-             bitshift = 4 * (wordindex & 3);
 
-             prevslices = sk->roundkeys_serial + 8 * (wordindex >> 2);
 
-             for (size_t i = 0; i < 8; i++)
 
-                 slices[i] = prevslices[i] >> bitshift;
 
-             /* Decide what we're doing in this expansion stage */
 
-             bool rotate_and_round_constant = (i % key_words == 0);
 
-             bool sub = rotate_and_round_constant ||
 
-                 (key_words == 8 && i % 8 == 4);
 
-             if (rotate_and_round_constant) {
 
-                 for (size_t i = 0; i < 8; i++)
 
-                     slices[i] = ((slices[i] << 3) | (slices[i] >> 1)) & 0xF;
 
-             }
 
-             if (sub) {
 
-                 /* Apply the SubBytes transform to the key word. But
 
-                  * here we need to apply the _full_ SubBytes from the
 
-                  * spec, including the constant which our S-box leaves
 
-                  * out. */
 
-                 BITSLICED_SUBBYTES(slices, slices, uint16_t);
 
-                 slices[0] ^= 0xFFFF;
 
-                 slices[1] ^= 0xFFFF;
 
-                 slices[5] ^= 0xFFFF;
 
-                 slices[6] ^= 0xFFFF;
 
-             }
 
-             if (rotate_and_round_constant) {
 
-                 assert(rconpos < lenof(key_setup_round_constants));
 
-                 uint8_t rcon = key_setup_round_constants[rconpos++];
 
-                 for (size_t i = 0; i < 8; i++)
 
-                     slices[i] ^= 1 & (rcon >> i);
 
-             }
 
-             /* Combine with the (i-Nk)th key word */
 
-             wordindex = i - key_words;
 
-             bitshift = 4 * (wordindex & 3);
 
-             prevslices = sk->roundkeys_serial + 8 * (wordindex >> 2);
 
-             for (size_t i = 0; i < 8; i++)
 
-                 slices[i] ^= prevslices[i] >> bitshift;
 
-         }
 
-         /*
 
-          * Now copy it into sk.
 
-          */
 
-         for (unsigned b = 0; b < 8; b++)
 
-             outslices[b] |= (slices[b] & 0xF) << outshift;
 
-         outshift += 4;
 
-         if (outshift == 16) {
 
-             outshift = 0;
 
-             outslices += 8;
 
-         }
 
-     }
 
-     smemclr(inblk, sizeof(inblk));
 
-     smemclr(slices, sizeof(slices));
 
-     /*
 
-      * Add the S-box constant to every round key after the first one,
 
-      * compensating for it being left out in the main cipher.
 
-      */
 
-     for (size_t i = 8; i < 8 * (sched_words/4); i += 8) {
 
-         sk->roundkeys_serial[i+0] ^= 0xFFFF;
 
-         sk->roundkeys_serial[i+1] ^= 0xFFFF;
 
-         sk->roundkeys_serial[i+5] ^= 0xFFFF;
 
-         sk->roundkeys_serial[i+6] ^= 0xFFFF;
 
-     }
 
-     /*
 
-      * Replicate that set of round keys into larger integers for the
 
-      * parallel versions of the cipher.
 
-      */
 
-     for (size_t i = 0; i < 8 * (sched_words / 4); i++) {
 
-         sk->roundkeys_parallel[i] = sk->roundkeys_serial[i] *
 
-             ((BignumInt)~(BignumInt)0 / 0xFFFF);
 
-     }
 
- }
 
- /* -----
 
-  * The full cipher primitive, including transforming the input and
 
-  * output to/from bit-sliced form.
 
-  */
 
- #define ENCRYPT_FN(suffix, uintN_t, nblocks)                            \
 
-     static void aes_sliced_e_##suffix(                                  \
 
-         uint8_t *output, const uint8_t *input, const aes_sliced_key *sk) \
 
-     {                                                                   \
 
-         uintN_t state[8];                                               \
 
-         TO_BITSLICES(state, input, uintN_t, =, 0);                      \
 
-         for (unsigned i = 1; i < nblocks; i++) {                        \
 
-             input += 16;                                                \
 
-             TO_BITSLICES(state, input, uintN_t, |=, i*16);              \
 
-         }                                                               \
 
-         const uintN_t *keys = sk->roundkeys_##suffix;                   \
 
-         BITSLICED_ADD(state, state, keys);                              \
 
-         keys += 8;                                                      \
 
-         for (unsigned i = 0; i < sk->rounds-1; i++) {                   \
 
-             aes_sliced_round_e_##suffix(state, state, keys);            \
 
-             keys += 8;                                                  \
 
-         }                                                               \
 
-         aes_sliced_round_e_##suffix##_last(state, state, keys);         \
 
-         for (unsigned i = 0; i < nblocks; i++) {                        \
 
-             FROM_BITSLICES(output, state, i*16);                        \
 
-             output += 16;                                               \
 
-         }                                                               \
 
-     }
 
- #define DECRYPT_FN(suffix, uintN_t, nblocks)                            \
 
-     static void aes_sliced_d_##suffix(                                  \
 
-         uint8_t *output, const uint8_t *input, const aes_sliced_key *sk) \
 
-     {                                                                   \
 
-         uintN_t state[8];                                               \
 
-         TO_BITSLICES(state, input, uintN_t, =, 0);                      \
 
-         for (unsigned i = 1; i < nblocks; i++) {                        \
 
-             input += 16;                                                \
 
-             TO_BITSLICES(state, input, uintN_t, |=, i*16);              \
 
-         }                                                               \
 
-         const uintN_t *keys = sk->roundkeys_##suffix + 8*sk->rounds;    \
 
-         aes_sliced_round_d_##suffix##_first(state, state, keys);        \
 
-         keys -= 8;                                                      \
 
-         for (unsigned i = 0; i < sk->rounds-1; i++) {                   \
 
-             aes_sliced_round_d_##suffix(state, state, keys);            \
 
-             keys -= 8;                                                  \
 
-         }                                                               \
 
-         BITSLICED_ADD(state, state, keys);                              \
 
-         for (unsigned i = 0; i < nblocks; i++) {                        \
 
-             FROM_BITSLICES(output, state, i*16);                        \
 
-             output += 16;                                               \
 
-         }                                                               \
 
-     }
 
- ENCRYPT_FN(serial, uint16_t, 1)
 
- #if 0 /* no cipher mode we support requires serial decryption */
 
- DECRYPT_FN(serial, uint16_t, 1)
 
- #endif
 
- ENCRYPT_FN(parallel, BignumInt, SLICE_PARALLELISM)
 
- DECRYPT_FN(parallel, BignumInt, SLICE_PARALLELISM)
 
- /* -----
 
-  * The SSH interface and the cipher modes.
 
-  */
 
- #define SDCTR_WORDS (16 / BIGNUM_INT_BYTES)
 
- typedef struct aes_sw_context aes_sw_context;
 
- struct aes_sw_context {
 
-     aes_sliced_key sk;
 
-     union {
 
-         struct {
 
-             /* In CBC mode, the IV is just a copy of the last seen
 
-              * cipher block. */
 
-             uint8_t prevblk[16];
 
-         } cbc;
 
-         struct {
 
-             /* In SDCTR mode, we keep the counter itself in a form
 
-              * that's easy to increment. We also use the parallel
 
-              * version of the core AES function, so we'll encrypt
 
-              * multiple counter values in one go. That won't align
 
-              * nicely with the sizes of data we're asked to encrypt,
 
-              * so we must also store a cache of the last set of
 
-              * keystream blocks we generated, and our current position
 
-              * within that cache. */
 
-             BignumInt counter[SDCTR_WORDS];
 
-             uint8_t keystream[SLICE_PARALLELISM * 16];
 
-             uint8_t *keystream_pos;
 
-         } sdctr;
 
-     } iv;
 
-     ssh_cipher ciph;
 
- };
 
- static ssh_cipher *aes_sw_new(const ssh_cipheralg *alg)
 
- {
 
-     aes_sw_context *ctx = snew(aes_sw_context);
 
-     ctx->ciph.vt = alg;
 
-     return &ctx->ciph;
 
- }
 
- static void aes_sw_free(ssh_cipher *ciph)
 
- {
 
-     aes_sw_context *ctx = container_of(ciph, aes_sw_context, ciph);
 
-     smemclr(ctx, sizeof(*ctx));
 
-     sfree(ctx);
 
- }
 
- static void aes_sw_setkey(ssh_cipher *ciph, const void *vkey)
 
- {
 
-     aes_sw_context *ctx = container_of(ciph, aes_sw_context, ciph);
 
-     aes_sliced_key_setup(&ctx->sk, vkey, ctx->ciph.vt->real_keybits);
 
- }
 
- static void aes_sw_setiv_cbc(ssh_cipher *ciph, const void *iv)
 
- {
 
-     aes_sw_context *ctx = container_of(ciph, aes_sw_context, ciph);
 
-     memcpy(ctx->iv.cbc.prevblk, iv, 16);
 
- }
 
- static void aes_sw_setiv_sdctr(ssh_cipher *ciph, const void *viv)
 
- {
 
-     aes_sw_context *ctx = container_of(ciph, aes_sw_context, ciph);
 
-     const uint8_t *iv = (const uint8_t *)viv;
 
-     /* Import the initial counter value into the internal representation */
 
-     for (unsigned i = 0; i < SDCTR_WORDS; i++)
 
-         ctx->iv.sdctr.counter[i] =
 
-             GET_BIGNUMINT_MSB_FIRST(
 
-                 iv + 16 - BIGNUM_INT_BYTES - i*BIGNUM_INT_BYTES);
 
-     /* Set keystream_pos to indicate that the keystream cache is
 
-      * currently empty */
 
-     ctx->iv.sdctr.keystream_pos =
 
-         ctx->iv.sdctr.keystream + sizeof(ctx->iv.sdctr.keystream);
 
- }
 
- typedef void (*aes_sw_fn)(uint32_t v[4], const uint32_t *keysched);
 
- static inline void memxor16(void *vout, const void *vlhs, const void *vrhs)
 
- {
 
-     uint8_t *out = (uint8_t *)vout;
 
-     const uint8_t *lhs = (const uint8_t *)vlhs, *rhs = (const uint8_t *)vrhs;
 
-     uint64_t w;
 
-     w = GET_64BIT_LSB_FIRST(lhs);
 
-     w ^= GET_64BIT_LSB_FIRST(rhs);
 
-     PUT_64BIT_LSB_FIRST(out, w);
 
-     w = GET_64BIT_LSB_FIRST(lhs + 8);
 
-     w ^= GET_64BIT_LSB_FIRST(rhs + 8);
 
-     PUT_64BIT_LSB_FIRST(out + 8, w);
 
- }
 
- static inline void aes_cbc_sw_encrypt(
 
-     ssh_cipher *ciph, void *vblk, int blklen)
 
- {
 
-     aes_sw_context *ctx = container_of(ciph, aes_sw_context, ciph);
 
-     /*
 
-      * CBC encryption has to be done serially, because the input to
 
-      * each run of the cipher includes the output from the previous
 
-      * run.
 
-      */
 
-     for (uint8_t *blk = (uint8_t *)vblk, *finish = blk + blklen;
 
-          blk < finish; blk += 16) {
 
-         /*
 
-          * We use the IV array itself as the location for the
 
-          * encryption, because there's no reason not to.
 
-          */
 
-         /* XOR the new plaintext block into the previous cipher block */
 
-         memxor16(ctx->iv.cbc.prevblk, ctx->iv.cbc.prevblk, blk);
 
-         /* Run the cipher over the result, which leaves it
 
-          * conveniently already stored in ctx->iv */
 
-         aes_sliced_e_serial(
 
-             ctx->iv.cbc.prevblk, ctx->iv.cbc.prevblk, &ctx->sk);
 
-         /* Copy it to the output location */
 
-         memcpy(blk, ctx->iv.cbc.prevblk, 16);
 
-     }
 
- }
 
- static inline void aes_cbc_sw_decrypt(
 
-     ssh_cipher *ciph, void *vblk, int blklen)
 
- {
 
-     aes_sw_context *ctx = container_of(ciph, aes_sw_context, ciph);
 
-     uint8_t *blk = (uint8_t *)vblk;
 
-     /*
 
-      * CBC decryption can run in parallel, because all the
 
-      * _ciphertext_ blocks are already available.
 
-      */
 
-     size_t blocks_remaining = blklen / 16;
 
-     uint8_t data[SLICE_PARALLELISM * 16];
 
-     /* Zeroing the data array is probably overcautious, but it avoids
 
-      * technically undefined behaviour from leaving it uninitialised
 
-      * if our very first iteration doesn't include enough cipher
 
-      * blocks to populate it fully */
 
-     memset(data, 0, sizeof(data));
 
-     while (blocks_remaining > 0) {
 
-         /* Number of blocks we'll handle in this iteration. If we're
 
-          * dealing with fewer than the maximum, it doesn't matter -
 
-          * it's harmless to run the full parallel cipher function
 
-          * anyway. */
 
-         size_t blocks = (blocks_remaining < SLICE_PARALLELISM ?
 
-                          blocks_remaining : SLICE_PARALLELISM);
 
-         /* Parallel-decrypt the input, in a separate array so we still
 
-          * have the cipher stream available for XORing. */
 
-         memcpy(data, blk, 16 * blocks);
 
-         aes_sliced_d_parallel(data, data, &ctx->sk);
 
-         /* Write the output and update the IV */
 
-         for (size_t i = 0; i < blocks; i++) {
 
-             uint8_t *decrypted = data + 16*i;
 
-             uint8_t *output = blk + 16*i;
 
-             memxor16(decrypted, decrypted, ctx->iv.cbc.prevblk);
 
-             memcpy(ctx->iv.cbc.prevblk, output, 16);
 
-             memcpy(output, decrypted, 16);
 
-         }
 
-         /* Advance the input pointer. */
 
-         blk += 16 * blocks;
 
-         blocks_remaining -= blocks;
 
-     }
 
-     smemclr(data, sizeof(data));
 
- }
 
- static inline void aes_sdctr_sw(
 
-     ssh_cipher *ciph, void *vblk, int blklen)
 
- {
 
-     aes_sw_context *ctx = container_of(ciph, aes_sw_context, ciph);
 
-     /*
 
-      * SDCTR encrypt/decrypt loops round one block at a time XORing
 
-      * the keystream into the user's data, and periodically has to run
 
-      * a parallel encryption operation to get more keystream.
 
-      */
 
-     uint8_t *keystream_end =
 
-         ctx->iv.sdctr.keystream + sizeof(ctx->iv.sdctr.keystream);
 
-     for (uint8_t *blk = (uint8_t *)vblk, *finish = blk + blklen;
 
-          blk < finish; blk += 16) {
 
-         if (ctx->iv.sdctr.keystream_pos == keystream_end) {
 
-             /*
 
-              * Generate some keystream.
 
-              */
 
-             for (uint8_t *block = ctx->iv.sdctr.keystream;
 
-                  block < keystream_end; block += 16) {
 
-                 /* Format the counter value into the buffer. */
 
-                 for (unsigned i = 0; i < SDCTR_WORDS; i++)
 
-                     PUT_BIGNUMINT_MSB_FIRST(
 
-                         block + 16 - BIGNUM_INT_BYTES - i*BIGNUM_INT_BYTES,
 
-                         ctx->iv.sdctr.counter[i]);
 
-                 /* Increment the counter. */
 
-                 BignumCarry carry = 1;
 
-                 for (unsigned i = 0; i < SDCTR_WORDS; i++)
 
-                     BignumADC(ctx->iv.sdctr.counter[i], carry,
 
-                               ctx->iv.sdctr.counter[i], 0, carry);
 
-             }
 
-             /* Encrypt all those counter blocks. */
 
-             aes_sliced_e_parallel(ctx->iv.sdctr.keystream,
 
-                                   ctx->iv.sdctr.keystream, &ctx->sk);
 
-             /* Reset keystream_pos to the start of the buffer. */
 
-             ctx->iv.sdctr.keystream_pos = ctx->iv.sdctr.keystream;
 
-         }
 
-         memxor16(blk, blk, ctx->iv.sdctr.keystream_pos);
 
-         ctx->iv.sdctr.keystream_pos += 16;
 
-     }
 
- }
 
- #define SW_ENC_DEC(len)                                 \
 
-     static void aes##len##_cbc_sw_encrypt(              \
 
-         ssh_cipher *ciph, void *vblk, int blklen)       \
 
-     { aes_cbc_sw_encrypt(ciph, vblk, blklen); }         \
 
-     static void aes##len##_cbc_sw_decrypt(              \
 
-         ssh_cipher *ciph, void *vblk, int blklen)       \
 
-     { aes_cbc_sw_decrypt(ciph, vblk, blklen); }         \
 
-     static void aes##len##_sdctr_sw(                    \
 
-         ssh_cipher *ciph, void *vblk, int blklen)       \
 
-     { aes_sdctr_sw(ciph, vblk, blklen); }
 
- SW_ENC_DEC(128)
 
- SW_ENC_DEC(192)
 
- SW_ENC_DEC(256)
 
- /* ----------------------------------------------------------------------
 
-  * Hardware-accelerated implementation of AES using x86 AES-NI.
 
-  */
 
- #if HW_AES == HW_AES_NI
 
- /*
 
-  * Set target architecture for Clang and GCC
 
-  */
 
- #if !defined(__clang__) && defined(__GNUC__)
 
- #    pragma GCC target("aes")
 
- #    pragma GCC target("sse4.1")
 
- #endif
 
- #if defined(__clang__) || (defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)))
 
- #    define FUNC_ISA __attribute__ ((target("sse4.1,aes")))
 
- #else
 
- #    define FUNC_ISA
 
- #endif
 
- #include <wmmintrin.h>
 
- #include <smmintrin.h>
 
- #if defined(__clang__) || defined(__GNUC__)
 
- #include <cpuid.h>
 
- #define GET_CPU_ID(out) __cpuid(1, (out)[0], (out)[1], (out)[2], (out)[3])
 
- #else
 
- #define GET_CPU_ID(out) __cpuid(out, 1)
 
- #endif
 
- bool aes_hw_available(void)
 
- {
 
-     /*
 
-      * Determine if AES is available on this CPU, by checking that
 
-      * both AES itself and SSE4.1 are supported.
 
-      */
 
-     unsigned int CPUInfo[4];
 
-     GET_CPU_ID(CPUInfo);
 
-     return (CPUInfo[2] & (1 << 25)) && (CPUInfo[2] & (1 << 19));
 
- }
 
- /*
 
-  * Core AES-NI encrypt/decrypt functions, one per length and direction.
 
-  */
 
- #define NI_CIPHER(len, dir, dirlong, repmacro)                          \
 
-     static FUNC_ISA inline __m128i aes_ni_##len##_##dir(                \
 
-         __m128i v, const __m128i *keysched)                             \
 
-     {                                                                   \
 
-         v = _mm_xor_si128(v, *keysched++);                              \
 
-         repmacro(v = _mm_aes##dirlong##_si128(v, *keysched++););        \
 
-         return _mm_aes##dirlong##last_si128(v, *keysched);              \
 
-     }
 
- NI_CIPHER(128, e, enc, REP9)
 
- NI_CIPHER(128, d, dec, REP9)
 
- NI_CIPHER(192, e, enc, REP11)
 
- NI_CIPHER(192, d, dec, REP11)
 
- NI_CIPHER(256, e, enc, REP13)
 
- NI_CIPHER(256, d, dec, REP13)
 
- /*
 
-  * The main key expansion.
 
-  */
 
- static FUNC_ISA void aes_ni_key_expand(
 
-     const unsigned char *key, size_t key_words,
 
-     __m128i *keysched_e, __m128i *keysched_d)
 
- {
 
-     size_t rounds = key_words + 6;
 
-     size_t sched_words = (rounds + 1) * 4;
 
-     /*
 
-      * Store the key schedule as 32-bit integers during expansion, so
 
-      * that it's easy to refer back to individual previous words. We
 
-      * collect them into the final __m128i form at the end.
 
-      */
 
-     uint32_t sched[MAXROUNDKEYS * 4];
 
-     unsigned rconpos = 0;
 
-     for (size_t i = 0; i < sched_words; i++) {
 
-         if (i < key_words) {
 
-             sched[i] = GET_32BIT_LSB_FIRST(key + 4 * i);
 
-         } else {
 
-             uint32_t temp = sched[i - 1];
 
-             bool rotate_and_round_constant = (i % key_words == 0);
 
-             bool only_sub = (key_words == 8 && i % 8 == 4);
 
-             if (rotate_and_round_constant) {
 
-                 __m128i v = _mm_setr_epi32(0,temp,0,0);
 
-                 v = _mm_aeskeygenassist_si128(v, 0);
 
-                 temp = _mm_extract_epi32(v, 1);
 
-                 assert(rconpos < lenof(key_setup_round_constants));
 
-                 temp ^= key_setup_round_constants[rconpos++];
 
-             } else if (only_sub) {
 
-                 __m128i v = _mm_setr_epi32(0,temp,0,0);
 
-                 v = _mm_aeskeygenassist_si128(v, 0);
 
-                 temp = _mm_extract_epi32(v, 0);
 
-             }
 
-             sched[i] = sched[i - key_words] ^ temp;
 
-         }
 
-     }
 
-     /*
 
-      * Combine the key schedule words into __m128i vectors and store
 
-      * them in the output context.
 
-      */
 
-     for (size_t round = 0; round <= rounds; round++)
 
-         keysched_e[round] = _mm_setr_epi32(
 
-             sched[4*round  ], sched[4*round+1],
 
-             sched[4*round+2], sched[4*round+3]);
 
-     smemclr(sched, sizeof(sched));
 
-     /*
 
-      * Now prepare the modified keys for the inverse cipher.
 
-      */
 
-     for (size_t eround = 0; eround <= rounds; eround++) {
 
-         size_t dround = rounds - eround;
 
-         __m128i rkey = keysched_e[eround];
 
-         if (eround && dround)      /* neither first nor last */
 
-             rkey = _mm_aesimc_si128(rkey);
 
-         keysched_d[dround] = rkey;
 
-     }
 
- }
 
- /*
 
-  * Auxiliary routine to increment the 128-bit counter used in SDCTR
 
-  * mode.
 
-  */
 
- static FUNC_ISA inline __m128i aes_ni_sdctr_increment(__m128i v)
 
- {
 
-     const __m128i ONE  = _mm_setr_epi32(1,0,0,0);
 
-     const __m128i ZERO = _mm_setzero_si128();
 
-     /* Increment the low-order 64 bits of v */
 
-     v  = _mm_add_epi64(v, ONE);
 
-     /* Check if they've become zero */
 
-     __m128i cmp = _mm_cmpeq_epi64(v, ZERO);
 
-     /* If so, the low half of cmp is all 1s. Pack that into the high
 
-      * half of addend with zero in the low half. */
 
-     __m128i addend = _mm_unpacklo_epi64(ZERO, cmp);
 
-     /* And subtract that from v, which increments the high 64 bits iff
 
-      * the low 64 wrapped round. */
 
-     v = _mm_sub_epi64(v, addend);
 
-     return v;
 
- }
 
- /*
 
-  * Auxiliary routine to reverse the byte order of a vector, so that
 
-  * the SDCTR IV can be made big-endian for feeding to the cipher.
 
-  */
 
- static FUNC_ISA inline __m128i aes_ni_sdctr_reverse(__m128i v)
 
- {
 
-     v = _mm_shuffle_epi8(
 
-         v, _mm_setr_epi8(15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0));
 
-     return v;
 
- }
 
- /*
 
-  * The SSH interface and the cipher modes.
 
-  */
 
- typedef struct aes_ni_context aes_ni_context;
 
- struct aes_ni_context {
 
-     __m128i keysched_e[MAXROUNDKEYS], keysched_d[MAXROUNDKEYS], iv;
 
-     void *pointer_to_free;
 
-     ssh_cipher ciph;
 
- };
 
- static ssh_cipher *aes_hw_new(const ssh_cipheralg *alg)
 
- {
 
-     if (!aes_hw_available_cached())
 
-         return NULL;
 
-     /*
 
-      * The __m128i variables in the context structure need to be
 
-      * 16-byte aligned, but not all malloc implementations that this
 
-      * code has to work with will guarantee to return a 16-byte
 
-      * aligned pointer. So we over-allocate, manually realign the
 
-      * pointer ourselves, and store the original one inside the
 
-      * context so we know how to free it later.
 
-      */
 
-     void *allocation = smalloc(sizeof(aes_ni_context) + 15);
 
-     uintptr_t alloc_address = (uintptr_t)allocation;
 
-     uintptr_t aligned_address = (alloc_address + 15) & ~15;
 
-     aes_ni_context *ctx = (aes_ni_context *)aligned_address;
 
-     ctx->ciph.vt = alg;
 
-     ctx->pointer_to_free = allocation;
 
-     return &ctx->ciph;
 
- }
 
- static void aes_hw_free(ssh_cipher *ciph)
 
- {
 
-     aes_ni_context *ctx = container_of(ciph, aes_ni_context, ciph);
 
-     void *allocation = ctx->pointer_to_free;
 
-     smemclr(ctx, sizeof(*ctx));
 
-     sfree(allocation);
 
- }
 
- static void aes_hw_setkey(ssh_cipher *ciph, const void *vkey)
 
- {
 
-     aes_ni_context *ctx = container_of(ciph, aes_ni_context, ciph);
 
-     const unsigned char *key = (const unsigned char *)vkey;
 
-     aes_ni_key_expand(key, ctx->ciph.vt->real_keybits / 32,
 
-                       ctx->keysched_e, ctx->keysched_d);
 
- }
 
- static FUNC_ISA void aes_hw_setiv_cbc(ssh_cipher *ciph, const void *iv)
 
- {
 
-     aes_ni_context *ctx = container_of(ciph, aes_ni_context, ciph);
 
-     ctx->iv = _mm_loadu_si128(iv);
 
- }
 
- static FUNC_ISA void aes_hw_setiv_sdctr(ssh_cipher *ciph, const void *iv)
 
- {
 
-     aes_ni_context *ctx = container_of(ciph, aes_ni_context, ciph);
 
-     __m128i counter = _mm_loadu_si128(iv);
 
-     ctx->iv = aes_ni_sdctr_reverse(counter);
 
- }
 
- typedef __m128i (*aes_ni_fn)(__m128i v, const __m128i *keysched);
 
- static FUNC_ISA inline void aes_cbc_ni_encrypt(
 
-     ssh_cipher *ciph, void *vblk, int blklen, aes_ni_fn encrypt)
 
- {
 
-     aes_ni_context *ctx = container_of(ciph, aes_ni_context, ciph);
 
-     for (uint8_t *blk = (uint8_t *)vblk, *finish = blk + blklen;
 
-          blk < finish; blk += 16) {
 
-         __m128i plaintext = _mm_loadu_si128((const __m128i *)blk);
 
-         __m128i cipher_input = _mm_xor_si128(plaintext, ctx->iv);
 
-         __m128i ciphertext = encrypt(cipher_input, ctx->keysched_e);
 
-         _mm_storeu_si128((__m128i *)blk, ciphertext);
 
-         ctx->iv = ciphertext;
 
-     }
 
- }
 
- static FUNC_ISA inline void aes_cbc_ni_decrypt(
 
-     ssh_cipher *ciph, void *vblk, int blklen, aes_ni_fn decrypt)
 
- {
 
-     aes_ni_context *ctx = container_of(ciph, aes_ni_context, ciph);
 
-     for (uint8_t *blk = (uint8_t *)vblk, *finish = blk + blklen;
 
-          blk < finish; blk += 16) {
 
-         __m128i ciphertext = _mm_loadu_si128((const __m128i *)blk);
 
-         __m128i decrypted = decrypt(ciphertext, ctx->keysched_d);
 
-         __m128i plaintext = _mm_xor_si128(decrypted, ctx->iv);
 
-         _mm_storeu_si128((__m128i *)blk, plaintext);
 
-         ctx->iv = ciphertext;
 
-     }
 
- }
 
- static FUNC_ISA inline void aes_sdctr_ni(
 
-     ssh_cipher *ciph, void *vblk, int blklen, aes_ni_fn encrypt)
 
- {
 
-     aes_ni_context *ctx = container_of(ciph, aes_ni_context, ciph);
 
-     for (uint8_t *blk = (uint8_t *)vblk, *finish = blk + blklen;
 
-          blk < finish; blk += 16) {
 
-         __m128i counter = aes_ni_sdctr_reverse(ctx->iv);
 
-         __m128i keystream = encrypt(counter, ctx->keysched_e);
 
-         __m128i input = _mm_loadu_si128((const __m128i *)blk);
 
-         __m128i output = _mm_xor_si128(input, keystream);
 
-         _mm_storeu_si128((__m128i *)blk, output);
 
-         ctx->iv = aes_ni_sdctr_increment(ctx->iv);
 
-     }
 
- }
 
- #define NI_ENC_DEC(len)                                                 \
 
-     static FUNC_ISA void aes##len##_cbc_hw_encrypt(                     \
 
-         ssh_cipher *ciph, void *vblk, int blklen)                       \
 
-     { aes_cbc_ni_encrypt(ciph, vblk, blklen, aes_ni_##len##_e); }       \
 
-     static FUNC_ISA void aes##len##_cbc_hw_decrypt(                     \
 
-         ssh_cipher *ciph, void *vblk, int blklen)                       \
 
-     { aes_cbc_ni_decrypt(ciph, vblk, blklen, aes_ni_##len##_d); }       \
 
-     static FUNC_ISA void aes##len##_sdctr_hw(                           \
 
-         ssh_cipher *ciph, void *vblk, int blklen)                       \
 
-     { aes_sdctr_ni(ciph, vblk, blklen, aes_ni_##len##_e); }             \
 
- NI_ENC_DEC(128)
 
- NI_ENC_DEC(192)
 
- NI_ENC_DEC(256)
 
- /* ----------------------------------------------------------------------
 
-  * Hardware-accelerated implementation of AES using Arm NEON.
 
-  */
 
- #elif HW_AES == HW_AES_NEON
 
- /*
 
-  * Manually set the target architecture, if we decided above that we
 
-  * need to.
 
-  */
 
- #ifdef USE_CLANG_ATTR_TARGET_AARCH64
 
- /*
 
-  * A spot of cheating: redefine some ACLE feature macros before
 
-  * including arm_neon.h. Otherwise we won't get the AES intrinsics
 
-  * defined by that header, because it will be looking at the settings
 
-  * for the whole translation unit rather than the ones we're going to
 
-  * put on some particular functions using __attribute__((target)).
 
-  */
 
- #define __ARM_NEON 1
 
- #define __ARM_FEATURE_CRYPTO 1
 
- #define __ARM_FEATURE_AES 1
 
- #define FUNC_ISA __attribute__ ((target("neon,crypto")))
 
- #endif /* USE_CLANG_ATTR_TARGET_AARCH64 */
 
- #ifndef FUNC_ISA
 
- #define FUNC_ISA
 
- #endif
 
- #ifdef USE_ARM64_NEON_H
 
- #include <arm64_neon.h>
 
- #else
 
- #include <arm_neon.h>
 
- #endif
 
- static bool aes_hw_available(void)
 
- {
 
-     /*
 
-      * For Arm, we delegate to a per-platform AES detection function,
 
-      * because it has to be implemented by asking the operating system
 
-      * rather than directly querying the CPU.
 
-      *
 
-      * That's because Arm systems commonly have multiple cores that
 
-      * are not all alike, so any method of querying whether NEON
 
-      * crypto instructions work on the _current_ CPU - even one as
 
-      * crude as just trying one and catching the SIGILL - wouldn't
 
-      * give an answer that you could still rely on the first time the
 
-      * OS migrated your process to another CPU.
 
-      */
 
-     return platform_aes_hw_available();
 
- }
 
- /*
 
-  * Core NEON encrypt/decrypt functions, one per length and direction.
 
-  */
 
- #define NEON_CIPHER(len, repmacro)                              \
 
-     static FUNC_ISA inline uint8x16_t aes_neon_##len##_e(       \
 
-         uint8x16_t v, const uint8x16_t *keysched)               \
 
-     {                                                           \
 
-         repmacro(v = vaesmcq_u8(vaeseq_u8(v, *keysched++)););   \
 
-         v = vaeseq_u8(v, *keysched++);                          \
 
-         return veorq_u8(v, *keysched);                          \
 
-     }                                                           \
 
-     static FUNC_ISA inline uint8x16_t aes_neon_##len##_d(       \
 
-         uint8x16_t v, const uint8x16_t *keysched)               \
 
-     {                                                           \
 
-         repmacro(v = vaesimcq_u8(vaesdq_u8(v, *keysched++)););  \
 
-         v = vaesdq_u8(v, *keysched++);                          \
 
-         return veorq_u8(v, *keysched);                          \
 
-     }
 
- NEON_CIPHER(128, REP9)
 
- NEON_CIPHER(192, REP11)
 
- NEON_CIPHER(256, REP13)
 
- /*
 
-  * The main key expansion.
 
-  */
 
- static FUNC_ISA void aes_neon_key_expand(
 
-     const unsigned char *key, size_t key_words,
 
-     uint8x16_t *keysched_e, uint8x16_t *keysched_d)
 
- {
 
-     size_t rounds = key_words + 6;
 
-     size_t sched_words = (rounds + 1) * 4;
 
-     /*
 
-      * Store the key schedule as 32-bit integers during expansion, so
 
-      * that it's easy to refer back to individual previous words. We
 
-      * collect them into the final uint8x16_t form at the end.
 
-      */
 
-     uint32_t sched[MAXROUNDKEYS * 4];
 
-     unsigned rconpos = 0;
 
-     for (size_t i = 0; i < sched_words; i++) {
 
-         if (i < key_words) {
 
-             sched[i] = GET_32BIT_LSB_FIRST(key + 4 * i);
 
-         } else {
 
-             uint32_t temp = sched[i - 1];
 
-             bool rotate_and_round_constant = (i % key_words == 0);
 
-             bool sub = rotate_and_round_constant ||
 
-                 (key_words == 8 && i % 8 == 4);
 
-             if (rotate_and_round_constant)
 
-                 temp = (temp << 24) | (temp >> 8);
 
-             if (sub) {
 
-                 uint32x4_t v32 = vdupq_n_u32(temp);
 
-                 uint8x16_t v8 = vreinterpretq_u8_u32(v32);
 
-                 v8 = vaeseq_u8(v8, vdupq_n_u8(0));
 
-                 v32 = vreinterpretq_u32_u8(v8);
 
-                 temp = vget_lane_u32(vget_low_u32(v32), 0);
 
-             }
 
-             if (rotate_and_round_constant) {
 
-                 assert(rconpos < lenof(key_setup_round_constants));
 
-                 temp ^= key_setup_round_constants[rconpos++];
 
-             }
 
-             sched[i] = sched[i - key_words] ^ temp;
 
-         }
 
-     }
 
-     /*
 
-      * Combine the key schedule words into uint8x16_t vectors and
 
-      * store them in the output context.
 
-      */
 
-     for (size_t round = 0; round <= rounds; round++)
 
-         keysched_e[round] = vreinterpretq_u8_u32(vld1q_u32(sched + 4*round));
 
-     smemclr(sched, sizeof(sched));
 
-     /*
 
-      * Now prepare the modified keys for the inverse cipher.
 
-      */
 
-     for (size_t eround = 0; eround <= rounds; eround++) {
 
-         size_t dround = rounds - eround;
 
-         uint8x16_t rkey = keysched_e[eround];
 
-         if (eround && dround)      /* neither first nor last */
 
-             rkey = vaesimcq_u8(rkey);
 
-         keysched_d[dround] = rkey;
 
-     }
 
- }
 
- /*
 
-  * Auxiliary routine to reverse the byte order of a vector, so that
 
-  * the SDCTR IV can be made big-endian for feeding to the cipher.
 
-  *
 
-  * In fact we don't need to reverse the vector _all_ the way; we leave
 
-  * the two lanes in MSW,LSW order, because that makes no difference to
 
-  * the efficiency of the increment. That way we only have to reverse
 
-  * bytes within each lane in this function.
 
-  */
 
- static FUNC_ISA inline uint8x16_t aes_neon_sdctr_reverse(uint8x16_t v)
 
- {
 
-     return vrev64q_u8(v);
 
- }
 
- /*
 
-  * Auxiliary routine to increment the 128-bit counter used in SDCTR
 
-  * mode. There's no instruction to treat a 128-bit vector as a single
 
-  * long integer, so instead we have to increment the bottom half
 
-  * unconditionally, and the top half if the bottom half started off as
 
-  * all 1s (in which case there was about to be a carry).
 
-  */
 
- static FUNC_ISA inline uint8x16_t aes_neon_sdctr_increment(uint8x16_t in)
 
- {
 
- #ifdef __aarch64__
 
-     /* There will be a carry if the low 64 bits are all 1s. */
 
-     uint64x1_t all1 = vcreate_u64(0xFFFFFFFFFFFFFFFF);
 
-     uint64x1_t carry = vceq_u64(vget_high_u64(vreinterpretq_u64_u8(in)), all1);
 
-     /* Make a word whose bottom half is unconditionally all 1s, and
 
-      * the top half is 'carry', i.e. all 0s most of the time but all
 
-      * 1s if we need to increment the top half. Then that word is what
 
-      * we need to _subtract_ from the input counter. */
 
-     uint64x2_t subtrahend = vcombine_u64(carry, all1);
 
- #else
 
-     /* AArch32 doesn't have comparisons that operate on a 64-bit lane,
 
-      * so we start by comparing each 32-bit half of the low 64 bits
 
-      * _separately_ to all-1s. */
 
-     uint32x2_t all1 = vdup_n_u32(0xFFFFFFFF);
 
-     uint32x2_t carry = vceq_u32(
 
-         vget_high_u32(vreinterpretq_u32_u8(in)), all1);
 
-     /* Swap the 32-bit words of the compare output, and AND with the
 
-      * unswapped version. Now carry is all 1s iff the bottom half of
 
-      * the input counter was all 1s, and all 0s otherwise. */
 
-     carry = vand_u32(carry, vrev64_u32(carry));
 
-     /* Now make the vector to subtract in the same way as above. */
 
-     uint64x2_t subtrahend = vreinterpretq_u64_u32(vcombine_u32(carry, all1));
 
- #endif
 
-     return vreinterpretq_u8_u64(
 
-         vsubq_u64(vreinterpretq_u64_u8(in), subtrahend));
 
- }
 
- /*
 
-  * The SSH interface and the cipher modes.
 
-  */
 
- typedef struct aes_neon_context aes_neon_context;
 
- struct aes_neon_context {
 
-     uint8x16_t keysched_e[MAXROUNDKEYS], keysched_d[MAXROUNDKEYS], iv;
 
-     ssh_cipher ciph;
 
- };
 
- static ssh_cipher *aes_hw_new(const ssh_cipheralg *alg)
 
- {
 
-     if (!aes_hw_available_cached())
 
-         return NULL;
 
-     aes_neon_context *ctx = snew(aes_neon_context);
 
-     ctx->ciph.vt = alg;
 
-     return &ctx->ciph;
 
- }
 
- static void aes_hw_free(ssh_cipher *ciph)
 
- {
 
-     aes_neon_context *ctx = container_of(ciph, aes_neon_context, ciph);
 
-     smemclr(ctx, sizeof(*ctx));
 
-     sfree(ctx);
 
- }
 
- static void aes_hw_setkey(ssh_cipher *ciph, const void *vkey)
 
- {
 
-     aes_neon_context *ctx = container_of(ciph, aes_neon_context, ciph);
 
-     const unsigned char *key = (const unsigned char *)vkey;
 
-     aes_neon_key_expand(key, ctx->ciph.vt->real_keybits / 32,
 
-                       ctx->keysched_e, ctx->keysched_d);
 
- }
 
- static FUNC_ISA void aes_hw_setiv_cbc(ssh_cipher *ciph, const void *iv)
 
- {
 
-     aes_neon_context *ctx = container_of(ciph, aes_neon_context, ciph);
 
-     ctx->iv = vld1q_u8(iv);
 
- }
 
- static FUNC_ISA void aes_hw_setiv_sdctr(ssh_cipher *ciph, const void *iv)
 
- {
 
-     aes_neon_context *ctx = container_of(ciph, aes_neon_context, ciph);
 
-     uint8x16_t counter = vld1q_u8(iv);
 
-     ctx->iv = aes_neon_sdctr_reverse(counter);
 
- }
 
- typedef uint8x16_t (*aes_neon_fn)(uint8x16_t v, const uint8x16_t *keysched);
 
- static FUNC_ISA inline void aes_cbc_neon_encrypt(
 
-     ssh_cipher *ciph, void *vblk, int blklen, aes_neon_fn encrypt)
 
- {
 
-     aes_neon_context *ctx = container_of(ciph, aes_neon_context, ciph);
 
-     for (uint8_t *blk = (uint8_t *)vblk, *finish = blk + blklen;
 
-          blk < finish; blk += 16) {
 
-         uint8x16_t plaintext = vld1q_u8(blk);
 
-         uint8x16_t cipher_input = veorq_u8(plaintext, ctx->iv);
 
-         uint8x16_t ciphertext = encrypt(cipher_input, ctx->keysched_e);
 
-         vst1q_u8(blk, ciphertext);
 
-         ctx->iv = ciphertext;
 
-     }
 
- }
 
- static FUNC_ISA inline void aes_cbc_neon_decrypt(
 
-     ssh_cipher *ciph, void *vblk, int blklen, aes_neon_fn decrypt)
 
- {
 
-     aes_neon_context *ctx = container_of(ciph, aes_neon_context, ciph);
 
-     for (uint8_t *blk = (uint8_t *)vblk, *finish = blk + blklen;
 
-          blk < finish; blk += 16) {
 
-         uint8x16_t ciphertext = vld1q_u8(blk);
 
-         uint8x16_t decrypted = decrypt(ciphertext, ctx->keysched_d);
 
-         uint8x16_t plaintext = veorq_u8(decrypted, ctx->iv);
 
-         vst1q_u8(blk, plaintext);
 
-         ctx->iv = ciphertext;
 
-     }
 
- }
 
- static FUNC_ISA inline void aes_sdctr_neon(
 
-     ssh_cipher *ciph, void *vblk, int blklen, aes_neon_fn encrypt)
 
- {
 
-     aes_neon_context *ctx = container_of(ciph, aes_neon_context, ciph);
 
-     for (uint8_t *blk = (uint8_t *)vblk, *finish = blk + blklen;
 
-          blk < finish; blk += 16) {
 
-         uint8x16_t counter = aes_neon_sdctr_reverse(ctx->iv);
 
-         uint8x16_t keystream = encrypt(counter, ctx->keysched_e);
 
-         uint8x16_t input = vld1q_u8(blk);
 
-         uint8x16_t output = veorq_u8(input, keystream);
 
-         vst1q_u8(blk, output);
 
-         ctx->iv = aes_neon_sdctr_increment(ctx->iv);
 
-     }
 
- }
 
- #define NEON_ENC_DEC(len)                                               \
 
-     static FUNC_ISA void aes##len##_cbc_hw_encrypt(                     \
 
-         ssh_cipher *ciph, void *vblk, int blklen)                       \
 
-     { aes_cbc_neon_encrypt(ciph, vblk, blklen, aes_neon_##len##_e); }   \
 
-     static FUNC_ISA void aes##len##_cbc_hw_decrypt(                     \
 
-         ssh_cipher *ciph, void *vblk, int blklen)                       \
 
-     { aes_cbc_neon_decrypt(ciph, vblk, blklen, aes_neon_##len##_d); }   \
 
-     static FUNC_ISA void aes##len##_sdctr_hw(                           \
 
-         ssh_cipher *ciph, void *vblk, int blklen)                       \
 
-     { aes_sdctr_neon(ciph, vblk, blklen, aes_neon_##len##_e); }         \
 
- NEON_ENC_DEC(128)
 
- NEON_ENC_DEC(192)
 
- NEON_ENC_DEC(256)
 
- /* ----------------------------------------------------------------------
 
-  * Stub functions if we have no hardware-accelerated AES. In this
 
-  * case, aes_hw_new returns NULL (though it should also never be
 
-  * selected by aes_select, so the only thing that should even be
 
-  * _able_ to call it is testcrypt). As a result, the remaining vtable
 
-  * functions should never be called at all.
 
-  */
 
- #elif HW_AES == HW_AES_NONE
 
- bool aes_hw_available(void)
 
- {
 
-     return false;
 
- }
 
- static ssh_cipher *aes_hw_new(const ssh_cipheralg *alg)
 
- {
 
-     return NULL;
 
- }
 
- #define STUB_BODY { unreachable("Should never be called"); }
 
- static void aes_hw_free(ssh_cipher *ciph) STUB_BODY
 
- static void aes_hw_setkey(ssh_cipher *ciph, const void *key) STUB_BODY
 
- static void aes_hw_setiv_cbc(ssh_cipher *ciph, const void *iv) STUB_BODY
 
- static void aes_hw_setiv_sdctr(ssh_cipher *ciph, const void *iv) STUB_BODY
 
- #define STUB_ENC_DEC(len)                                       \
 
-     static void aes##len##_cbc_hw_encrypt(                      \
 
-         ssh_cipher *ciph, void *vblk, int blklen) STUB_BODY     \
 
-     static void aes##len##_cbc_hw_decrypt(                      \
 
-         ssh_cipher *ciph, void *vblk, int blklen) STUB_BODY     \
 
-     static void aes##len##_sdctr_hw(                            \
 
-         ssh_cipher *ciph, void *vblk, int blklen) STUB_BODY
 
- STUB_ENC_DEC(128)
 
- STUB_ENC_DEC(192)
 
- STUB_ENC_DEC(256)
 
- #endif /* HW_AES */
 
 
  |