sshdes.c 41 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178
  1. #include <assert.h>
  2. #include "ssh.h"
  3. /* des.c - implementation of DES
  4. */
  5. /*
  6. * Description of DES
  7. * ------------------
  8. *
  9. * Unlike the description in FIPS 46, I'm going to use _sensible_ indices:
  10. * bits in an n-bit word are numbered from 0 at the LSB to n-1 at the MSB.
  11. * And S-boxes are indexed by six consecutive bits, not by the outer two
  12. * followed by the middle four.
  13. *
  14. * The DES encryption routine requires a 64-bit input, and a key schedule K
  15. * containing 16 48-bit elements.
  16. *
  17. * First the input is permuted by the initial permutation IP.
  18. * Then the input is split into 32-bit words L and R. (L is the MSW.)
  19. * Next, 16 rounds. In each round:
  20. * (L, R) <- (R, L xor f(R, K[i]))
  21. * Then the pre-output words L and R are swapped.
  22. * Then L and R are glued back together into a 64-bit word. (L is the MSW,
  23. * again, but since we just swapped them, the MSW is the R that came out
  24. * of the last round.)
  25. * The 64-bit output block is permuted by the inverse of IP and returned.
  26. *
  27. * Decryption is identical except that the elements of K are used in the
  28. * opposite order. (This wouldn't work if that word swap didn't happen.)
  29. *
  30. * The function f, used in each round, accepts a 32-bit word R and a
  31. * 48-bit key block K. It produces a 32-bit output.
  32. *
  33. * First R is expanded to 48 bits using the bit-selection function E.
  34. * The resulting 48-bit block is XORed with the key block K to produce
  35. * a 48-bit block X.
  36. * This block X is split into eight groups of 6 bits. Each group of 6
  37. * bits is then looked up in one of the eight S-boxes to convert
  38. * it to 4 bits. These eight groups of 4 bits are glued back
  39. * together to produce a 32-bit preoutput block.
  40. * The preoutput block is permuted using the permutation P and returned.
  41. *
  42. * Key setup maps a 64-bit key word into a 16x48-bit key schedule. Although
  43. * the approved input format for the key is a 64-bit word, eight of the
  44. * bits are discarded, so the actual quantity of key used is 56 bits.
  45. *
  46. * First the input key is converted to two 28-bit words C and D using
  47. * the bit-selection function PC1.
  48. * Then 16 rounds of key setup occur. In each round, C and D are each
  49. * rotated left by either 1 or 2 bits (depending on which round), and
  50. * then converted into a key schedule element using the bit-selection
  51. * function PC2.
  52. *
  53. * That's the actual algorithm. Now for the tedious details: all those
  54. * painful permutations and lookup tables.
  55. *
  56. * IP is a 64-to-64 bit permutation. Its output contains the following
  57. * bits of its input (listed in order MSB to LSB of output).
  58. *
  59. * 6 14 22 30 38 46 54 62 4 12 20 28 36 44 52 60
  60. * 2 10 18 26 34 42 50 58 0 8 16 24 32 40 48 56
  61. * 7 15 23 31 39 47 55 63 5 13 21 29 37 45 53 61
  62. * 3 11 19 27 35 43 51 59 1 9 17 25 33 41 49 57
  63. *
  64. * E is a 32-to-48 bit selection function. Its output contains the following
  65. * bits of its input (listed in order MSB to LSB of output).
  66. *
  67. * 0 31 30 29 28 27 28 27 26 25 24 23 24 23 22 21 20 19 20 19 18 17 16 15
  68. * 16 15 14 13 12 11 12 11 10 9 8 7 8 7 6 5 4 3 4 3 2 1 0 31
  69. *
  70. * The S-boxes are arbitrary table-lookups each mapping a 6-bit input to a
  71. * 4-bit output. In other words, each S-box is an array[64] of 4-bit numbers.
  72. * The S-boxes are listed below. The first S-box listed is applied to the
  73. * most significant six bits of the block X; the last one is applied to the
  74. * least significant.
  75. *
  76. * 14 0 4 15 13 7 1 4 2 14 15 2 11 13 8 1
  77. * 3 10 10 6 6 12 12 11 5 9 9 5 0 3 7 8
  78. * 4 15 1 12 14 8 8 2 13 4 6 9 2 1 11 7
  79. * 15 5 12 11 9 3 7 14 3 10 10 0 5 6 0 13
  80. *
  81. * 15 3 1 13 8 4 14 7 6 15 11 2 3 8 4 14
  82. * 9 12 7 0 2 1 13 10 12 6 0 9 5 11 10 5
  83. * 0 13 14 8 7 10 11 1 10 3 4 15 13 4 1 2
  84. * 5 11 8 6 12 7 6 12 9 0 3 5 2 14 15 9
  85. *
  86. * 10 13 0 7 9 0 14 9 6 3 3 4 15 6 5 10
  87. * 1 2 13 8 12 5 7 14 11 12 4 11 2 15 8 1
  88. * 13 1 6 10 4 13 9 0 8 6 15 9 3 8 0 7
  89. * 11 4 1 15 2 14 12 3 5 11 10 5 14 2 7 12
  90. *
  91. * 7 13 13 8 14 11 3 5 0 6 6 15 9 0 10 3
  92. * 1 4 2 7 8 2 5 12 11 1 12 10 4 14 15 9
  93. * 10 3 6 15 9 0 0 6 12 10 11 1 7 13 13 8
  94. * 15 9 1 4 3 5 14 11 5 12 2 7 8 2 4 14
  95. *
  96. * 2 14 12 11 4 2 1 12 7 4 10 7 11 13 6 1
  97. * 8 5 5 0 3 15 15 10 13 3 0 9 14 8 9 6
  98. * 4 11 2 8 1 12 11 7 10 1 13 14 7 2 8 13
  99. * 15 6 9 15 12 0 5 9 6 10 3 4 0 5 14 3
  100. *
  101. * 12 10 1 15 10 4 15 2 9 7 2 12 6 9 8 5
  102. * 0 6 13 1 3 13 4 14 14 0 7 11 5 3 11 8
  103. * 9 4 14 3 15 2 5 12 2 9 8 5 12 15 3 10
  104. * 7 11 0 14 4 1 10 7 1 6 13 0 11 8 6 13
  105. *
  106. * 4 13 11 0 2 11 14 7 15 4 0 9 8 1 13 10
  107. * 3 14 12 3 9 5 7 12 5 2 10 15 6 8 1 6
  108. * 1 6 4 11 11 13 13 8 12 1 3 4 7 10 14 7
  109. * 10 9 15 5 6 0 8 15 0 14 5 2 9 3 2 12
  110. *
  111. * 13 1 2 15 8 13 4 8 6 10 15 3 11 7 1 4
  112. * 10 12 9 5 3 6 14 11 5 0 0 14 12 9 7 2
  113. * 7 2 11 1 4 14 1 7 9 4 12 10 14 8 2 13
  114. * 0 15 6 12 10 9 13 0 15 3 3 5 5 6 8 11
  115. *
  116. * P is a 32-to-32 bit permutation. Its output contains the following
  117. * bits of its input (listed in order MSB to LSB of output).
  118. *
  119. * 16 25 12 11 3 20 4 15 31 17 9 6 27 14 1 22
  120. * 30 24 8 18 0 5 29 23 13 19 2 26 10 21 28 7
  121. *
  122. * PC1 is a 64-to-56 bit selection function. Its output is in two words,
  123. * C and D. The word C contains the following bits of its input (listed
  124. * in order MSB to LSB of output).
  125. *
  126. * 7 15 23 31 39 47 55 63 6 14 22 30 38 46
  127. * 54 62 5 13 21 29 37 45 53 61 4 12 20 28
  128. *
  129. * And the word D contains these bits.
  130. *
  131. * 1 9 17 25 33 41 49 57 2 10 18 26 34 42
  132. * 50 58 3 11 19 27 35 43 51 59 36 44 52 60
  133. *
  134. * PC2 is a 56-to-48 bit selection function. Its input is in two words,
  135. * C and D. These are treated as one 56-bit word (with C more significant,
  136. * so that bits 55 to 28 of the word are bits 27 to 0 of C, and bits 27 to
  137. * 0 of the word are bits 27 to 0 of D). The output contains the following
  138. * bits of this 56-bit input word (listed in order MSB to LSB of output).
  139. *
  140. * 42 39 45 32 55 51 53 28 41 50 35 46 33 37 44 52 30 48 40 49 29 36 43 54
  141. * 15 4 25 19 9 1 26 16 5 11 23 8 12 7 17 0 22 3 10 14 6 20 27 24
  142. */
  143. /*
  144. * Implementation details
  145. * ----------------------
  146. *
  147. * If you look at the code in this module, you'll find it looks
  148. * nothing _like_ the above algorithm. Here I explain the
  149. * differences...
  150. *
  151. * Key setup has not been heavily optimised here. We are not
  152. * concerned with key agility: we aren't codebreakers. We don't
  153. * mind a little delay (and it really is a little one; it may be a
  154. * factor of five or so slower than it could be but it's still not
  155. * an appreciable length of time) while setting up. The only tweaks
  156. * in the key setup are ones which change the format of the key
  157. * schedule to speed up the actual encryption. I'll describe those
  158. * below.
  159. *
  160. * The first and most obvious optimisation is the S-boxes. Since
  161. * each S-box always targets the same four bits in the final 32-bit
  162. * word, so the output from (for example) S-box 0 must always be
  163. * shifted left 28 bits, we can store the already-shifted outputs
  164. * in the lookup tables. This reduces lookup-and-shift to lookup,
  165. * so the S-box step is now just a question of ORing together eight
  166. * table lookups.
  167. *
  168. * The permutation P is just a bit order change; it's invariant
  169. * with respect to OR, in that P(x)|P(y) = P(x|y). Therefore, we
  170. * can apply P to every entry of the S-box tables and then we don't
  171. * have to do it in the code of f(). This yields a set of tables
  172. * which might be called SP-boxes.
  173. *
  174. * The bit-selection function E is our next target. Note that E is
  175. * immediately followed by the operation of splitting into 6-bit
  176. * chunks. Examining the 6-bit chunks coming out of E we notice
  177. * they're all contiguous within the word (speaking cyclically -
  178. * the end two wrap round); so we can extract those bit strings
  179. * individually rather than explicitly running E. This would yield
  180. * code such as
  181. *
  182. * y |= SPboxes[0][ (rotl(R, 5) ^ top6bitsofK) & 0x3F ];
  183. * t |= SPboxes[1][ (rotl(R,11) ^ next6bitsofK) & 0x3F ];
  184. *
  185. * and so on; and the key schedule preparation would have to
  186. * provide each 6-bit chunk separately.
  187. *
  188. * Really we'd like to XOR in the key schedule element before
  189. * looking up bit strings in R. This we can't do, naively, because
  190. * the 6-bit strings we want overlap. But look at the strings:
  191. *
  192. * 3322222222221111111111
  193. * bit 10987654321098765432109876543210
  194. *
  195. * box0 XXXXX X
  196. * box1 XXXXXX
  197. * box2 XXXXXX
  198. * box3 XXXXXX
  199. * box4 XXXXXX
  200. * box5 XXXXXX
  201. * box6 XXXXXX
  202. * box7 X XXXXX
  203. *
  204. * The bit strings we need to XOR in for boxes 0, 2, 4 and 6 don't
  205. * overlap with each other. Neither do the ones for boxes 1, 3, 5
  206. * and 7. So we could provide the key schedule in the form of two
  207. * words that we can separately XOR into R, and then every S-box
  208. * index is available as a (cyclically) contiguous 6-bit substring
  209. * of one or the other of the results.
  210. *
  211. * The comments in Eric Young's libdes implementation point out
  212. * that two of these bit strings require a rotation (rather than a
  213. * simple shift) to extract. It's unavoidable that at least _one_
  214. * must do; but we can actually run the whole inner algorithm (all
  215. * 16 rounds) rotated one bit to the left, so that what the `real'
  216. * DES description sees as L=0x80000001 we see as L=0x00000003.
  217. * This requires rotating all our SP-box entries one bit to the
  218. * left, and rotating each word of the key schedule elements one to
  219. * the left, and rotating L and R one bit left just after IP and
  220. * one bit right again just before FP. And in each round we convert
  221. * a rotate into a shift, so we've saved a few per cent.
  222. *
  223. * That's about it for the inner loop; the SP-box tables as listed
  224. * below are what I've described here (the original S value,
  225. * shifted to its final place in the input to P, run through P, and
  226. * then rotated one bit left). All that remains is to optimise the
  227. * initial permutation IP.
  228. *
  229. * IP is not an arbitrary permutation. It has the nice property
  230. * that if you take any bit number, write it in binary (6 bits),
  231. * permute those 6 bits and invert some of them, you get the final
  232. * position of that bit. Specifically, the bit whose initial
  233. * position is given (in binary) as fedcba ends up in position
  234. * AcbFED (where a capital letter denotes the inverse of a bit).
  235. *
  236. * We have the 64-bit data in two 32-bit words L and R, where bits
  237. * in L are those with f=1 and bits in R are those with f=0. We
  238. * note that we can do a simple transformation: suppose we exchange
  239. * the bits with f=1,c=0 and the bits with f=0,c=1. This will cause
  240. * the bit fedcba to be in position cedfba - we've `swapped' bits c
  241. * and f in the position of each bit!
  242. *
  243. * Better still, this transformation is easy. In the example above,
  244. * bits in L with c=0 are bits 0x0F0F0F0F, and those in R with c=1
  245. * are 0xF0F0F0F0. So we can do
  246. *
  247. * difference = ((R >> 4) ^ L) & 0x0F0F0F0F
  248. * R ^= (difference << 4)
  249. * L ^= difference
  250. *
  251. * to perform the swap. Let's denote this by bitswap(4,0x0F0F0F0F).
  252. * Also, we can invert the bit at the top just by exchanging L and
  253. * R. So in a few swaps and a few of these bit operations we can
  254. * do:
  255. *
  256. * Initially the position of bit fedcba is fedcba
  257. * Swap L with R to make it Fedcba
  258. * Perform bitswap( 4,0x0F0F0F0F) to make it cedFba
  259. * Perform bitswap(16,0x0000FFFF) to make it ecdFba
  260. * Swap L with R to make it EcdFba
  261. * Perform bitswap( 2,0x33333333) to make it bcdFEa
  262. * Perform bitswap( 8,0x00FF00FF) to make it dcbFEa
  263. * Swap L with R to make it DcbFEa
  264. * Perform bitswap( 1,0x55555555) to make it acbFED
  265. * Swap L with R to make it AcbFED
  266. *
  267. * (In the actual code the four swaps are implicit: R and L are
  268. * simply used the other way round in the first, second and last
  269. * bitswap operations.)
  270. *
  271. * The final permutation is just the inverse of IP, so it can be
  272. * performed by a similar set of operations.
  273. */
  274. typedef struct {
  275. word32 k0246[16], k1357[16];
  276. word32 iv0, iv1;
  277. } DESContext;
  278. #define rotl(x, c) ( (x << c) | (x >> (32-c)) )
  279. #define rotl28(x, c) ( ( (x << c) | (x >> (28-c)) ) & 0x0FFFFFFF)
  280. static word32 bitsel(word32 * input, const int *bitnums, int size)
  281. {
  282. word32 ret = 0;
  283. while (size--) {
  284. int bitpos = *bitnums++;
  285. ret <<= 1;
  286. if (bitpos >= 0)
  287. ret |= 1 & (input[bitpos / 32] >> (bitpos % 32));
  288. }
  289. return ret;
  290. }
  291. static void des_key_setup(word32 key_msw, word32 key_lsw, DESContext * sched)
  292. {
  293. static const int PC1_Cbits[] = {
  294. 7, 15, 23, 31, 39, 47, 55, 63, 6, 14, 22, 30, 38, 46,
  295. 54, 62, 5, 13, 21, 29, 37, 45, 53, 61, 4, 12, 20, 28
  296. };
  297. static const int PC1_Dbits[] = {
  298. 1, 9, 17, 25, 33, 41, 49, 57, 2, 10, 18, 26, 34, 42,
  299. 50, 58, 3, 11, 19, 27, 35, 43, 51, 59, 36, 44, 52, 60
  300. };
  301. /*
  302. * The bit numbers in the two lists below don't correspond to
  303. * the ones in the above description of PC2, because in the
  304. * above description C and D are concatenated so `bit 28' means
  305. * bit 0 of C. In this implementation we're using the standard
  306. * `bitsel' function above and C is in the second word, so bit
  307. * 0 of C is addressed by writing `32' here.
  308. */
  309. static const int PC2_0246[] = {
  310. 49, 36, 59, 55, -1, -1, 37, 41, 48, 56, 34, 52, -1, -1, 15, 4,
  311. 25, 19, 9, 1, -1, -1, 12, 7, 17, 0, 22, 3, -1, -1, 46, 43
  312. };
  313. static const int PC2_1357[] = {
  314. -1, -1, 57, 32, 45, 54, 39, 50, -1, -1, 44, 53, 33, 40, 47, 58,
  315. -1, -1, 26, 16, 5, 11, 23, 8, -1, -1, 10, 14, 6, 20, 27, 24
  316. };
  317. static const int leftshifts[] =
  318. { 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1 };
  319. word32 C, D;
  320. word32 buf[2];
  321. int i;
  322. buf[0] = key_lsw;
  323. buf[1] = key_msw;
  324. C = bitsel(buf, PC1_Cbits, 28);
  325. D = bitsel(buf, PC1_Dbits, 28);
  326. for (i = 0; i < 16; i++) {
  327. C = rotl28(C, leftshifts[i]);
  328. D = rotl28(D, leftshifts[i]);
  329. buf[0] = D;
  330. buf[1] = C;
  331. sched->k0246[i] = bitsel(buf, PC2_0246, 32);
  332. sched->k1357[i] = bitsel(buf, PC2_1357, 32);
  333. }
  334. sched->iv0 = sched->iv1 = 0;
  335. }
  336. static const word32 SPboxes[8][64] = {
  337. {0x01010400, 0x00000000, 0x00010000, 0x01010404,
  338. 0x01010004, 0x00010404, 0x00000004, 0x00010000,
  339. 0x00000400, 0x01010400, 0x01010404, 0x00000400,
  340. 0x01000404, 0x01010004, 0x01000000, 0x00000004,
  341. 0x00000404, 0x01000400, 0x01000400, 0x00010400,
  342. 0x00010400, 0x01010000, 0x01010000, 0x01000404,
  343. 0x00010004, 0x01000004, 0x01000004, 0x00010004,
  344. 0x00000000, 0x00000404, 0x00010404, 0x01000000,
  345. 0x00010000, 0x01010404, 0x00000004, 0x01010000,
  346. 0x01010400, 0x01000000, 0x01000000, 0x00000400,
  347. 0x01010004, 0x00010000, 0x00010400, 0x01000004,
  348. 0x00000400, 0x00000004, 0x01000404, 0x00010404,
  349. 0x01010404, 0x00010004, 0x01010000, 0x01000404,
  350. 0x01000004, 0x00000404, 0x00010404, 0x01010400,
  351. 0x00000404, 0x01000400, 0x01000400, 0x00000000,
  352. 0x00010004, 0x00010400, 0x00000000, 0x01010004L},
  353. {0x80108020, 0x80008000, 0x00008000, 0x00108020,
  354. 0x00100000, 0x00000020, 0x80100020, 0x80008020,
  355. 0x80000020, 0x80108020, 0x80108000, 0x80000000,
  356. 0x80008000, 0x00100000, 0x00000020, 0x80100020,
  357. 0x00108000, 0x00100020, 0x80008020, 0x00000000,
  358. 0x80000000, 0x00008000, 0x00108020, 0x80100000,
  359. 0x00100020, 0x80000020, 0x00000000, 0x00108000,
  360. 0x00008020, 0x80108000, 0x80100000, 0x00008020,
  361. 0x00000000, 0x00108020, 0x80100020, 0x00100000,
  362. 0x80008020, 0x80100000, 0x80108000, 0x00008000,
  363. 0x80100000, 0x80008000, 0x00000020, 0x80108020,
  364. 0x00108020, 0x00000020, 0x00008000, 0x80000000,
  365. 0x00008020, 0x80108000, 0x00100000, 0x80000020,
  366. 0x00100020, 0x80008020, 0x80000020, 0x00100020,
  367. 0x00108000, 0x00000000, 0x80008000, 0x00008020,
  368. 0x80000000, 0x80100020, 0x80108020, 0x00108000L},
  369. {0x00000208, 0x08020200, 0x00000000, 0x08020008,
  370. 0x08000200, 0x00000000, 0x00020208, 0x08000200,
  371. 0x00020008, 0x08000008, 0x08000008, 0x00020000,
  372. 0x08020208, 0x00020008, 0x08020000, 0x00000208,
  373. 0x08000000, 0x00000008, 0x08020200, 0x00000200,
  374. 0x00020200, 0x08020000, 0x08020008, 0x00020208,
  375. 0x08000208, 0x00020200, 0x00020000, 0x08000208,
  376. 0x00000008, 0x08020208, 0x00000200, 0x08000000,
  377. 0x08020200, 0x08000000, 0x00020008, 0x00000208,
  378. 0x00020000, 0x08020200, 0x08000200, 0x00000000,
  379. 0x00000200, 0x00020008, 0x08020208, 0x08000200,
  380. 0x08000008, 0x00000200, 0x00000000, 0x08020008,
  381. 0x08000208, 0x00020000, 0x08000000, 0x08020208,
  382. 0x00000008, 0x00020208, 0x00020200, 0x08000008,
  383. 0x08020000, 0x08000208, 0x00000208, 0x08020000,
  384. 0x00020208, 0x00000008, 0x08020008, 0x00020200L},
  385. {0x00802001, 0x00002081, 0x00002081, 0x00000080,
  386. 0x00802080, 0x00800081, 0x00800001, 0x00002001,
  387. 0x00000000, 0x00802000, 0x00802000, 0x00802081,
  388. 0x00000081, 0x00000000, 0x00800080, 0x00800001,
  389. 0x00000001, 0x00002000, 0x00800000, 0x00802001,
  390. 0x00000080, 0x00800000, 0x00002001, 0x00002080,
  391. 0x00800081, 0x00000001, 0x00002080, 0x00800080,
  392. 0x00002000, 0x00802080, 0x00802081, 0x00000081,
  393. 0x00800080, 0x00800001, 0x00802000, 0x00802081,
  394. 0x00000081, 0x00000000, 0x00000000, 0x00802000,
  395. 0x00002080, 0x00800080, 0x00800081, 0x00000001,
  396. 0x00802001, 0x00002081, 0x00002081, 0x00000080,
  397. 0x00802081, 0x00000081, 0x00000001, 0x00002000,
  398. 0x00800001, 0x00002001, 0x00802080, 0x00800081,
  399. 0x00002001, 0x00002080, 0x00800000, 0x00802001,
  400. 0x00000080, 0x00800000, 0x00002000, 0x00802080L},
  401. {0x00000100, 0x02080100, 0x02080000, 0x42000100,
  402. 0x00080000, 0x00000100, 0x40000000, 0x02080000,
  403. 0x40080100, 0x00080000, 0x02000100, 0x40080100,
  404. 0x42000100, 0x42080000, 0x00080100, 0x40000000,
  405. 0x02000000, 0x40080000, 0x40080000, 0x00000000,
  406. 0x40000100, 0x42080100, 0x42080100, 0x02000100,
  407. 0x42080000, 0x40000100, 0x00000000, 0x42000000,
  408. 0x02080100, 0x02000000, 0x42000000, 0x00080100,
  409. 0x00080000, 0x42000100, 0x00000100, 0x02000000,
  410. 0x40000000, 0x02080000, 0x42000100, 0x40080100,
  411. 0x02000100, 0x40000000, 0x42080000, 0x02080100,
  412. 0x40080100, 0x00000100, 0x02000000, 0x42080000,
  413. 0x42080100, 0x00080100, 0x42000000, 0x42080100,
  414. 0x02080000, 0x00000000, 0x40080000, 0x42000000,
  415. 0x00080100, 0x02000100, 0x40000100, 0x00080000,
  416. 0x00000000, 0x40080000, 0x02080100, 0x40000100L},
  417. {0x20000010, 0x20400000, 0x00004000, 0x20404010,
  418. 0x20400000, 0x00000010, 0x20404010, 0x00400000,
  419. 0x20004000, 0x00404010, 0x00400000, 0x20000010,
  420. 0x00400010, 0x20004000, 0x20000000, 0x00004010,
  421. 0x00000000, 0x00400010, 0x20004010, 0x00004000,
  422. 0x00404000, 0x20004010, 0x00000010, 0x20400010,
  423. 0x20400010, 0x00000000, 0x00404010, 0x20404000,
  424. 0x00004010, 0x00404000, 0x20404000, 0x20000000,
  425. 0x20004000, 0x00000010, 0x20400010, 0x00404000,
  426. 0x20404010, 0x00400000, 0x00004010, 0x20000010,
  427. 0x00400000, 0x20004000, 0x20000000, 0x00004010,
  428. 0x20000010, 0x20404010, 0x00404000, 0x20400000,
  429. 0x00404010, 0x20404000, 0x00000000, 0x20400010,
  430. 0x00000010, 0x00004000, 0x20400000, 0x00404010,
  431. 0x00004000, 0x00400010, 0x20004010, 0x00000000,
  432. 0x20404000, 0x20000000, 0x00400010, 0x20004010L},
  433. {0x00200000, 0x04200002, 0x04000802, 0x00000000,
  434. 0x00000800, 0x04000802, 0x00200802, 0x04200800,
  435. 0x04200802, 0x00200000, 0x00000000, 0x04000002,
  436. 0x00000002, 0x04000000, 0x04200002, 0x00000802,
  437. 0x04000800, 0x00200802, 0x00200002, 0x04000800,
  438. 0x04000002, 0x04200000, 0x04200800, 0x00200002,
  439. 0x04200000, 0x00000800, 0x00000802, 0x04200802,
  440. 0x00200800, 0x00000002, 0x04000000, 0x00200800,
  441. 0x04000000, 0x00200800, 0x00200000, 0x04000802,
  442. 0x04000802, 0x04200002, 0x04200002, 0x00000002,
  443. 0x00200002, 0x04000000, 0x04000800, 0x00200000,
  444. 0x04200800, 0x00000802, 0x00200802, 0x04200800,
  445. 0x00000802, 0x04000002, 0x04200802, 0x04200000,
  446. 0x00200800, 0x00000000, 0x00000002, 0x04200802,
  447. 0x00000000, 0x00200802, 0x04200000, 0x00000800,
  448. 0x04000002, 0x04000800, 0x00000800, 0x00200002L},
  449. {0x10001040, 0x00001000, 0x00040000, 0x10041040,
  450. 0x10000000, 0x10001040, 0x00000040, 0x10000000,
  451. 0x00040040, 0x10040000, 0x10041040, 0x00041000,
  452. 0x10041000, 0x00041040, 0x00001000, 0x00000040,
  453. 0x10040000, 0x10000040, 0x10001000, 0x00001040,
  454. 0x00041000, 0x00040040, 0x10040040, 0x10041000,
  455. 0x00001040, 0x00000000, 0x00000000, 0x10040040,
  456. 0x10000040, 0x10001000, 0x00041040, 0x00040000,
  457. 0x00041040, 0x00040000, 0x10041000, 0x00001000,
  458. 0x00000040, 0x10040040, 0x00001000, 0x00041040,
  459. 0x10001000, 0x00000040, 0x10000040, 0x10040000,
  460. 0x10040040, 0x10000000, 0x00040000, 0x10001040,
  461. 0x00000000, 0x10041040, 0x00040040, 0x10000040,
  462. 0x10040000, 0x10001000, 0x10001040, 0x00000000,
  463. 0x10041040, 0x00041000, 0x00041000, 0x00001040,
  464. 0x00001040, 0x00040040, 0x10000000, 0x10041000L}
  465. };
  466. #define f(R, K0246, K1357) (\
  467. s0246 = R ^ K0246, \
  468. s1357 = R ^ K1357, \
  469. s0246 = rotl(s0246, 28), \
  470. SPboxes[0] [(s0246 >> 24) & 0x3F] | \
  471. SPboxes[1] [(s1357 >> 24) & 0x3F] | \
  472. SPboxes[2] [(s0246 >> 16) & 0x3F] | \
  473. SPboxes[3] [(s1357 >> 16) & 0x3F] | \
  474. SPboxes[4] [(s0246 >> 8) & 0x3F] | \
  475. SPboxes[5] [(s1357 >> 8) & 0x3F] | \
  476. SPboxes[6] [(s0246 ) & 0x3F] | \
  477. SPboxes[7] [(s1357 ) & 0x3F])
  478. #define bitswap(L, R, n, mask) (\
  479. swap = mask & ( (R >> n) ^ L ), \
  480. R ^= swap << n, \
  481. L ^= swap)
  482. /* Initial permutation */
  483. #define IP(L, R) (\
  484. bitswap(R, L, 4, 0x0F0F0F0F), \
  485. bitswap(R, L, 16, 0x0000FFFF), \
  486. bitswap(L, R, 2, 0x33333333), \
  487. bitswap(L, R, 8, 0x00FF00FF), \
  488. bitswap(R, L, 1, 0x55555555))
  489. /* Final permutation */
  490. #define FP(L, R) (\
  491. bitswap(R, L, 1, 0x55555555), \
  492. bitswap(L, R, 8, 0x00FF00FF), \
  493. bitswap(L, R, 2, 0x33333333), \
  494. bitswap(R, L, 16, 0x0000FFFF), \
  495. bitswap(R, L, 4, 0x0F0F0F0F))
  496. static void des_encipher(word32 * output, word32 L, word32 R,
  497. DESContext * sched)
  498. {
  499. word32 swap, s0246, s1357;
  500. IP(L, R);
  501. L = rotl(L, 1);
  502. R = rotl(R, 1);
  503. L ^= f(R, sched->k0246[0], sched->k1357[0]);
  504. R ^= f(L, sched->k0246[1], sched->k1357[1]);
  505. L ^= f(R, sched->k0246[2], sched->k1357[2]);
  506. R ^= f(L, sched->k0246[3], sched->k1357[3]);
  507. L ^= f(R, sched->k0246[4], sched->k1357[4]);
  508. R ^= f(L, sched->k0246[5], sched->k1357[5]);
  509. L ^= f(R, sched->k0246[6], sched->k1357[6]);
  510. R ^= f(L, sched->k0246[7], sched->k1357[7]);
  511. L ^= f(R, sched->k0246[8], sched->k1357[8]);
  512. R ^= f(L, sched->k0246[9], sched->k1357[9]);
  513. L ^= f(R, sched->k0246[10], sched->k1357[10]);
  514. R ^= f(L, sched->k0246[11], sched->k1357[11]);
  515. L ^= f(R, sched->k0246[12], sched->k1357[12]);
  516. R ^= f(L, sched->k0246[13], sched->k1357[13]);
  517. L ^= f(R, sched->k0246[14], sched->k1357[14]);
  518. R ^= f(L, sched->k0246[15], sched->k1357[15]);
  519. L = rotl(L, 31);
  520. R = rotl(R, 31);
  521. swap = L;
  522. L = R;
  523. R = swap;
  524. FP(L, R);
  525. output[0] = L;
  526. output[1] = R;
  527. }
  528. static void des_decipher(word32 * output, word32 L, word32 R,
  529. DESContext * sched)
  530. {
  531. word32 swap, s0246, s1357;
  532. IP(L, R);
  533. L = rotl(L, 1);
  534. R = rotl(R, 1);
  535. L ^= f(R, sched->k0246[15], sched->k1357[15]);
  536. R ^= f(L, sched->k0246[14], sched->k1357[14]);
  537. L ^= f(R, sched->k0246[13], sched->k1357[13]);
  538. R ^= f(L, sched->k0246[12], sched->k1357[12]);
  539. L ^= f(R, sched->k0246[11], sched->k1357[11]);
  540. R ^= f(L, sched->k0246[10], sched->k1357[10]);
  541. L ^= f(R, sched->k0246[9], sched->k1357[9]);
  542. R ^= f(L, sched->k0246[8], sched->k1357[8]);
  543. L ^= f(R, sched->k0246[7], sched->k1357[7]);
  544. R ^= f(L, sched->k0246[6], sched->k1357[6]);
  545. L ^= f(R, sched->k0246[5], sched->k1357[5]);
  546. R ^= f(L, sched->k0246[4], sched->k1357[4]);
  547. L ^= f(R, sched->k0246[3], sched->k1357[3]);
  548. R ^= f(L, sched->k0246[2], sched->k1357[2]);
  549. L ^= f(R, sched->k0246[1], sched->k1357[1]);
  550. R ^= f(L, sched->k0246[0], sched->k1357[0]);
  551. L = rotl(L, 31);
  552. R = rotl(R, 31);
  553. swap = L;
  554. L = R;
  555. R = swap;
  556. FP(L, R);
  557. output[0] = L;
  558. output[1] = R;
  559. }
  560. static void des_cbc_encrypt(unsigned char *blk,
  561. unsigned int len, DESContext * sched)
  562. {
  563. word32 out[2], iv0, iv1;
  564. unsigned int i;
  565. assert((len & 7) == 0);
  566. iv0 = sched->iv0;
  567. iv1 = sched->iv1;
  568. for (i = 0; i < len; i += 8) {
  569. iv0 ^= GET_32BIT_MSB_FIRST(blk);
  570. iv1 ^= GET_32BIT_MSB_FIRST(blk + 4);
  571. des_encipher(out, iv0, iv1, sched);
  572. iv0 = out[0];
  573. iv1 = out[1];
  574. PUT_32BIT_MSB_FIRST(blk, iv0);
  575. PUT_32BIT_MSB_FIRST(blk + 4, iv1);
  576. blk += 8;
  577. }
  578. sched->iv0 = iv0;
  579. sched->iv1 = iv1;
  580. }
  581. static void des_cbc_decrypt(unsigned char *blk,
  582. unsigned int len, DESContext * sched)
  583. {
  584. word32 out[2], iv0, iv1, xL, xR;
  585. unsigned int i;
  586. assert((len & 7) == 0);
  587. iv0 = sched->iv0;
  588. iv1 = sched->iv1;
  589. for (i = 0; i < len; i += 8) {
  590. xL = GET_32BIT_MSB_FIRST(blk);
  591. xR = GET_32BIT_MSB_FIRST(blk + 4);
  592. des_decipher(out, xL, xR, sched);
  593. iv0 ^= out[0];
  594. iv1 ^= out[1];
  595. PUT_32BIT_MSB_FIRST(blk, iv0);
  596. PUT_32BIT_MSB_FIRST(blk + 4, iv1);
  597. blk += 8;
  598. iv0 = xL;
  599. iv1 = xR;
  600. }
  601. sched->iv0 = iv0;
  602. sched->iv1 = iv1;
  603. }
  604. static void des_3cbc_encrypt(unsigned char *blk,
  605. unsigned int len, DESContext * scheds)
  606. {
  607. des_cbc_encrypt(blk, len, &scheds[0]);
  608. des_cbc_decrypt(blk, len, &scheds[1]);
  609. des_cbc_encrypt(blk, len, &scheds[2]);
  610. }
  611. static void des_cbc3_encrypt(unsigned char *blk,
  612. unsigned int len, DESContext * scheds)
  613. {
  614. word32 out[2], iv0, iv1;
  615. unsigned int i;
  616. assert((len & 7) == 0);
  617. iv0 = scheds->iv0;
  618. iv1 = scheds->iv1;
  619. for (i = 0; i < len; i += 8) {
  620. iv0 ^= GET_32BIT_MSB_FIRST(blk);
  621. iv1 ^= GET_32BIT_MSB_FIRST(blk + 4);
  622. des_encipher(out, iv0, iv1, &scheds[0]);
  623. des_decipher(out, out[0], out[1], &scheds[1]);
  624. des_encipher(out, out[0], out[1], &scheds[2]);
  625. iv0 = out[0];
  626. iv1 = out[1];
  627. PUT_32BIT_MSB_FIRST(blk, iv0);
  628. PUT_32BIT_MSB_FIRST(blk + 4, iv1);
  629. blk += 8;
  630. }
  631. scheds->iv0 = iv0;
  632. scheds->iv1 = iv1;
  633. }
  634. static void des_3cbc_decrypt(unsigned char *blk,
  635. unsigned int len, DESContext * scheds)
  636. {
  637. des_cbc_decrypt(blk, len, &scheds[2]);
  638. des_cbc_encrypt(blk, len, &scheds[1]);
  639. des_cbc_decrypt(blk, len, &scheds[0]);
  640. }
  641. static void des_cbc3_decrypt(unsigned char *blk,
  642. unsigned int len, DESContext * scheds)
  643. {
  644. word32 out[2], iv0, iv1, xL, xR;
  645. unsigned int i;
  646. assert((len & 7) == 0);
  647. iv0 = scheds->iv0;
  648. iv1 = scheds->iv1;
  649. for (i = 0; i < len; i += 8) {
  650. xL = GET_32BIT_MSB_FIRST(blk);
  651. xR = GET_32BIT_MSB_FIRST(blk + 4);
  652. des_decipher(out, xL, xR, &scheds[2]);
  653. des_encipher(out, out[0], out[1], &scheds[1]);
  654. des_decipher(out, out[0], out[1], &scheds[0]);
  655. iv0 ^= out[0];
  656. iv1 ^= out[1];
  657. PUT_32BIT_MSB_FIRST(blk, iv0);
  658. PUT_32BIT_MSB_FIRST(blk + 4, iv1);
  659. blk += 8;
  660. iv0 = xL;
  661. iv1 = xR;
  662. }
  663. scheds->iv0 = iv0;
  664. scheds->iv1 = iv1;
  665. }
  666. static void des_sdctr3(unsigned char *blk,
  667. unsigned int len, DESContext * scheds)
  668. {
  669. word32 b[2], iv0, iv1, tmp;
  670. unsigned int i;
  671. assert((len & 7) == 0);
  672. iv0 = scheds->iv0;
  673. iv1 = scheds->iv1;
  674. for (i = 0; i < len; i += 8) {
  675. des_encipher(b, iv0, iv1, &scheds[0]);
  676. des_decipher(b, b[0], b[1], &scheds[1]);
  677. des_encipher(b, b[0], b[1], &scheds[2]);
  678. tmp = GET_32BIT_MSB_FIRST(blk);
  679. PUT_32BIT_MSB_FIRST(blk, tmp ^ b[0]);
  680. blk += 4;
  681. tmp = GET_32BIT_MSB_FIRST(blk);
  682. PUT_32BIT_MSB_FIRST(blk, tmp ^ b[1]);
  683. blk += 4;
  684. if ((iv1 = (iv1 + 1) & 0xffffffff) == 0)
  685. iv0 = (iv0 + 1) & 0xffffffff;
  686. }
  687. scheds->iv0 = iv0;
  688. scheds->iv1 = iv1;
  689. }
  690. static void des3_key(DESContext *contexts, const void *vkey)
  691. {
  692. const unsigned char *key = (const unsigned char *)vkey;
  693. des_key_setup(GET_32BIT_MSB_FIRST(key),
  694. GET_32BIT_MSB_FIRST(key + 4), &contexts[0]);
  695. des_key_setup(GET_32BIT_MSB_FIRST(key + 8),
  696. GET_32BIT_MSB_FIRST(key + 12), &contexts[1]);
  697. des_key_setup(GET_32BIT_MSB_FIRST(key + 16),
  698. GET_32BIT_MSB_FIRST(key + 20), &contexts[2]);
  699. }
  700. static void des_iv(DESContext *context, const void *viv)
  701. {
  702. const unsigned char *iv = (const unsigned char *)viv;
  703. context->iv0 = GET_32BIT_MSB_FIRST(iv);
  704. context->iv1 = GET_32BIT_MSB_FIRST(iv + 4);
  705. }
  706. static void des_key(DESContext *context, const void *vkey)
  707. {
  708. const unsigned char *key = (const unsigned char *)vkey;
  709. des_key_setup(GET_32BIT_MSB_FIRST(key),
  710. GET_32BIT_MSB_FIRST(key + 4), context);
  711. }
  712. struct des3_ssh1_ctx {
  713. /* 3 cipher context for each direction */
  714. DESContext contexts[6];
  715. ssh1_cipher vt;
  716. };
  717. struct des_ssh1_ctx {
  718. /* 1 cipher context for each direction */
  719. DESContext contexts[2];
  720. ssh1_cipher vt;
  721. };
  722. static ssh1_cipher *des3_ssh1_new(void)
  723. {
  724. struct des3_ssh1_ctx *ctx = snew(struct des3_ssh1_ctx);
  725. ctx->vt = &ssh1_3des;
  726. return &ctx->vt;
  727. }
  728. static ssh1_cipher *des_ssh1_new(void)
  729. {
  730. struct des_ssh1_ctx *ctx = snew(struct des_ssh1_ctx);
  731. ctx->vt = &ssh1_des;
  732. return &ctx->vt;
  733. }
  734. static void des3_ssh1_free(ssh1_cipher *cipher)
  735. {
  736. struct des3_ssh1_ctx *ctx = container_of(cipher, struct des3_ssh1_ctx, vt);
  737. smemclr(ctx, sizeof(*ctx));
  738. sfree(ctx);
  739. }
  740. static void des_ssh1_free(ssh1_cipher *cipher)
  741. {
  742. struct des_ssh1_ctx *ctx = container_of(cipher, struct des_ssh1_ctx, vt);
  743. smemclr(ctx, sizeof(*ctx));
  744. sfree(ctx);
  745. }
  746. static void des3_ssh1_sesskey(ssh1_cipher *cipher, const void *key)
  747. {
  748. struct des3_ssh1_ctx *ctx = container_of(cipher, struct des3_ssh1_ctx, vt);
  749. des3_key(ctx->contexts, key);
  750. des3_key(ctx->contexts+3, key);
  751. }
  752. static void des3_ssh1_encrypt_blk(ssh1_cipher *cipher, void *blk, int len)
  753. {
  754. struct des3_ssh1_ctx *ctx = container_of(cipher, struct des3_ssh1_ctx, vt);
  755. des_3cbc_encrypt(blk, len, ctx->contexts);
  756. }
  757. static void des3_ssh1_decrypt_blk(ssh1_cipher *cipher, void *blk, int len)
  758. {
  759. struct des3_ssh1_ctx *ctx = container_of(cipher, struct des3_ssh1_ctx, vt);
  760. des_3cbc_decrypt(blk, len, ctx->contexts+3);
  761. }
  762. static void des_ssh1_sesskey(ssh1_cipher *cipher, const void *key)
  763. {
  764. struct des_ssh1_ctx *ctx = container_of(cipher, struct des_ssh1_ctx, vt);
  765. des_key(ctx->contexts, key);
  766. des_key(ctx->contexts+1, key);
  767. }
  768. static void des_ssh1_encrypt_blk(ssh1_cipher *cipher, void *blk, int len)
  769. {
  770. struct des_ssh1_ctx *ctx = container_of(cipher, struct des_ssh1_ctx, vt);
  771. des_cbc_encrypt(blk, len, ctx->contexts);
  772. }
  773. static void des_ssh1_decrypt_blk(ssh1_cipher *cipher, void *blk, int len)
  774. {
  775. struct des_ssh1_ctx *ctx = container_of(cipher, struct des_ssh1_ctx, vt);
  776. des_cbc_decrypt(blk, len, ctx->contexts+1);
  777. }
  778. struct des3_ssh2_ctx {
  779. DESContext contexts[3];
  780. ssh2_cipher vt;
  781. };
  782. struct des_ssh2_ctx {
  783. DESContext context;
  784. ssh2_cipher vt;
  785. };
  786. static ssh2_cipher *des3_ssh2_new(const struct ssh2_cipheralg *alg)
  787. {
  788. struct des3_ssh2_ctx *ctx = snew(struct des3_ssh2_ctx);
  789. ctx->vt = alg;
  790. return &ctx->vt;
  791. }
  792. static ssh2_cipher *des_ssh2_new(const struct ssh2_cipheralg *alg)
  793. {
  794. struct des_ssh2_ctx *ctx = snew(struct des_ssh2_ctx);
  795. ctx->vt = alg;
  796. return &ctx->vt;
  797. }
  798. static void des3_ssh2_free(ssh2_cipher *cipher)
  799. {
  800. struct des3_ssh2_ctx *ctx = container_of(cipher, struct des3_ssh2_ctx, vt);
  801. smemclr(ctx, sizeof(*ctx));
  802. sfree(ctx);
  803. }
  804. static void des_ssh2_free(ssh2_cipher *cipher)
  805. {
  806. struct des_ssh2_ctx *ctx = container_of(cipher, struct des_ssh2_ctx, vt);
  807. smemclr(ctx, sizeof(*ctx));
  808. sfree(ctx);
  809. }
  810. static void des3_ssh2_setiv(ssh2_cipher *cipher, const void *iv)
  811. {
  812. struct des3_ssh2_ctx *ctx = container_of(cipher, struct des3_ssh2_ctx, vt);
  813. des_iv(&ctx->contexts[0], iv);
  814. /* SSH-2 treats triple-DES as a single block cipher to wrap in
  815. * CBC, so there's only one IV required, not three */
  816. }
  817. static void des3_ssh2_setkey(ssh2_cipher *cipher, const void *key)
  818. {
  819. struct des3_ssh2_ctx *ctx = container_of(cipher, struct des3_ssh2_ctx, vt);
  820. des3_key(ctx->contexts, key);
  821. }
  822. static void des_ssh2_setiv(ssh2_cipher *cipher, const void *iv)
  823. {
  824. struct des_ssh2_ctx *ctx = container_of(cipher, struct des_ssh2_ctx, vt);
  825. des_iv(&ctx->context, iv);
  826. }
  827. static void des_ssh2_setkey(ssh2_cipher *cipher, const void *key)
  828. {
  829. struct des_ssh2_ctx *ctx = container_of(cipher, struct des_ssh2_ctx, vt);
  830. des_key(&ctx->context, key);
  831. }
  832. static void des3_ssh2_encrypt_blk(ssh2_cipher *cipher, void *blk, int len)
  833. {
  834. struct des3_ssh2_ctx *ctx = container_of(cipher, struct des3_ssh2_ctx, vt);
  835. des_cbc3_encrypt(blk, len, ctx->contexts);
  836. }
  837. static void des3_ssh2_decrypt_blk(ssh2_cipher *cipher, void *blk, int len)
  838. {
  839. struct des3_ssh2_ctx *ctx = container_of(cipher, struct des3_ssh2_ctx, vt);
  840. des_cbc3_decrypt(blk, len, ctx->contexts);
  841. }
  842. static void des3_ssh2_sdctr(ssh2_cipher *cipher, void *blk, int len)
  843. {
  844. struct des3_ssh2_ctx *ctx = container_of(cipher, struct des3_ssh2_ctx, vt);
  845. des_sdctr3(blk, len, ctx->contexts);
  846. }
  847. static void des_ssh2_encrypt_blk(ssh2_cipher *cipher, void *blk, int len)
  848. {
  849. struct des_ssh2_ctx *ctx = container_of(cipher, struct des_ssh2_ctx, vt);
  850. des_cbc_encrypt(blk, len, &ctx->context);
  851. }
  852. static void des_ssh2_decrypt_blk(ssh2_cipher *cipher, void *blk, int len)
  853. {
  854. struct des_ssh2_ctx *ctx = container_of(cipher, struct des_ssh2_ctx, vt);
  855. des_cbc_decrypt(blk, len, &ctx->context);
  856. }
  857. void des3_decrypt_pubkey(const void *vkey, void *vblk, int len)
  858. {
  859. const unsigned char *key = (const unsigned char *)vkey;
  860. unsigned char *blk = (unsigned char *)vblk;
  861. DESContext ourkeys[3];
  862. des_key_setup(GET_32BIT_MSB_FIRST(key),
  863. GET_32BIT_MSB_FIRST(key + 4), &ourkeys[0]);
  864. des_key_setup(GET_32BIT_MSB_FIRST(key + 8),
  865. GET_32BIT_MSB_FIRST(key + 12), &ourkeys[1]);
  866. des_key_setup(GET_32BIT_MSB_FIRST(key),
  867. GET_32BIT_MSB_FIRST(key + 4), &ourkeys[2]);
  868. des_3cbc_decrypt(blk, len, ourkeys);
  869. smemclr(ourkeys, sizeof(ourkeys));
  870. }
  871. void des3_encrypt_pubkey(const void *vkey, void *vblk, int len)
  872. {
  873. const unsigned char *key = (const unsigned char *)vkey;
  874. unsigned char *blk = (unsigned char *)vblk;
  875. DESContext ourkeys[3];
  876. des_key_setup(GET_32BIT_MSB_FIRST(key),
  877. GET_32BIT_MSB_FIRST(key + 4), &ourkeys[0]);
  878. des_key_setup(GET_32BIT_MSB_FIRST(key + 8),
  879. GET_32BIT_MSB_FIRST(key + 12), &ourkeys[1]);
  880. des_key_setup(GET_32BIT_MSB_FIRST(key),
  881. GET_32BIT_MSB_FIRST(key + 4), &ourkeys[2]);
  882. des_3cbc_encrypt(blk, len, ourkeys);
  883. smemclr(ourkeys, sizeof(ourkeys));
  884. }
  885. void des3_decrypt_pubkey_ossh(const void *vkey, const void *viv,
  886. void *vblk, int len)
  887. {
  888. const unsigned char *key = (const unsigned char *)vkey;
  889. const unsigned char *iv = (const unsigned char *)viv;
  890. unsigned char *blk = (unsigned char *)vblk;
  891. DESContext ourkeys[3];
  892. des_key_setup(GET_32BIT_MSB_FIRST(key),
  893. GET_32BIT_MSB_FIRST(key + 4), &ourkeys[0]);
  894. des_key_setup(GET_32BIT_MSB_FIRST(key + 8),
  895. GET_32BIT_MSB_FIRST(key + 12), &ourkeys[1]);
  896. des_key_setup(GET_32BIT_MSB_FIRST(key + 16),
  897. GET_32BIT_MSB_FIRST(key + 20), &ourkeys[2]);
  898. ourkeys[0].iv0 = GET_32BIT_MSB_FIRST(iv);
  899. ourkeys[0].iv1 = GET_32BIT_MSB_FIRST(iv+4);
  900. des_cbc3_decrypt(blk, len, ourkeys);
  901. smemclr(ourkeys, sizeof(ourkeys));
  902. }
  903. void des3_encrypt_pubkey_ossh(const void *vkey, const void *viv,
  904. void *vblk, int len)
  905. {
  906. const unsigned char *key = (const unsigned char *)vkey;
  907. const unsigned char *iv = (const unsigned char *)viv;
  908. unsigned char *blk = (unsigned char *)vblk;
  909. DESContext ourkeys[3];
  910. des_key_setup(GET_32BIT_MSB_FIRST(key),
  911. GET_32BIT_MSB_FIRST(key + 4), &ourkeys[0]);
  912. des_key_setup(GET_32BIT_MSB_FIRST(key + 8),
  913. GET_32BIT_MSB_FIRST(key + 12), &ourkeys[1]);
  914. des_key_setup(GET_32BIT_MSB_FIRST(key + 16),
  915. GET_32BIT_MSB_FIRST(key + 20), &ourkeys[2]);
  916. ourkeys[0].iv0 = GET_32BIT_MSB_FIRST(iv);
  917. ourkeys[0].iv1 = GET_32BIT_MSB_FIRST(iv+4);
  918. des_cbc3_encrypt(blk, len, ourkeys);
  919. smemclr(ourkeys, sizeof(ourkeys));
  920. }
  921. static void des_keysetup_xdmauth(const void *vkeydata, DESContext *dc)
  922. {
  923. const unsigned char *keydata = (const unsigned char *)vkeydata;
  924. unsigned char key[8];
  925. int i, nbits, j;
  926. unsigned int bits;
  927. bits = 0;
  928. nbits = 0;
  929. j = 0;
  930. for (i = 0; i < 8; i++) {
  931. if (nbits < 7) {
  932. bits = (bits << 8) | keydata[j];
  933. nbits += 8;
  934. j++;
  935. }
  936. key[i] = (bits >> (nbits - 7)) << 1;
  937. bits &= ~(0x7F << (nbits - 7));
  938. nbits -= 7;
  939. }
  940. des_key_setup(GET_32BIT_MSB_FIRST(key), GET_32BIT_MSB_FIRST(key + 4), dc);
  941. }
  942. void des_encrypt_xdmauth(const void *keydata, void *blk, int len)
  943. {
  944. DESContext dc;
  945. des_keysetup_xdmauth(keydata, &dc);
  946. des_cbc_encrypt(blk, len, &dc);
  947. }
  948. void des_decrypt_xdmauth(const void *keydata, void *blk, int len)
  949. {
  950. DESContext dc;
  951. des_keysetup_xdmauth(keydata, &dc);
  952. des_cbc_decrypt(blk, len, &dc);
  953. }
  954. static const struct ssh2_cipheralg ssh_3des_ssh2 = {
  955. des3_ssh2_new, des3_ssh2_free, des3_ssh2_setiv, des3_ssh2_setkey,
  956. des3_ssh2_encrypt_blk, des3_ssh2_decrypt_blk, NULL, NULL,
  957. "3des-cbc",
  958. 8, 168, 24, SSH_CIPHER_IS_CBC, "triple-DES CBC",
  959. NULL
  960. };
  961. static const struct ssh2_cipheralg ssh_3des_ssh2_ctr = {
  962. des3_ssh2_new, des3_ssh2_free, des3_ssh2_setiv, des3_ssh2_setkey,
  963. des3_ssh2_sdctr, des3_ssh2_sdctr, NULL, NULL,
  964. "3des-ctr",
  965. 8, 168, 24, 0, "triple-DES SDCTR",
  966. NULL
  967. };
  968. /*
  969. * Single DES in SSH-2. "des-cbc" is marked as HISTORIC in
  970. * RFC 4250, referring to
  971. * FIPS-46-3. ("Single DES (i.e., DES) will be permitted
  972. * for legacy systems only.") , but ssh.com support it and
  973. * apparently aren't the only people to do so, so we sigh
  974. * and implement it anyway.
  975. */
  976. static const struct ssh2_cipheralg ssh_des_ssh2 = {
  977. des_ssh2_new, des_ssh2_free, des_ssh2_setiv, des_ssh2_setkey,
  978. des_ssh2_encrypt_blk, des_ssh2_decrypt_blk, NULL, NULL,
  979. "des-cbc",
  980. 8, 56, 8, SSH_CIPHER_IS_CBC, "single-DES CBC",
  981. NULL
  982. };
  983. static const struct ssh2_cipheralg ssh_des_sshcom_ssh2 = {
  984. des_ssh2_new, des_ssh2_free, des_ssh2_setiv, des_ssh2_setkey,
  985. des_ssh2_encrypt_blk, des_ssh2_decrypt_blk, NULL, NULL,
  986. "[email protected]",
  987. 8, 56, 8, SSH_CIPHER_IS_CBC, "single-DES CBC",
  988. NULL
  989. };
  990. static const struct ssh2_cipheralg *const des3_list[] = {
  991. &ssh_3des_ssh2_ctr,
  992. &ssh_3des_ssh2
  993. };
  994. const struct ssh2_ciphers ssh2_3des = {
  995. sizeof(des3_list) / sizeof(*des3_list),
  996. des3_list
  997. };
  998. static const struct ssh2_cipheralg *const des_list[] = {
  999. &ssh_des_ssh2,
  1000. &ssh_des_sshcom_ssh2
  1001. };
  1002. const struct ssh2_ciphers ssh2_des = {
  1003. sizeof(des_list) / sizeof(*des_list),
  1004. des_list
  1005. };
  1006. const struct ssh1_cipheralg ssh1_3des = {
  1007. des3_ssh1_new, des3_ssh1_free, des3_ssh1_sesskey,
  1008. des3_ssh1_encrypt_blk, des3_ssh1_decrypt_blk,
  1009. 8, "triple-DES inner-CBC"
  1010. };
  1011. const struct ssh1_cipheralg ssh1_des = {
  1012. des_ssh1_new, des_ssh1_free, des_ssh1_sesskey,
  1013. des_ssh1_encrypt_blk, des_ssh1_decrypt_blk,
  1014. 8, "single-DES CBC"
  1015. };
  1016. #ifdef TEST_XDM_AUTH
  1017. /*
  1018. * Small standalone utility which allows encryption and decryption of
  1019. * single cipher blocks in the XDM-AUTHORIZATION-1 style. Written
  1020. * during the rework of X authorisation for connection sharing, to
  1021. * check the corner case when xa1_firstblock matches but the rest of
  1022. * the authorisation is bogus.
  1023. *
  1024. * Just compile this file on its own with the above ifdef symbol
  1025. * predefined:
  1026. gcc -DTEST_XDM_AUTH -o sshdes sshdes.c
  1027. */
  1028. #include <stdlib.h>
  1029. void *safemalloc(size_t n, size_t size) { return calloc(n, size); }
  1030. void safefree(void *p) { return free(p); }
  1031. void smemclr(void *p, size_t size) { memset(p, 0, size); }
  1032. int main(int argc, char **argv)
  1033. {
  1034. unsigned char words[2][8];
  1035. unsigned char out[8];
  1036. int i, j;
  1037. memset(words, 0, sizeof(words));
  1038. for (i = 0; i < 2; i++) {
  1039. for (j = 0; j < 8 && argv[i+1][2*j]; j++) {
  1040. char x[3];
  1041. unsigned u;
  1042. x[0] = argv[i+1][2*j];
  1043. x[1] = argv[i+1][2*j+1];
  1044. x[2] = 0;
  1045. sscanf(x, "%02x", &u);
  1046. words[i][j] = u;
  1047. }
  1048. }
  1049. memcpy(out, words[0], 8);
  1050. des_decrypt_xdmauth(words[1], out, 8);
  1051. printf("decrypt(%s,%s) = ", argv[1], argv[2]);
  1052. for (i = 0; i < 8; i++) printf("%02x", out[i]);
  1053. printf("\n");
  1054. memcpy(out, words[0], 8);
  1055. des_encrypt_xdmauth(words[1], out, 8);
  1056. printf("encrypt(%s,%s) = ", argv[1], argv[2]);
  1057. for (i = 0; i < 8; i++) printf("%02x", out[i]);
  1058. printf("\n");
  1059. }
  1060. #endif