sshsh512.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439
  1. /*
  2. * SHA-512 algorithm as described at
  3. *
  4. * http://csrc.nist.gov/cryptval/shs.html
  5. *
  6. * Modifications made for SHA-384 also
  7. */
  8. #include <assert.h>
  9. #include "ssh.h"
  10. #define BLKSIZE 128
  11. /*
  12. * Arithmetic implementations. Note that AND, XOR and NOT can
  13. * overlap destination with one source, but the others can't.
  14. */
  15. #define add(r,x,y) ( r = (x) + (y) )
  16. #define rorB(r,x,y) ( r = ((x) >> (y)) | ((x) << (64-(y))) )
  17. #define rorL(r,x,y) ( r = ((x) >> (y)) | ((x) << (64-(y))) )
  18. #define shrB(r,x,y) ( r = (x) >> (y) )
  19. #define shrL(r,x,y) ( r = (x) >> (y) )
  20. #define and(r,x,y) ( r = (x) & (y) )
  21. #define xor(r,x,y) ( r = (x) ^ (y) )
  22. #define not(r,x) ( r = ~(x) )
  23. #define INIT(h,l) ((((uint64_t)(h)) << 32) | (l))
  24. #define BUILD(r,h,l) ( r = ((((uint64_t)(h)) << 32) | (l)) )
  25. #define EXTRACT(h,l,r) ( h = (r) >> 32, l = (r) & 0xFFFFFFFFU )
  26. /* ----------------------------------------------------------------------
  27. * Core SHA512 algorithm: processes 16-doubleword blocks into a
  28. * message digest.
  29. */
  30. #define Ch(r,t,x,y,z) ( not(t,x), and(r,t,z), and(t,x,y), xor(r,r,t) )
  31. #define Maj(r,t,x,y,z) ( and(r,x,y), and(t,x,z), xor(r,r,t), \
  32. and(t,y,z), xor(r,r,t) )
  33. #define bigsigma0(r,t,x) ( rorL(r,x,28), rorB(t,x,34), xor(r,r,t), \
  34. rorB(t,x,39), xor(r,r,t) )
  35. #define bigsigma1(r,t,x) ( rorL(r,x,14), rorL(t,x,18), xor(r,r,t), \
  36. rorB(t,x,41), xor(r,r,t) )
  37. #define smallsigma0(r,t,x) ( rorL(r,x,1), rorL(t,x,8), xor(r,r,t), \
  38. shrL(t,x,7), xor(r,r,t) )
  39. #define smallsigma1(r,t,x) ( rorL(r,x,19), rorB(t,x,61), xor(r,r,t), \
  40. shrL(t,x,6), xor(r,r,t) )
  41. static void SHA512_Core_Init(SHA512_State *s) {
  42. static const uint64_t iv[] = {
  43. INIT(0x6a09e667, 0xf3bcc908),
  44. INIT(0xbb67ae85, 0x84caa73b),
  45. INIT(0x3c6ef372, 0xfe94f82b),
  46. INIT(0xa54ff53a, 0x5f1d36f1),
  47. INIT(0x510e527f, 0xade682d1),
  48. INIT(0x9b05688c, 0x2b3e6c1f),
  49. INIT(0x1f83d9ab, 0xfb41bd6b),
  50. INIT(0x5be0cd19, 0x137e2179),
  51. };
  52. int i;
  53. for (i = 0; i < 8; i++)
  54. s->h[i] = iv[i];
  55. }
  56. static void SHA384_Core_Init(SHA512_State *s) {
  57. static const uint64_t iv[] = {
  58. INIT(0xcbbb9d5d, 0xc1059ed8),
  59. INIT(0x629a292a, 0x367cd507),
  60. INIT(0x9159015a, 0x3070dd17),
  61. INIT(0x152fecd8, 0xf70e5939),
  62. INIT(0x67332667, 0xffc00b31),
  63. INIT(0x8eb44a87, 0x68581511),
  64. INIT(0xdb0c2e0d, 0x64f98fa7),
  65. INIT(0x47b5481d, 0xbefa4fa4),
  66. };
  67. int i;
  68. for (i = 0; i < 8; i++)
  69. s->h[i] = iv[i];
  70. }
  71. static void SHA512_Block(SHA512_State *s, uint64_t *block) {
  72. uint64_t w[80];
  73. uint64_t a,b,c,d,e,f,g,h;
  74. static const uint64_t k[] = {
  75. INIT(0x428a2f98, 0xd728ae22), INIT(0x71374491, 0x23ef65cd),
  76. INIT(0xb5c0fbcf, 0xec4d3b2f), INIT(0xe9b5dba5, 0x8189dbbc),
  77. INIT(0x3956c25b, 0xf348b538), INIT(0x59f111f1, 0xb605d019),
  78. INIT(0x923f82a4, 0xaf194f9b), INIT(0xab1c5ed5, 0xda6d8118),
  79. INIT(0xd807aa98, 0xa3030242), INIT(0x12835b01, 0x45706fbe),
  80. INIT(0x243185be, 0x4ee4b28c), INIT(0x550c7dc3, 0xd5ffb4e2),
  81. INIT(0x72be5d74, 0xf27b896f), INIT(0x80deb1fe, 0x3b1696b1),
  82. INIT(0x9bdc06a7, 0x25c71235), INIT(0xc19bf174, 0xcf692694),
  83. INIT(0xe49b69c1, 0x9ef14ad2), INIT(0xefbe4786, 0x384f25e3),
  84. INIT(0x0fc19dc6, 0x8b8cd5b5), INIT(0x240ca1cc, 0x77ac9c65),
  85. INIT(0x2de92c6f, 0x592b0275), INIT(0x4a7484aa, 0x6ea6e483),
  86. INIT(0x5cb0a9dc, 0xbd41fbd4), INIT(0x76f988da, 0x831153b5),
  87. INIT(0x983e5152, 0xee66dfab), INIT(0xa831c66d, 0x2db43210),
  88. INIT(0xb00327c8, 0x98fb213f), INIT(0xbf597fc7, 0xbeef0ee4),
  89. INIT(0xc6e00bf3, 0x3da88fc2), INIT(0xd5a79147, 0x930aa725),
  90. INIT(0x06ca6351, 0xe003826f), INIT(0x14292967, 0x0a0e6e70),
  91. INIT(0x27b70a85, 0x46d22ffc), INIT(0x2e1b2138, 0x5c26c926),
  92. INIT(0x4d2c6dfc, 0x5ac42aed), INIT(0x53380d13, 0x9d95b3df),
  93. INIT(0x650a7354, 0x8baf63de), INIT(0x766a0abb, 0x3c77b2a8),
  94. INIT(0x81c2c92e, 0x47edaee6), INIT(0x92722c85, 0x1482353b),
  95. INIT(0xa2bfe8a1, 0x4cf10364), INIT(0xa81a664b, 0xbc423001),
  96. INIT(0xc24b8b70, 0xd0f89791), INIT(0xc76c51a3, 0x0654be30),
  97. INIT(0xd192e819, 0xd6ef5218), INIT(0xd6990624, 0x5565a910),
  98. INIT(0xf40e3585, 0x5771202a), INIT(0x106aa070, 0x32bbd1b8),
  99. INIT(0x19a4c116, 0xb8d2d0c8), INIT(0x1e376c08, 0x5141ab53),
  100. INIT(0x2748774c, 0xdf8eeb99), INIT(0x34b0bcb5, 0xe19b48a8),
  101. INIT(0x391c0cb3, 0xc5c95a63), INIT(0x4ed8aa4a, 0xe3418acb),
  102. INIT(0x5b9cca4f, 0x7763e373), INIT(0x682e6ff3, 0xd6b2b8a3),
  103. INIT(0x748f82ee, 0x5defb2fc), INIT(0x78a5636f, 0x43172f60),
  104. INIT(0x84c87814, 0xa1f0ab72), INIT(0x8cc70208, 0x1a6439ec),
  105. INIT(0x90befffa, 0x23631e28), INIT(0xa4506ceb, 0xde82bde9),
  106. INIT(0xbef9a3f7, 0xb2c67915), INIT(0xc67178f2, 0xe372532b),
  107. INIT(0xca273ece, 0xea26619c), INIT(0xd186b8c7, 0x21c0c207),
  108. INIT(0xeada7dd6, 0xcde0eb1e), INIT(0xf57d4f7f, 0xee6ed178),
  109. INIT(0x06f067aa, 0x72176fba), INIT(0x0a637dc5, 0xa2c898a6),
  110. INIT(0x113f9804, 0xbef90dae), INIT(0x1b710b35, 0x131c471b),
  111. INIT(0x28db77f5, 0x23047d84), INIT(0x32caab7b, 0x40c72493),
  112. INIT(0x3c9ebe0a, 0x15c9bebc), INIT(0x431d67c4, 0x9c100d4c),
  113. INIT(0x4cc5d4be, 0xcb3e42b6), INIT(0x597f299c, 0xfc657e2a),
  114. INIT(0x5fcb6fab, 0x3ad6faec), INIT(0x6c44198c, 0x4a475817),
  115. };
  116. int t;
  117. for (t = 0; t < 16; t++)
  118. w[t] = block[t];
  119. for (t = 16; t < 80; t++) {
  120. uint64_t p, q, r, tmp;
  121. smallsigma1(p, tmp, w[t-2]);
  122. smallsigma0(q, tmp, w[t-15]);
  123. add(r, p, q);
  124. add(p, r, w[t-7]);
  125. add(w[t], p, w[t-16]);
  126. }
  127. a = s->h[0]; b = s->h[1]; c = s->h[2]; d = s->h[3];
  128. e = s->h[4]; f = s->h[5]; g = s->h[6]; h = s->h[7];
  129. for (t = 0; t < 80; t+=8) {
  130. uint64_t tmp, p, q, r;
  131. #define ROUND(j,a,b,c,d,e,f,g,h) \
  132. bigsigma1(p, tmp, e); \
  133. Ch(q, tmp, e, f, g); \
  134. add(r, p, q); \
  135. add(p, r, k[j]) ; \
  136. add(q, p, w[j]); \
  137. add(r, q, h); \
  138. bigsigma0(p, tmp, a); \
  139. Maj(tmp, q, a, b, c); \
  140. add(q, tmp, p); \
  141. add(p, r, d); \
  142. d = p; \
  143. add(h, q, r);
  144. ROUND(t+0, a,b,c,d,e,f,g,h);
  145. ROUND(t+1, h,a,b,c,d,e,f,g);
  146. ROUND(t+2, g,h,a,b,c,d,e,f);
  147. ROUND(t+3, f,g,h,a,b,c,d,e);
  148. ROUND(t+4, e,f,g,h,a,b,c,d);
  149. ROUND(t+5, d,e,f,g,h,a,b,c);
  150. ROUND(t+6, c,d,e,f,g,h,a,b);
  151. ROUND(t+7, b,c,d,e,f,g,h,a);
  152. }
  153. {
  154. uint64_t tmp;
  155. #define UPDATE(state, local) ( tmp = state, add(state, tmp, local) )
  156. UPDATE(s->h[0], a); UPDATE(s->h[1], b);
  157. UPDATE(s->h[2], c); UPDATE(s->h[3], d);
  158. UPDATE(s->h[4], e); UPDATE(s->h[5], f);
  159. UPDATE(s->h[6], g); UPDATE(s->h[7], h);
  160. }
  161. }
  162. /* ----------------------------------------------------------------------
  163. * Outer SHA512 algorithm: take an arbitrary length byte string,
  164. * convert it into 16-doubleword blocks with the prescribed padding
  165. * at the end, and pass those blocks to the core SHA512 algorithm.
  166. */
  167. static void SHA512_BinarySink_write(BinarySink *bs,
  168. const void *p, size_t len);
  169. void SHA512_Init(SHA512_State *s) {
  170. SHA512_Core_Init(s);
  171. s->blkused = 0;
  172. s->lenhi = s->lenlo = 0;
  173. BinarySink_INIT(s, SHA512_BinarySink_write);
  174. }
  175. void SHA384_Init(SHA512_State *s) {
  176. SHA384_Core_Init(s);
  177. s->blkused = 0;
  178. s->lenhi = s->lenlo = 0;
  179. BinarySink_INIT(s, SHA512_BinarySink_write);
  180. }
  181. static void SHA512_BinarySink_write(BinarySink *bs,
  182. const void *p, size_t len)
  183. {
  184. SHA512_State *s = BinarySink_DOWNCAST(bs, SHA512_State);
  185. unsigned char *q = (unsigned char *)p;
  186. uint64_t wordblock[16];
  187. int i;
  188. /*
  189. * Update the length field.
  190. */
  191. s->lenlo += len;
  192. s->lenhi += (s->lenlo < len);
  193. if (s->blkused && s->blkused+len < BLKSIZE) {
  194. /*
  195. * Trivial case: just add to the block.
  196. */
  197. memcpy(s->block + s->blkused, q, len);
  198. s->blkused += len;
  199. } else {
  200. /*
  201. * We must complete and process at least one block.
  202. */
  203. while (s->blkused + len >= BLKSIZE) {
  204. memcpy(s->block + s->blkused, q, BLKSIZE - s->blkused);
  205. q += BLKSIZE - s->blkused;
  206. len -= BLKSIZE - s->blkused;
  207. /* Now process the block. Gather bytes big-endian into words */
  208. for (i = 0; i < 16; i++)
  209. wordblock[i] = GET_64BIT_MSB_FIRST(s->block + i*8);
  210. SHA512_Block(s, wordblock);
  211. s->blkused = 0;
  212. }
  213. memcpy(s->block, q, len);
  214. s->blkused = len;
  215. }
  216. }
  217. void SHA512_Final(SHA512_State *s, unsigned char *digest) {
  218. int i;
  219. int pad;
  220. unsigned char c[BLKSIZE];
  221. uint64_t lenhi, lenlo;
  222. if (s->blkused >= BLKSIZE-16)
  223. pad = (BLKSIZE-16) + BLKSIZE - s->blkused;
  224. else
  225. pad = (BLKSIZE-16) - s->blkused;
  226. lenhi = (s->lenhi << 3) | (s->lenlo >> (32-3));
  227. lenlo = (s->lenlo << 3);
  228. memset(c, 0, pad);
  229. c[0] = 0x80;
  230. put_data(s, &c, pad);
  231. put_uint64(s, lenhi);
  232. put_uint64(s, lenlo);
  233. for (i = 0; i < 8; i++)
  234. PUT_64BIT_MSB_FIRST(digest + i*8, s->h[i]);
  235. }
  236. void SHA384_Final(SHA512_State *s, unsigned char *digest) {
  237. unsigned char biggerDigest[512 / 8];
  238. SHA512_Final(s, biggerDigest);
  239. memcpy(digest, biggerDigest, 384 / 8);
  240. }
  241. void SHA512_Simple(const void *p, int len, unsigned char *output) {
  242. SHA512_State s;
  243. SHA512_Init(&s);
  244. put_data(&s, p, len);
  245. SHA512_Final(&s, output);
  246. smemclr(&s, sizeof(s));
  247. }
  248. void SHA384_Simple(const void *p, int len, unsigned char *output) {
  249. SHA512_State s;
  250. SHA384_Init(&s);
  251. put_data(&s, p, len);
  252. SHA384_Final(&s, output);
  253. smemclr(&s, sizeof(s));
  254. }
  255. /*
  256. * Thin abstraction for things where hashes are pluggable.
  257. */
  258. struct sha512_hash {
  259. SHA512_State state;
  260. ssh_hash hash;
  261. };
  262. static ssh_hash *sha512_new(const struct ssh_hashalg *alg)
  263. {
  264. struct sha512_hash *h = snew(struct sha512_hash);
  265. SHA512_Init(&h->state);
  266. h->hash.vt = alg;
  267. BinarySink_DELEGATE_INIT(&h->hash, &h->state);
  268. return &h->hash;
  269. }
  270. static ssh_hash *sha512_copy(ssh_hash *hashold)
  271. {
  272. struct sha512_hash *hold, *hnew;
  273. ssh_hash *hashnew = sha512_new(hashold->vt);
  274. hold = container_of(hashold, struct sha512_hash, hash);
  275. hnew = container_of(hashnew, struct sha512_hash, hash);
  276. hnew->state = hold->state;
  277. BinarySink_COPIED(&hnew->state);
  278. return hashnew;
  279. }
  280. static void sha512_free(ssh_hash *hash)
  281. {
  282. struct sha512_hash *h = container_of(hash, struct sha512_hash, hash);
  283. smemclr(h, sizeof(*h));
  284. sfree(h);
  285. }
  286. static void sha512_final(ssh_hash *hash, unsigned char *output)
  287. {
  288. struct sha512_hash *h = container_of(hash, struct sha512_hash, hash);
  289. SHA512_Final(&h->state, output);
  290. sha512_free(hash);
  291. }
  292. const struct ssh_hashalg ssh_sha512 = {
  293. sha512_new, sha512_copy, sha512_final, sha512_free, 64, "SHA-512"
  294. };
  295. static ssh_hash *sha384_new(const struct ssh_hashalg *alg)
  296. {
  297. struct sha512_hash *h = snew(struct sha512_hash);
  298. SHA384_Init(&h->state);
  299. h->hash.vt = alg;
  300. BinarySink_DELEGATE_INIT(&h->hash, &h->state);
  301. return &h->hash;
  302. }
  303. static void sha384_final(ssh_hash *hash, unsigned char *output)
  304. {
  305. struct sha512_hash *h = container_of(hash, struct sha512_hash, hash);
  306. SHA384_Final(&h->state, output);
  307. sha512_free(hash);
  308. }
  309. const struct ssh_hashalg ssh_sha384 = {
  310. sha384_new, sha512_copy, sha384_final, sha512_free, 48, "SHA-384"
  311. };
  312. #ifdef TEST
  313. #include <stdio.h>
  314. #include <stdlib.h>
  315. #include <assert.h>
  316. int main(void) {
  317. unsigned char digest[64];
  318. int i, j, errors;
  319. struct {
  320. const char *teststring;
  321. unsigned char digest512[64];
  322. } tests[] = {
  323. { "abc", {
  324. 0xdd, 0xaf, 0x35, 0xa1, 0x93, 0x61, 0x7a, 0xba,
  325. 0xcc, 0x41, 0x73, 0x49, 0xae, 0x20, 0x41, 0x31,
  326. 0x12, 0xe6, 0xfa, 0x4e, 0x89, 0xa9, 0x7e, 0xa2,
  327. 0x0a, 0x9e, 0xee, 0xe6, 0x4b, 0x55, 0xd3, 0x9a,
  328. 0x21, 0x92, 0x99, 0x2a, 0x27, 0x4f, 0xc1, 0xa8,
  329. 0x36, 0xba, 0x3c, 0x23, 0xa3, 0xfe, 0xeb, 0xbd,
  330. 0x45, 0x4d, 0x44, 0x23, 0x64, 0x3c, 0xe8, 0x0e,
  331. 0x2a, 0x9a, 0xc9, 0x4f, 0xa5, 0x4c, 0xa4, 0x9f,
  332. } },
  333. { "abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmn"
  334. "hijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu", {
  335. 0x8e, 0x95, 0x9b, 0x75, 0xda, 0xe3, 0x13, 0xda,
  336. 0x8c, 0xf4, 0xf7, 0x28, 0x14, 0xfc, 0x14, 0x3f,
  337. 0x8f, 0x77, 0x79, 0xc6, 0xeb, 0x9f, 0x7f, 0xa1,
  338. 0x72, 0x99, 0xae, 0xad, 0xb6, 0x88, 0x90, 0x18,
  339. 0x50, 0x1d, 0x28, 0x9e, 0x49, 0x00, 0xf7, 0xe4,
  340. 0x33, 0x1b, 0x99, 0xde, 0xc4, 0xb5, 0x43, 0x3a,
  341. 0xc7, 0xd3, 0x29, 0xee, 0xb6, 0xdd, 0x26, 0x54,
  342. 0x5e, 0x96, 0xe5, 0x5b, 0x87, 0x4b, 0xe9, 0x09,
  343. } },
  344. { NULL, {
  345. 0xe7, 0x18, 0x48, 0x3d, 0x0c, 0xe7, 0x69, 0x64,
  346. 0x4e, 0x2e, 0x42, 0xc7, 0xbc, 0x15, 0xb4, 0x63,
  347. 0x8e, 0x1f, 0x98, 0xb1, 0x3b, 0x20, 0x44, 0x28,
  348. 0x56, 0x32, 0xa8, 0x03, 0xaf, 0xa9, 0x73, 0xeb,
  349. 0xde, 0x0f, 0xf2, 0x44, 0x87, 0x7e, 0xa6, 0x0a,
  350. 0x4c, 0xb0, 0x43, 0x2c, 0xe5, 0x77, 0xc3, 0x1b,
  351. 0xeb, 0x00, 0x9c, 0x5c, 0x2c, 0x49, 0xaa, 0x2e,
  352. 0x4e, 0xad, 0xb2, 0x17, 0xad, 0x8c, 0xc0, 0x9b,
  353. } },
  354. };
  355. errors = 0;
  356. for (i = 0; i < sizeof(tests) / sizeof(*tests); i++) {
  357. if (tests[i].teststring) {
  358. SHA512_Simple(tests[i].teststring,
  359. strlen(tests[i].teststring), digest);
  360. } else {
  361. SHA512_State s;
  362. int n;
  363. SHA512_Init(&s);
  364. for (n = 0; n < 1000000 / 40; n++)
  365. put_data(&s, "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", 40);
  366. SHA512_Final(&s, digest);
  367. }
  368. for (j = 0; j < 64; j++) {
  369. if (digest[j] != tests[i].digest512[j]) {
  370. fprintf(stderr,
  371. "\"%s\" digest512 byte %d should be 0x%02x, is 0x%02x\n",
  372. tests[i].teststring, j, tests[i].digest512[j],
  373. digest[j]);
  374. errors++;
  375. }
  376. }
  377. }
  378. printf("%d errors\n", errors);
  379. return 0;
  380. }
  381. #endif