sshdh.c 9.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318
  1. /*
  2. * Diffie-Hellman implementation for PuTTY.
  3. */
  4. #include "ssh.h"
  5. /*
  6. * The primes used in the group1 and group14 key exchange.
  7. */
  8. static const unsigned char P1[] = {
  9. 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xC9, 0x0F, 0xDA, 0xA2,
  10. 0x21, 0x68, 0xC2, 0x34, 0xC4, 0xC6, 0x62, 0x8B, 0x80, 0xDC, 0x1C, 0xD1,
  11. 0x29, 0x02, 0x4E, 0x08, 0x8A, 0x67, 0xCC, 0x74, 0x02, 0x0B, 0xBE, 0xA6,
  12. 0x3B, 0x13, 0x9B, 0x22, 0x51, 0x4A, 0x08, 0x79, 0x8E, 0x34, 0x04, 0xDD,
  13. 0xEF, 0x95, 0x19, 0xB3, 0xCD, 0x3A, 0x43, 0x1B, 0x30, 0x2B, 0x0A, 0x6D,
  14. 0xF2, 0x5F, 0x14, 0x37, 0x4F, 0xE1, 0x35, 0x6D, 0x6D, 0x51, 0xC2, 0x45,
  15. 0xE4, 0x85, 0xB5, 0x76, 0x62, 0x5E, 0x7E, 0xC6, 0xF4, 0x4C, 0x42, 0xE9,
  16. 0xA6, 0x37, 0xED, 0x6B, 0x0B, 0xFF, 0x5C, 0xB6, 0xF4, 0x06, 0xB7, 0xED,
  17. 0xEE, 0x38, 0x6B, 0xFB, 0x5A, 0x89, 0x9F, 0xA5, 0xAE, 0x9F, 0x24, 0x11,
  18. 0x7C, 0x4B, 0x1F, 0xE6, 0x49, 0x28, 0x66, 0x51, 0xEC, 0xE6, 0x53, 0x81,
  19. 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF
  20. };
  21. static const unsigned char P14[] = {
  22. 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xC9, 0x0F, 0xDA, 0xA2,
  23. 0x21, 0x68, 0xC2, 0x34, 0xC4, 0xC6, 0x62, 0x8B, 0x80, 0xDC, 0x1C, 0xD1,
  24. 0x29, 0x02, 0x4E, 0x08, 0x8A, 0x67, 0xCC, 0x74, 0x02, 0x0B, 0xBE, 0xA6,
  25. 0x3B, 0x13, 0x9B, 0x22, 0x51, 0x4A, 0x08, 0x79, 0x8E, 0x34, 0x04, 0xDD,
  26. 0xEF, 0x95, 0x19, 0xB3, 0xCD, 0x3A, 0x43, 0x1B, 0x30, 0x2B, 0x0A, 0x6D,
  27. 0xF2, 0x5F, 0x14, 0x37, 0x4F, 0xE1, 0x35, 0x6D, 0x6D, 0x51, 0xC2, 0x45,
  28. 0xE4, 0x85, 0xB5, 0x76, 0x62, 0x5E, 0x7E, 0xC6, 0xF4, 0x4C, 0x42, 0xE9,
  29. 0xA6, 0x37, 0xED, 0x6B, 0x0B, 0xFF, 0x5C, 0xB6, 0xF4, 0x06, 0xB7, 0xED,
  30. 0xEE, 0x38, 0x6B, 0xFB, 0x5A, 0x89, 0x9F, 0xA5, 0xAE, 0x9F, 0x24, 0x11,
  31. 0x7C, 0x4B, 0x1F, 0xE6, 0x49, 0x28, 0x66, 0x51, 0xEC, 0xE4, 0x5B, 0x3D,
  32. 0xC2, 0x00, 0x7C, 0xB8, 0xA1, 0x63, 0xBF, 0x05, 0x98, 0xDA, 0x48, 0x36,
  33. 0x1C, 0x55, 0xD3, 0x9A, 0x69, 0x16, 0x3F, 0xA8, 0xFD, 0x24, 0xCF, 0x5F,
  34. 0x83, 0x65, 0x5D, 0x23, 0xDC, 0xA3, 0xAD, 0x96, 0x1C, 0x62, 0xF3, 0x56,
  35. 0x20, 0x85, 0x52, 0xBB, 0x9E, 0xD5, 0x29, 0x07, 0x70, 0x96, 0x96, 0x6D,
  36. 0x67, 0x0C, 0x35, 0x4E, 0x4A, 0xBC, 0x98, 0x04, 0xF1, 0x74, 0x6C, 0x08,
  37. 0xCA, 0x18, 0x21, 0x7C, 0x32, 0x90, 0x5E, 0x46, 0x2E, 0x36, 0xCE, 0x3B,
  38. 0xE3, 0x9E, 0x77, 0x2C, 0x18, 0x0E, 0x86, 0x03, 0x9B, 0x27, 0x83, 0xA2,
  39. 0xEC, 0x07, 0xA2, 0x8F, 0xB5, 0xC5, 0x5D, 0xF0, 0x6F, 0x4C, 0x52, 0xC9,
  40. 0xDE, 0x2B, 0xCB, 0xF6, 0x95, 0x58, 0x17, 0x18, 0x39, 0x95, 0x49, 0x7C,
  41. 0xEA, 0x95, 0x6A, 0xE5, 0x15, 0xD2, 0x26, 0x18, 0x98, 0xFA, 0x05, 0x10,
  42. 0x15, 0x72, 0x8E, 0x5A, 0x8A, 0xAC, 0xAA, 0x68, 0xFF, 0xFF, 0xFF, 0xFF,
  43. 0xFF, 0xFF, 0xFF, 0xFF
  44. };
  45. /*
  46. * The generator g = 2 (used for both group1 and group14).
  47. */
  48. static const unsigned char G[] = { 2 };
  49. struct dh_extra {
  50. const unsigned char *pdata, *gdata; /* NULL means group exchange */
  51. int plen, glen;
  52. };
  53. static const struct dh_extra extra_group1 = {
  54. P1, G, lenof(P1), lenof(G),
  55. };
  56. static const struct ssh_kex ssh_diffiehellman_group1_sha1 = {
  57. "diffie-hellman-group1-sha1", "group1",
  58. KEXTYPE_DH, &ssh_sha1, &extra_group1,
  59. };
  60. static const struct ssh_kex *const group1_list[] = {
  61. &ssh_diffiehellman_group1_sha1
  62. };
  63. const struct ssh_kexes ssh_diffiehellman_group1 = {
  64. sizeof(group1_list) / sizeof(*group1_list),
  65. group1_list
  66. };
  67. static const struct dh_extra extra_group14 = {
  68. P14, G, lenof(P14), lenof(G),
  69. };
  70. static const struct ssh_kex ssh_diffiehellman_group14_sha256 = {
  71. "diffie-hellman-group14-sha256", "group14",
  72. KEXTYPE_DH, &ssh_sha256, &extra_group14,
  73. };
  74. static const struct ssh_kex ssh_diffiehellman_group14_sha1 = {
  75. "diffie-hellman-group14-sha1", "group14",
  76. KEXTYPE_DH, &ssh_sha1, &extra_group14,
  77. };
  78. static const struct ssh_kex *const group14_list[] = {
  79. &ssh_diffiehellman_group14_sha256,
  80. &ssh_diffiehellman_group14_sha1
  81. };
  82. const struct ssh_kexes ssh_diffiehellman_group14 = {
  83. sizeof(group14_list) / sizeof(*group14_list),
  84. group14_list
  85. };
  86. static const struct dh_extra extra_gex = {
  87. NULL, NULL, 0, 0,
  88. };
  89. static const struct ssh_kex ssh_diffiehellman_gex_sha256 = {
  90. "diffie-hellman-group-exchange-sha256", NULL,
  91. KEXTYPE_DH, &ssh_sha256, &extra_gex,
  92. };
  93. static const struct ssh_kex ssh_diffiehellman_gex_sha1 = {
  94. "diffie-hellman-group-exchange-sha1", NULL,
  95. KEXTYPE_DH, &ssh_sha1, &extra_gex,
  96. };
  97. static const struct ssh_kex *const gex_list[] = {
  98. &ssh_diffiehellman_gex_sha256,
  99. &ssh_diffiehellman_gex_sha1
  100. };
  101. const struct ssh_kexes ssh_diffiehellman_gex = {
  102. sizeof(gex_list) / sizeof(*gex_list),
  103. gex_list
  104. };
  105. /*
  106. * Suffix on GSSAPI SSH protocol identifiers that indicates Kerberos 5
  107. * as the mechanism.
  108. *
  109. * This suffix is the base64-encoded MD5 hash of the byte sequence
  110. * 06 09 2A 86 48 86 F7 12 01 02 02, which in turn is the ASN.1 DER
  111. * encoding of the object ID 1.2.840.113554.1.2.2 which designates
  112. * Kerberos v5.
  113. *
  114. * (The same encoded OID, minus the two-byte DER header, is defined in
  115. * pgssapi.c as GSS_MECH_KRB5.)
  116. */
  117. #define GSS_KRB5_OID_HASH "toWM5Slw5Ew8Mqkay+al2g=="
  118. static const struct ssh_kex ssh_gssk5_diffiehellman_gex_sha1 = {
  119. "gss-gex-sha1-" GSS_KRB5_OID_HASH, NULL,
  120. KEXTYPE_GSS, &ssh_sha1, &extra_gex,
  121. };
  122. static const struct ssh_kex ssh_gssk5_diffiehellman_group14_sha1 = {
  123. "gss-group14-sha1-" GSS_KRB5_OID_HASH, "group14",
  124. KEXTYPE_GSS, &ssh_sha1, &extra_group14,
  125. };
  126. static const struct ssh_kex ssh_gssk5_diffiehellman_group1_sha1 = {
  127. "gss-group1-sha1-" GSS_KRB5_OID_HASH, "group1",
  128. KEXTYPE_GSS, &ssh_sha1, &extra_group1,
  129. };
  130. static const struct ssh_kex *const gssk5_sha1_kex_list[] = {
  131. &ssh_gssk5_diffiehellman_gex_sha1,
  132. &ssh_gssk5_diffiehellman_group14_sha1,
  133. &ssh_gssk5_diffiehellman_group1_sha1
  134. };
  135. const struct ssh_kexes ssh_gssk5_sha1_kex = {
  136. sizeof(gssk5_sha1_kex_list) / sizeof(*gssk5_sha1_kex_list),
  137. gssk5_sha1_kex_list
  138. };
  139. /*
  140. * Variables.
  141. */
  142. struct dh_ctx {
  143. Bignum x, e, p, q, qmask, g;
  144. };
  145. /*
  146. * Common DH initialisation.
  147. */
  148. static void dh_init(struct dh_ctx *ctx)
  149. {
  150. ctx->q = bignum_rshift(ctx->p, 1);
  151. ctx->qmask = bignum_bitmask(ctx->q);
  152. ctx->x = ctx->e = NULL;
  153. }
  154. int dh_is_gex(const struct ssh_kex *kex)
  155. {
  156. const struct dh_extra *extra = (const struct dh_extra *)kex->extra;
  157. return extra->pdata == NULL;
  158. }
  159. /*
  160. * Initialise DH for a standard group.
  161. */
  162. struct dh_ctx *dh_setup_group(const struct ssh_kex *kex)
  163. {
  164. const struct dh_extra *extra = (const struct dh_extra *)kex->extra;
  165. struct dh_ctx *ctx = snew(struct dh_ctx);
  166. ctx->p = bignum_from_bytes(extra->pdata, extra->plen);
  167. ctx->g = bignum_from_bytes(extra->gdata, extra->glen);
  168. dh_init(ctx);
  169. return ctx;
  170. }
  171. /*
  172. * Initialise DH for a server-supplied group.
  173. */
  174. struct dh_ctx *dh_setup_gex(Bignum pval, Bignum gval)
  175. {
  176. struct dh_ctx *ctx = snew(struct dh_ctx);
  177. ctx->p = copybn(pval);
  178. ctx->g = copybn(gval);
  179. dh_init(ctx);
  180. return ctx;
  181. }
  182. /*
  183. * Clean up and free a context.
  184. */
  185. void dh_cleanup(struct dh_ctx *ctx)
  186. {
  187. freebn(ctx->x);
  188. freebn(ctx->e);
  189. freebn(ctx->p);
  190. freebn(ctx->g);
  191. freebn(ctx->q);
  192. freebn(ctx->qmask);
  193. sfree(ctx);
  194. }
  195. /*
  196. * DH stage 1: invent a number x between 1 and q, and compute e =
  197. * g^x mod p. Return e.
  198. *
  199. * If `nbits' is greater than zero, it is used as an upper limit
  200. * for the number of bits in x. This is safe provided that (a) you
  201. * use twice as many bits in x as the number of bits you expect to
  202. * use in your session key, and (b) the DH group is a safe prime
  203. * (which SSH demands that it must be).
  204. *
  205. * P. C. van Oorschot, M. J. Wiener
  206. * "On Diffie-Hellman Key Agreement with Short Exponents".
  207. * Advances in Cryptology: Proceedings of Eurocrypt '96
  208. * Springer-Verlag, May 1996.
  209. */
  210. Bignum dh_create_e(struct dh_ctx *ctx, int nbits)
  211. {
  212. int i;
  213. int nbytes;
  214. unsigned char *buf;
  215. nbytes = (bignum_bitcount(ctx->qmask) + 7) / 8;
  216. buf = snewn(nbytes, unsigned char);
  217. do {
  218. /*
  219. * Create a potential x, by ANDing a string of random bytes
  220. * with qmask.
  221. */
  222. if (ctx->x)
  223. freebn(ctx->x);
  224. if (nbits == 0 || nbits > bignum_bitcount(ctx->qmask)) {
  225. for (i = 0; i < nbytes; i++)
  226. buf[i] = bignum_byte(ctx->qmask, i) & random_byte();
  227. ctx->x = bignum_from_bytes(buf, nbytes);
  228. } else {
  229. int b, nb;
  230. ctx->x = bn_power_2(nbits);
  231. b = nb = 0;
  232. for (i = 0; i < nbits; i++) {
  233. if (nb == 0) {
  234. nb = 8;
  235. b = random_byte();
  236. }
  237. bignum_set_bit(ctx->x, i, b & 1);
  238. b >>= 1;
  239. nb--;
  240. }
  241. }
  242. } while (bignum_cmp(ctx->x, One) <= 0 || bignum_cmp(ctx->x, ctx->q) >= 0);
  243. sfree(buf);
  244. /*
  245. * Done. Now compute e = g^x mod p.
  246. */
  247. ctx->e = modpow(ctx->g, ctx->x, ctx->p);
  248. return ctx->e;
  249. }
  250. /*
  251. * DH stage 2-epsilon: given a number f, validate it to ensure it's in
  252. * range. (RFC 4253 section 8: "Values of 'e' or 'f' that are not in
  253. * the range [1, p-1] MUST NOT be sent or accepted by either side."
  254. * Also, we rule out 1 and p-1 too, since that's easy to do and since
  255. * they lead to obviously weak keys that even a passive eavesdropper
  256. * can figure out.)
  257. */
  258. const char *dh_validate_f(struct dh_ctx *ctx, Bignum f)
  259. {
  260. if (bignum_cmp(f, One) <= 0) {
  261. return "f value received is too small";
  262. } else {
  263. Bignum pm1 = bigsub(ctx->p, One);
  264. int cmp = bignum_cmp(f, pm1);
  265. freebn(pm1);
  266. if (cmp >= 0)
  267. return "f value received is too large";
  268. }
  269. return NULL;
  270. }
  271. /*
  272. * DH stage 2: given a number f, compute K = f^x mod p.
  273. */
  274. Bignum dh_find_K(struct dh_ctx *ctx, Bignum f)
  275. {
  276. Bignum ret;
  277. ret = modpow(f, ctx->x, ctx->p);
  278. return ret;
  279. }