sshsh512.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475
  1. /*
  2. * SHA-512 algorithm as described at
  3. *
  4. * http://csrc.nist.gov/cryptval/shs.html
  5. *
  6. * Modifications made for SHA-384 also
  7. */
  8. #include <assert.h>
  9. #include "ssh.h"
  10. #define BLKSIZE 128
  11. /*
  12. * Arithmetic implementations. Note that AND, XOR and NOT can
  13. * overlap destination with one source, but the others can't.
  14. */
  15. #define add(r,x,y) ( r.lo = y.lo + x.lo, \
  16. r.hi = y.hi + x.hi + ((uint32)r.lo < (uint32)y.lo) )
  17. #define rorB(r,x,y) ( r.lo = ((uint32)x.hi >> ((y)-32)) | ((uint32)x.lo << (64-(y))), \
  18. r.hi = ((uint32)x.lo >> ((y)-32)) | ((uint32)x.hi << (64-(y))) )
  19. #define rorL(r,x,y) ( r.lo = ((uint32)x.lo >> (y)) | ((uint32)x.hi << (32-(y))), \
  20. r.hi = ((uint32)x.hi >> (y)) | ((uint32)x.lo << (32-(y))) )
  21. #define shrB(r,x,y) ( r.lo = (uint32)x.hi >> ((y)-32), r.hi = 0 )
  22. #define shrL(r,x,y) ( r.lo = ((uint32)x.lo >> (y)) | ((uint32)x.hi << (32-(y))), \
  23. r.hi = (uint32)x.hi >> (y) )
  24. #define and(r,x,y) ( r.lo = x.lo & y.lo, r.hi = x.hi & y.hi )
  25. #define xor(r,x,y) ( r.lo = x.lo ^ y.lo, r.hi = x.hi ^ y.hi )
  26. #define not(r,x) ( r.lo = ~x.lo, r.hi = ~x.hi )
  27. #define INIT(h,l) { h, l }
  28. #define BUILD(r,h,l) ( r.hi = h, r.lo = l )
  29. #define EXTRACT(h,l,r) ( h = r.hi, l = r.lo )
  30. /* ----------------------------------------------------------------------
  31. * Core SHA512 algorithm: processes 16-doubleword blocks into a
  32. * message digest.
  33. */
  34. #define Ch(r,t,x,y,z) ( not(t,x), and(r,t,z), and(t,x,y), xor(r,r,t) )
  35. #define Maj(r,t,x,y,z) ( and(r,x,y), and(t,x,z), xor(r,r,t), \
  36. and(t,y,z), xor(r,r,t) )
  37. #define bigsigma0(r,t,x) ( rorL(r,x,28), rorB(t,x,34), xor(r,r,t), \
  38. rorB(t,x,39), xor(r,r,t) )
  39. #define bigsigma1(r,t,x) ( rorL(r,x,14), rorL(t,x,18), xor(r,r,t), \
  40. rorB(t,x,41), xor(r,r,t) )
  41. #define smallsigma0(r,t,x) ( rorL(r,x,1), rorL(t,x,8), xor(r,r,t), \
  42. shrL(t,x,7), xor(r,r,t) )
  43. #define smallsigma1(r,t,x) ( rorL(r,x,19), rorB(t,x,61), xor(r,r,t), \
  44. shrL(t,x,6), xor(r,r,t) )
  45. static void SHA512_Core_Init(SHA512_State *s) {
  46. static const uint64 iv[] = {
  47. INIT(0x6a09e667, 0xf3bcc908),
  48. INIT(0xbb67ae85, 0x84caa73b),
  49. INIT(0x3c6ef372, 0xfe94f82b),
  50. INIT(0xa54ff53a, 0x5f1d36f1),
  51. INIT(0x510e527f, 0xade682d1),
  52. INIT(0x9b05688c, 0x2b3e6c1f),
  53. INIT(0x1f83d9ab, 0xfb41bd6b),
  54. INIT(0x5be0cd19, 0x137e2179),
  55. };
  56. int i;
  57. for (i = 0; i < 8; i++)
  58. s->h[i] = iv[i];
  59. }
  60. static void SHA384_Core_Init(SHA512_State *s) {
  61. static const uint64 iv[] = {
  62. INIT(0xcbbb9d5d, 0xc1059ed8),
  63. INIT(0x629a292a, 0x367cd507),
  64. INIT(0x9159015a, 0x3070dd17),
  65. INIT(0x152fecd8, 0xf70e5939),
  66. INIT(0x67332667, 0xffc00b31),
  67. INIT(0x8eb44a87, 0x68581511),
  68. INIT(0xdb0c2e0d, 0x64f98fa7),
  69. INIT(0x47b5481d, 0xbefa4fa4),
  70. };
  71. int i;
  72. for (i = 0; i < 8; i++)
  73. s->h[i] = iv[i];
  74. }
  75. static void SHA512_Block(SHA512_State *s, uint64 *block) {
  76. uint64 w[80];
  77. uint64 a,b,c,d,e,f,g,h;
  78. static const uint64 k[] = {
  79. INIT(0x428a2f98, 0xd728ae22), INIT(0x71374491, 0x23ef65cd),
  80. INIT(0xb5c0fbcf, 0xec4d3b2f), INIT(0xe9b5dba5, 0x8189dbbc),
  81. INIT(0x3956c25b, 0xf348b538), INIT(0x59f111f1, 0xb605d019),
  82. INIT(0x923f82a4, 0xaf194f9b), INIT(0xab1c5ed5, 0xda6d8118),
  83. INIT(0xd807aa98, 0xa3030242), INIT(0x12835b01, 0x45706fbe),
  84. INIT(0x243185be, 0x4ee4b28c), INIT(0x550c7dc3, 0xd5ffb4e2),
  85. INIT(0x72be5d74, 0xf27b896f), INIT(0x80deb1fe, 0x3b1696b1),
  86. INIT(0x9bdc06a7, 0x25c71235), INIT(0xc19bf174, 0xcf692694),
  87. INIT(0xe49b69c1, 0x9ef14ad2), INIT(0xefbe4786, 0x384f25e3),
  88. INIT(0x0fc19dc6, 0x8b8cd5b5), INIT(0x240ca1cc, 0x77ac9c65),
  89. INIT(0x2de92c6f, 0x592b0275), INIT(0x4a7484aa, 0x6ea6e483),
  90. INIT(0x5cb0a9dc, 0xbd41fbd4), INIT(0x76f988da, 0x831153b5),
  91. INIT(0x983e5152, 0xee66dfab), INIT(0xa831c66d, 0x2db43210),
  92. INIT(0xb00327c8, 0x98fb213f), INIT(0xbf597fc7, 0xbeef0ee4),
  93. INIT(0xc6e00bf3, 0x3da88fc2), INIT(0xd5a79147, 0x930aa725),
  94. INIT(0x06ca6351, 0xe003826f), INIT(0x14292967, 0x0a0e6e70),
  95. INIT(0x27b70a85, 0x46d22ffc), INIT(0x2e1b2138, 0x5c26c926),
  96. INIT(0x4d2c6dfc, 0x5ac42aed), INIT(0x53380d13, 0x9d95b3df),
  97. INIT(0x650a7354, 0x8baf63de), INIT(0x766a0abb, 0x3c77b2a8),
  98. INIT(0x81c2c92e, 0x47edaee6), INIT(0x92722c85, 0x1482353b),
  99. INIT(0xa2bfe8a1, 0x4cf10364), INIT(0xa81a664b, 0xbc423001),
  100. INIT(0xc24b8b70, 0xd0f89791), INIT(0xc76c51a3, 0x0654be30),
  101. INIT(0xd192e819, 0xd6ef5218), INIT(0xd6990624, 0x5565a910),
  102. INIT(0xf40e3585, 0x5771202a), INIT(0x106aa070, 0x32bbd1b8),
  103. INIT(0x19a4c116, 0xb8d2d0c8), INIT(0x1e376c08, 0x5141ab53),
  104. INIT(0x2748774c, 0xdf8eeb99), INIT(0x34b0bcb5, 0xe19b48a8),
  105. INIT(0x391c0cb3, 0xc5c95a63), INIT(0x4ed8aa4a, 0xe3418acb),
  106. INIT(0x5b9cca4f, 0x7763e373), INIT(0x682e6ff3, 0xd6b2b8a3),
  107. INIT(0x748f82ee, 0x5defb2fc), INIT(0x78a5636f, 0x43172f60),
  108. INIT(0x84c87814, 0xa1f0ab72), INIT(0x8cc70208, 0x1a6439ec),
  109. INIT(0x90befffa, 0x23631e28), INIT(0xa4506ceb, 0xde82bde9),
  110. INIT(0xbef9a3f7, 0xb2c67915), INIT(0xc67178f2, 0xe372532b),
  111. INIT(0xca273ece, 0xea26619c), INIT(0xd186b8c7, 0x21c0c207),
  112. INIT(0xeada7dd6, 0xcde0eb1e), INIT(0xf57d4f7f, 0xee6ed178),
  113. INIT(0x06f067aa, 0x72176fba), INIT(0x0a637dc5, 0xa2c898a6),
  114. INIT(0x113f9804, 0xbef90dae), INIT(0x1b710b35, 0x131c471b),
  115. INIT(0x28db77f5, 0x23047d84), INIT(0x32caab7b, 0x40c72493),
  116. INIT(0x3c9ebe0a, 0x15c9bebc), INIT(0x431d67c4, 0x9c100d4c),
  117. INIT(0x4cc5d4be, 0xcb3e42b6), INIT(0x597f299c, 0xfc657e2a),
  118. INIT(0x5fcb6fab, 0x3ad6faec), INIT(0x6c44198c, 0x4a475817),
  119. };
  120. int t;
  121. for (t = 0; t < 16; t++)
  122. w[t] = block[t];
  123. for (t = 16; t < 80; t++) {
  124. uint64 p, q, r, tmp;
  125. smallsigma1(p, tmp, w[t-2]);
  126. smallsigma0(q, tmp, w[t-15]);
  127. add(r, p, q);
  128. add(p, r, w[t-7]);
  129. add(w[t], p, w[t-16]);
  130. }
  131. a = s->h[0]; b = s->h[1]; c = s->h[2]; d = s->h[3];
  132. e = s->h[4]; f = s->h[5]; g = s->h[6]; h = s->h[7];
  133. for (t = 0; t < 80; t+=8) {
  134. uint64 tmp, p, q, r;
  135. #define ROUND(j,a,b,c,d,e,f,g,h) \
  136. bigsigma1(p, tmp, e); \
  137. Ch(q, tmp, e, f, g); \
  138. add(r, p, q); \
  139. add(p, r, k[j]) ; \
  140. add(q, p, w[j]); \
  141. add(r, q, h); \
  142. bigsigma0(p, tmp, a); \
  143. Maj(tmp, q, a, b, c); \
  144. add(q, tmp, p); \
  145. add(p, r, d); \
  146. d = p; \
  147. add(h, q, r);
  148. ROUND(t+0, a,b,c,d,e,f,g,h);
  149. ROUND(t+1, h,a,b,c,d,e,f,g);
  150. ROUND(t+2, g,h,a,b,c,d,e,f);
  151. ROUND(t+3, f,g,h,a,b,c,d,e);
  152. ROUND(t+4, e,f,g,h,a,b,c,d);
  153. ROUND(t+5, d,e,f,g,h,a,b,c);
  154. ROUND(t+6, c,d,e,f,g,h,a,b);
  155. ROUND(t+7, b,c,d,e,f,g,h,a);
  156. }
  157. {
  158. uint64 tmp;
  159. #define UPDATE(state, local) ( tmp = state, add(state, tmp, local) )
  160. UPDATE(s->h[0], a); UPDATE(s->h[1], b);
  161. UPDATE(s->h[2], c); UPDATE(s->h[3], d);
  162. UPDATE(s->h[4], e); UPDATE(s->h[5], f);
  163. UPDATE(s->h[6], g); UPDATE(s->h[7], h);
  164. }
  165. }
  166. /* ----------------------------------------------------------------------
  167. * Outer SHA512 algorithm: take an arbitrary length byte string,
  168. * convert it into 16-doubleword blocks with the prescribed padding
  169. * at the end, and pass those blocks to the core SHA512 algorithm.
  170. */
  171. static void SHA512_BinarySink_write(BinarySink *bs,
  172. const void *p, size_t len);
  173. void SHA512_Init(SHA512_State *s) {
  174. int i;
  175. SHA512_Core_Init(s);
  176. s->blkused = 0;
  177. for (i = 0; i < 4; i++)
  178. s->len[i] = 0;
  179. BinarySink_INIT(s, SHA512_BinarySink_write);
  180. }
  181. void SHA384_Init(SHA512_State *s) {
  182. int i;
  183. SHA384_Core_Init(s);
  184. s->blkused = 0;
  185. for (i = 0; i < 4; i++)
  186. s->len[i] = 0;
  187. BinarySink_INIT(s, SHA512_BinarySink_write);
  188. }
  189. static void SHA512_BinarySink_write(BinarySink *bs,
  190. const void *p, size_t len)
  191. {
  192. SHA512_State *s = BinarySink_DOWNCAST(bs, SHA512_State);
  193. unsigned char *q = (unsigned char *)p;
  194. uint64 wordblock[16];
  195. uint32 lenw = len;
  196. int i;
  197. assert(lenw == len);
  198. /*
  199. * Update the length field.
  200. */
  201. for (i = 0; i < 4; i++) {
  202. s->len[i] += lenw;
  203. lenw = (s->len[i] < lenw);
  204. }
  205. if (s->blkused && s->blkused+len < BLKSIZE) {
  206. /*
  207. * Trivial case: just add to the block.
  208. */
  209. memcpy(s->block + s->blkused, q, len);
  210. s->blkused += len;
  211. } else {
  212. /*
  213. * We must complete and process at least one block.
  214. */
  215. while (s->blkused + len >= BLKSIZE) {
  216. memcpy(s->block + s->blkused, q, BLKSIZE - s->blkused);
  217. q += BLKSIZE - s->blkused;
  218. len -= BLKSIZE - s->blkused;
  219. /* Now process the block. Gather bytes big-endian into words */
  220. for (i = 0; i < 16; i++) {
  221. uint32 h, l;
  222. h = ( ((uint32)s->block[i*8+0]) << 24 ) |
  223. ( ((uint32)s->block[i*8+1]) << 16 ) |
  224. ( ((uint32)s->block[i*8+2]) << 8 ) |
  225. ( ((uint32)s->block[i*8+3]) << 0 );
  226. l = ( ((uint32)s->block[i*8+4]) << 24 ) |
  227. ( ((uint32)s->block[i*8+5]) << 16 ) |
  228. ( ((uint32)s->block[i*8+6]) << 8 ) |
  229. ( ((uint32)s->block[i*8+7]) << 0 );
  230. BUILD(wordblock[i], h, l);
  231. }
  232. SHA512_Block(s, wordblock);
  233. s->blkused = 0;
  234. }
  235. memcpy(s->block, q, len);
  236. s->blkused = len;
  237. }
  238. }
  239. void SHA512_Final(SHA512_State *s, unsigned char *digest) {
  240. int i;
  241. int pad;
  242. unsigned char c[BLKSIZE];
  243. uint32 len[4];
  244. if (s->blkused >= BLKSIZE-16)
  245. pad = (BLKSIZE-16) + BLKSIZE - s->blkused;
  246. else
  247. pad = (BLKSIZE-16) - s->blkused;
  248. for (i = 4; i-- ;) {
  249. uint32 lenhi = s->len[i];
  250. uint32 lenlo = i > 0 ? s->len[i-1] : 0;
  251. len[i] = (lenhi << 3) | (lenlo >> (32-3));
  252. }
  253. memset(c, 0, pad);
  254. c[0] = 0x80;
  255. put_data(s, &c, pad);
  256. for (i = 0; i < 4; i++)
  257. put_uint32(s, len[3-i]);
  258. for (i = 0; i < 8; i++) {
  259. uint32 h, l;
  260. EXTRACT(h, l, s->h[i]);
  261. digest[i*8+0] = (h >> 24) & 0xFF;
  262. digest[i*8+1] = (h >> 16) & 0xFF;
  263. digest[i*8+2] = (h >> 8) & 0xFF;
  264. digest[i*8+3] = (h >> 0) & 0xFF;
  265. digest[i*8+4] = (l >> 24) & 0xFF;
  266. digest[i*8+5] = (l >> 16) & 0xFF;
  267. digest[i*8+6] = (l >> 8) & 0xFF;
  268. digest[i*8+7] = (l >> 0) & 0xFF;
  269. }
  270. }
  271. void SHA384_Final(SHA512_State *s, unsigned char *digest) {
  272. unsigned char biggerDigest[512 / 8];
  273. SHA512_Final(s, biggerDigest);
  274. memcpy(digest, biggerDigest, 384 / 8);
  275. }
  276. void SHA512_Simple(const void *p, int len, unsigned char *output) {
  277. SHA512_State s;
  278. SHA512_Init(&s);
  279. put_data(&s, p, len);
  280. SHA512_Final(&s, output);
  281. smemclr(&s, sizeof(s));
  282. }
  283. void SHA384_Simple(const void *p, int len, unsigned char *output) {
  284. SHA512_State s;
  285. SHA384_Init(&s);
  286. put_data(&s, p, len);
  287. SHA384_Final(&s, output);
  288. smemclr(&s, sizeof(s));
  289. }
  290. /*
  291. * Thin abstraction for things where hashes are pluggable.
  292. */
  293. struct sha512_hash {
  294. SHA512_State state;
  295. ssh_hash hash;
  296. };
  297. static ssh_hash *sha512_new(const struct ssh_hashalg *alg)
  298. {
  299. struct sha512_hash *h = snew(struct sha512_hash);
  300. SHA512_Init(&h->state);
  301. h->hash.vt = alg;
  302. BinarySink_DELEGATE_INIT(&h->hash, &h->state);
  303. return &h->hash;
  304. }
  305. static ssh_hash *sha512_copy(ssh_hash *hashold)
  306. {
  307. struct sha512_hash *hold, *hnew;
  308. ssh_hash *hashnew = sha512_new(hashold->vt);
  309. hold = FROMFIELD(hashold, struct sha512_hash, hash);
  310. hnew = FROMFIELD(hashnew, struct sha512_hash, hash);
  311. hnew->state = hold->state;
  312. BinarySink_COPIED(&hnew->state);
  313. return hashnew;
  314. }
  315. static void sha512_free(ssh_hash *hash)
  316. {
  317. struct sha512_hash *h = FROMFIELD(hash, struct sha512_hash, hash);
  318. smemclr(h, sizeof(*h));
  319. sfree(h);
  320. }
  321. static void sha512_final(ssh_hash *hash, unsigned char *output)
  322. {
  323. struct sha512_hash *h = FROMFIELD(hash, struct sha512_hash, hash);
  324. SHA512_Final(&h->state, output);
  325. sha512_free(hash);
  326. }
  327. const struct ssh_hashalg ssh_sha512 = {
  328. sha512_new, sha512_copy, sha512_final, sha512_free, 64, "SHA-512"
  329. };
  330. static ssh_hash *sha384_new(const struct ssh_hashalg *alg)
  331. {
  332. struct sha512_hash *h = snew(struct sha512_hash);
  333. SHA384_Init(&h->state);
  334. h->hash.vt = alg;
  335. BinarySink_DELEGATE_INIT(&h->hash, &h->state);
  336. return &h->hash;
  337. }
  338. static void sha384_final(ssh_hash *hash, unsigned char *output)
  339. {
  340. struct sha512_hash *h = FROMFIELD(hash, struct sha512_hash, hash);
  341. SHA384_Final(&h->state, output);
  342. sha512_free(hash);
  343. }
  344. const struct ssh_hashalg ssh_sha384 = {
  345. sha384_new, sha512_copy, sha384_final, sha512_free, 48, "SHA-384"
  346. };
  347. #ifdef TEST
  348. #include <stdio.h>
  349. #include <stdlib.h>
  350. #include <assert.h>
  351. int main(void) {
  352. unsigned char digest[64];
  353. int i, j, errors;
  354. struct {
  355. const char *teststring;
  356. unsigned char digest512[64];
  357. } tests[] = {
  358. { "abc", {
  359. 0xdd, 0xaf, 0x35, 0xa1, 0x93, 0x61, 0x7a, 0xba,
  360. 0xcc, 0x41, 0x73, 0x49, 0xae, 0x20, 0x41, 0x31,
  361. 0x12, 0xe6, 0xfa, 0x4e, 0x89, 0xa9, 0x7e, 0xa2,
  362. 0x0a, 0x9e, 0xee, 0xe6, 0x4b, 0x55, 0xd3, 0x9a,
  363. 0x21, 0x92, 0x99, 0x2a, 0x27, 0x4f, 0xc1, 0xa8,
  364. 0x36, 0xba, 0x3c, 0x23, 0xa3, 0xfe, 0xeb, 0xbd,
  365. 0x45, 0x4d, 0x44, 0x23, 0x64, 0x3c, 0xe8, 0x0e,
  366. 0x2a, 0x9a, 0xc9, 0x4f, 0xa5, 0x4c, 0xa4, 0x9f,
  367. } },
  368. { "abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmn"
  369. "hijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu", {
  370. 0x8e, 0x95, 0x9b, 0x75, 0xda, 0xe3, 0x13, 0xda,
  371. 0x8c, 0xf4, 0xf7, 0x28, 0x14, 0xfc, 0x14, 0x3f,
  372. 0x8f, 0x77, 0x79, 0xc6, 0xeb, 0x9f, 0x7f, 0xa1,
  373. 0x72, 0x99, 0xae, 0xad, 0xb6, 0x88, 0x90, 0x18,
  374. 0x50, 0x1d, 0x28, 0x9e, 0x49, 0x00, 0xf7, 0xe4,
  375. 0x33, 0x1b, 0x99, 0xde, 0xc4, 0xb5, 0x43, 0x3a,
  376. 0xc7, 0xd3, 0x29, 0xee, 0xb6, 0xdd, 0x26, 0x54,
  377. 0x5e, 0x96, 0xe5, 0x5b, 0x87, 0x4b, 0xe9, 0x09,
  378. } },
  379. { NULL, {
  380. 0xe7, 0x18, 0x48, 0x3d, 0x0c, 0xe7, 0x69, 0x64,
  381. 0x4e, 0x2e, 0x42, 0xc7, 0xbc, 0x15, 0xb4, 0x63,
  382. 0x8e, 0x1f, 0x98, 0xb1, 0x3b, 0x20, 0x44, 0x28,
  383. 0x56, 0x32, 0xa8, 0x03, 0xaf, 0xa9, 0x73, 0xeb,
  384. 0xde, 0x0f, 0xf2, 0x44, 0x87, 0x7e, 0xa6, 0x0a,
  385. 0x4c, 0xb0, 0x43, 0x2c, 0xe5, 0x77, 0xc3, 0x1b,
  386. 0xeb, 0x00, 0x9c, 0x5c, 0x2c, 0x49, 0xaa, 0x2e,
  387. 0x4e, 0xad, 0xb2, 0x17, 0xad, 0x8c, 0xc0, 0x9b,
  388. } },
  389. };
  390. errors = 0;
  391. for (i = 0; i < sizeof(tests) / sizeof(*tests); i++) {
  392. if (tests[i].teststring) {
  393. SHA512_Simple(tests[i].teststring,
  394. strlen(tests[i].teststring), digest);
  395. } else {
  396. SHA512_State s;
  397. int n;
  398. SHA512_Init(&s);
  399. for (n = 0; n < 1000000 / 40; n++)
  400. put_data(&s, "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", 40);
  401. SHA512_Final(&s, digest);
  402. }
  403. for (j = 0; j < 64; j++) {
  404. if (digest[j] != tests[i].digest512[j]) {
  405. fprintf(stderr,
  406. "\"%s\" digest512 byte %d should be 0x%02x, is 0x%02x\n",
  407. tests[i].teststring, j, tests[i].digest512[j],
  408. digest[j]);
  409. errors++;
  410. }
  411. }
  412. }
  413. printf("%d errors\n", errors);
  414. return 0;
  415. }
  416. #endif