e_aes.c 143 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294
  1. /*
  2. * Copyright 2001-2020 The OpenSSL Project Authors. All Rights Reserved.
  3. *
  4. * Licensed under the OpenSSL license (the "License"). You may not use
  5. * this file except in compliance with the License. You can obtain a copy
  6. * in the file LICENSE in the source distribution or at
  7. * https://www.openssl.org/source/license.html
  8. */
  9. #include <openssl/opensslconf.h>
  10. #include <openssl/crypto.h>
  11. #include <openssl/evp.h>
  12. #include <openssl/err.h>
  13. #include <string.h>
  14. #include <assert.h>
  15. #include <openssl/aes.h>
  16. #include "crypto/evp.h"
  17. #include "modes_local.h"
  18. #include <openssl/rand.h>
  19. #include "evp_local.h"
  20. typedef struct {
  21. union {
  22. double align;
  23. AES_KEY ks;
  24. } ks;
  25. block128_f block;
  26. union {
  27. cbc128_f cbc;
  28. ctr128_f ctr;
  29. } stream;
  30. } EVP_AES_KEY;
  31. typedef struct {
  32. union {
  33. double align;
  34. AES_KEY ks;
  35. } ks; /* AES key schedule to use */
  36. int key_set; /* Set if key initialised */
  37. int iv_set; /* Set if an iv is set */
  38. GCM128_CONTEXT gcm;
  39. unsigned char *iv; /* Temporary IV store */
  40. int ivlen; /* IV length */
  41. int taglen;
  42. int iv_gen; /* It is OK to generate IVs */
  43. int tls_aad_len; /* TLS AAD length */
  44. ctr128_f ctr;
  45. } EVP_AES_GCM_CTX;
  46. typedef struct {
  47. union {
  48. double align;
  49. AES_KEY ks;
  50. } ks1, ks2; /* AES key schedules to use */
  51. XTS128_CONTEXT xts;
  52. void (*stream) (const unsigned char *in,
  53. unsigned char *out, size_t length,
  54. const AES_KEY *key1, const AES_KEY *key2,
  55. const unsigned char iv[16]);
  56. } EVP_AES_XTS_CTX;
  57. typedef struct {
  58. union {
  59. double align;
  60. AES_KEY ks;
  61. } ks; /* AES key schedule to use */
  62. int key_set; /* Set if key initialised */
  63. int iv_set; /* Set if an iv is set */
  64. int tag_set; /* Set if tag is valid */
  65. int len_set; /* Set if message length set */
  66. int L, M; /* L and M parameters from RFC3610 */
  67. int tls_aad_len; /* TLS AAD length */
  68. CCM128_CONTEXT ccm;
  69. ccm128_f str;
  70. } EVP_AES_CCM_CTX;
  71. #ifndef OPENSSL_NO_OCB
  72. typedef struct {
  73. union {
  74. double align;
  75. AES_KEY ks;
  76. } ksenc; /* AES key schedule to use for encryption */
  77. union {
  78. double align;
  79. AES_KEY ks;
  80. } ksdec; /* AES key schedule to use for decryption */
  81. int key_set; /* Set if key initialised */
  82. int iv_set; /* Set if an iv is set */
  83. OCB128_CONTEXT ocb;
  84. unsigned char *iv; /* Temporary IV store */
  85. unsigned char tag[16];
  86. unsigned char data_buf[16]; /* Store partial data blocks */
  87. unsigned char aad_buf[16]; /* Store partial AAD blocks */
  88. int data_buf_len;
  89. int aad_buf_len;
  90. int ivlen; /* IV length */
  91. int taglen;
  92. } EVP_AES_OCB_CTX;
  93. #endif
  94. #define MAXBITCHUNK ((size_t)1<<(sizeof(size_t)*8-4))
  95. #ifdef VPAES_ASM
  96. int vpaes_set_encrypt_key(const unsigned char *userKey, int bits,
  97. AES_KEY *key);
  98. int vpaes_set_decrypt_key(const unsigned char *userKey, int bits,
  99. AES_KEY *key);
  100. void vpaes_encrypt(const unsigned char *in, unsigned char *out,
  101. const AES_KEY *key);
  102. void vpaes_decrypt(const unsigned char *in, unsigned char *out,
  103. const AES_KEY *key);
  104. void vpaes_cbc_encrypt(const unsigned char *in,
  105. unsigned char *out,
  106. size_t length,
  107. const AES_KEY *key, unsigned char *ivec, int enc);
  108. #endif
  109. #ifdef BSAES_ASM
  110. void bsaes_cbc_encrypt(const unsigned char *in, unsigned char *out,
  111. size_t length, const AES_KEY *key,
  112. unsigned char ivec[16], int enc);
  113. void bsaes_ctr32_encrypt_blocks(const unsigned char *in, unsigned char *out,
  114. size_t len, const AES_KEY *key,
  115. const unsigned char ivec[16]);
  116. void bsaes_xts_encrypt(const unsigned char *inp, unsigned char *out,
  117. size_t len, const AES_KEY *key1,
  118. const AES_KEY *key2, const unsigned char iv[16]);
  119. void bsaes_xts_decrypt(const unsigned char *inp, unsigned char *out,
  120. size_t len, const AES_KEY *key1,
  121. const AES_KEY *key2, const unsigned char iv[16]);
  122. #endif
  123. #if !defined(AES_ASM) && !defined(AES_CTR_ASM) \
  124. && defined(OPENSSL_AES_CONST_TIME) \
  125. && !defined(OPENSSL_SMALL_FOOTPRINT)
  126. # define AES_CTR_ASM
  127. #endif
  128. #ifdef AES_CTR_ASM
  129. void AES_ctr32_encrypt(const unsigned char *in, unsigned char *out,
  130. size_t blocks, const AES_KEY *key,
  131. const unsigned char ivec[AES_BLOCK_SIZE]);
  132. #endif
  133. #ifdef AES_XTS_ASM
  134. void AES_xts_encrypt(const unsigned char *inp, unsigned char *out, size_t len,
  135. const AES_KEY *key1, const AES_KEY *key2,
  136. const unsigned char iv[16]);
  137. void AES_xts_decrypt(const unsigned char *inp, unsigned char *out, size_t len,
  138. const AES_KEY *key1, const AES_KEY *key2,
  139. const unsigned char iv[16]);
  140. #endif
  141. /* increment counter (64-bit int) by 1 */
  142. static void ctr64_inc(unsigned char *counter)
  143. {
  144. int n = 8;
  145. unsigned char c;
  146. do {
  147. --n;
  148. c = counter[n];
  149. ++c;
  150. counter[n] = c;
  151. if (c)
  152. return;
  153. } while (n);
  154. }
  155. #if defined(OPENSSL_CPUID_OBJ) && (defined(__powerpc__) || defined(__ppc__) || defined(_ARCH_PPC))
  156. # include "ppc_arch.h"
  157. # ifdef VPAES_ASM
  158. # define VPAES_CAPABLE (OPENSSL_ppccap_P & PPC_ALTIVEC)
  159. # endif
  160. # define HWAES_CAPABLE (OPENSSL_ppccap_P & PPC_CRYPTO207)
  161. # define HWAES_set_encrypt_key aes_p8_set_encrypt_key
  162. # define HWAES_set_decrypt_key aes_p8_set_decrypt_key
  163. # define HWAES_encrypt aes_p8_encrypt
  164. # define HWAES_decrypt aes_p8_decrypt
  165. # define HWAES_cbc_encrypt aes_p8_cbc_encrypt
  166. # define HWAES_ctr32_encrypt_blocks aes_p8_ctr32_encrypt_blocks
  167. # define HWAES_xts_encrypt aes_p8_xts_encrypt
  168. # define HWAES_xts_decrypt aes_p8_xts_decrypt
  169. #endif
  170. #if defined(OPENSSL_CPUID_OBJ) && ( \
  171. ((defined(__i386) || defined(__i386__) || \
  172. defined(_M_IX86)) && defined(OPENSSL_IA32_SSE2))|| \
  173. defined(__x86_64) || defined(__x86_64__) || \
  174. defined(_M_AMD64) || defined(_M_X64) )
  175. extern unsigned int OPENSSL_ia32cap_P[];
  176. # ifdef VPAES_ASM
  177. # define VPAES_CAPABLE (OPENSSL_ia32cap_P[1]&(1<<(41-32)))
  178. # endif
  179. # ifdef BSAES_ASM
  180. # define BSAES_CAPABLE (OPENSSL_ia32cap_P[1]&(1<<(41-32)))
  181. # endif
  182. /*
  183. * AES-NI section
  184. */
  185. # define AESNI_CAPABLE (OPENSSL_ia32cap_P[1]&(1<<(57-32)))
  186. int aesni_set_encrypt_key(const unsigned char *userKey, int bits,
  187. AES_KEY *key);
  188. int aesni_set_decrypt_key(const unsigned char *userKey, int bits,
  189. AES_KEY *key);
  190. void aesni_encrypt(const unsigned char *in, unsigned char *out,
  191. const AES_KEY *key);
  192. void aesni_decrypt(const unsigned char *in, unsigned char *out,
  193. const AES_KEY *key);
  194. void aesni_ecb_encrypt(const unsigned char *in,
  195. unsigned char *out,
  196. size_t length, const AES_KEY *key, int enc);
  197. void aesni_cbc_encrypt(const unsigned char *in,
  198. unsigned char *out,
  199. size_t length,
  200. const AES_KEY *key, unsigned char *ivec, int enc);
  201. void aesni_ctr32_encrypt_blocks(const unsigned char *in,
  202. unsigned char *out,
  203. size_t blocks,
  204. const void *key, const unsigned char *ivec);
  205. void aesni_xts_encrypt(const unsigned char *in,
  206. unsigned char *out,
  207. size_t length,
  208. const AES_KEY *key1, const AES_KEY *key2,
  209. const unsigned char iv[16]);
  210. void aesni_xts_decrypt(const unsigned char *in,
  211. unsigned char *out,
  212. size_t length,
  213. const AES_KEY *key1, const AES_KEY *key2,
  214. const unsigned char iv[16]);
  215. void aesni_ccm64_encrypt_blocks(const unsigned char *in,
  216. unsigned char *out,
  217. size_t blocks,
  218. const void *key,
  219. const unsigned char ivec[16],
  220. unsigned char cmac[16]);
  221. void aesni_ccm64_decrypt_blocks(const unsigned char *in,
  222. unsigned char *out,
  223. size_t blocks,
  224. const void *key,
  225. const unsigned char ivec[16],
  226. unsigned char cmac[16]);
  227. # if defined(__x86_64) || defined(__x86_64__) || defined(_M_AMD64) || defined(_M_X64)
  228. size_t aesni_gcm_encrypt(const unsigned char *in,
  229. unsigned char *out,
  230. size_t len,
  231. const void *key, unsigned char ivec[16], u64 *Xi);
  232. # define AES_gcm_encrypt aesni_gcm_encrypt
  233. size_t aesni_gcm_decrypt(const unsigned char *in,
  234. unsigned char *out,
  235. size_t len,
  236. const void *key, unsigned char ivec[16], u64 *Xi);
  237. # define AES_gcm_decrypt aesni_gcm_decrypt
  238. void gcm_ghash_avx(u64 Xi[2], const u128 Htable[16], const u8 *in,
  239. size_t len);
  240. # define AES_GCM_ASM(gctx) (gctx->ctr==aesni_ctr32_encrypt_blocks && \
  241. gctx->gcm.ghash==gcm_ghash_avx)
  242. # define AES_GCM_ASM2(gctx) (gctx->gcm.block==(block128_f)aesni_encrypt && \
  243. gctx->gcm.ghash==gcm_ghash_avx)
  244. # undef AES_GCM_ASM2 /* minor size optimization */
  245. # endif
  246. static int aesni_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
  247. const unsigned char *iv, int enc)
  248. {
  249. int ret, mode;
  250. EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);
  251. mode = EVP_CIPHER_CTX_mode(ctx);
  252. if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE)
  253. && !enc) {
  254. ret = aesni_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
  255. &dat->ks.ks);
  256. dat->block = (block128_f) aesni_decrypt;
  257. dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
  258. (cbc128_f) aesni_cbc_encrypt : NULL;
  259. } else {
  260. ret = aesni_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
  261. &dat->ks.ks);
  262. dat->block = (block128_f) aesni_encrypt;
  263. if (mode == EVP_CIPH_CBC_MODE)
  264. dat->stream.cbc = (cbc128_f) aesni_cbc_encrypt;
  265. else if (mode == EVP_CIPH_CTR_MODE)
  266. dat->stream.ctr = (ctr128_f) aesni_ctr32_encrypt_blocks;
  267. else
  268. dat->stream.cbc = NULL;
  269. }
  270. if (ret < 0) {
  271. EVPerr(EVP_F_AESNI_INIT_KEY, EVP_R_AES_KEY_SETUP_FAILED);
  272. return 0;
  273. }
  274. return 1;
  275. }
  276. static int aesni_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  277. const unsigned char *in, size_t len)
  278. {
  279. aesni_cbc_encrypt(in, out, len, &EVP_C_DATA(EVP_AES_KEY,ctx)->ks.ks,
  280. EVP_CIPHER_CTX_iv_noconst(ctx),
  281. EVP_CIPHER_CTX_encrypting(ctx));
  282. return 1;
  283. }
  284. static int aesni_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  285. const unsigned char *in, size_t len)
  286. {
  287. size_t bl = EVP_CIPHER_CTX_block_size(ctx);
  288. if (len < bl)
  289. return 1;
  290. aesni_ecb_encrypt(in, out, len, &EVP_C_DATA(EVP_AES_KEY,ctx)->ks.ks,
  291. EVP_CIPHER_CTX_encrypting(ctx));
  292. return 1;
  293. }
  294. # define aesni_ofb_cipher aes_ofb_cipher
  295. static int aesni_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  296. const unsigned char *in, size_t len);
  297. # define aesni_cfb_cipher aes_cfb_cipher
  298. static int aesni_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  299. const unsigned char *in, size_t len);
  300. # define aesni_cfb8_cipher aes_cfb8_cipher
  301. static int aesni_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  302. const unsigned char *in, size_t len);
  303. # define aesni_cfb1_cipher aes_cfb1_cipher
  304. static int aesni_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  305. const unsigned char *in, size_t len);
  306. # define aesni_ctr_cipher aes_ctr_cipher
  307. static int aesni_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  308. const unsigned char *in, size_t len);
  309. static int aesni_gcm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
  310. const unsigned char *iv, int enc)
  311. {
  312. EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,ctx);
  313. if (!iv && !key)
  314. return 1;
  315. if (key) {
  316. aesni_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
  317. &gctx->ks.ks);
  318. CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks, (block128_f) aesni_encrypt);
  319. gctx->ctr = (ctr128_f) aesni_ctr32_encrypt_blocks;
  320. /*
  321. * If we have an iv can set it directly, otherwise use saved IV.
  322. */
  323. if (iv == NULL && gctx->iv_set)
  324. iv = gctx->iv;
  325. if (iv) {
  326. CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
  327. gctx->iv_set = 1;
  328. }
  329. gctx->key_set = 1;
  330. } else {
  331. /* If key set use IV, otherwise copy */
  332. if (gctx->key_set)
  333. CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
  334. else
  335. memcpy(gctx->iv, iv, gctx->ivlen);
  336. gctx->iv_set = 1;
  337. gctx->iv_gen = 0;
  338. }
  339. return 1;
  340. }
  341. # define aesni_gcm_cipher aes_gcm_cipher
  342. static int aesni_gcm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  343. const unsigned char *in, size_t len);
  344. static int aesni_xts_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
  345. const unsigned char *iv, int enc)
  346. {
  347. EVP_AES_XTS_CTX *xctx = EVP_C_DATA(EVP_AES_XTS_CTX,ctx);
  348. if (!iv && !key)
  349. return 1;
  350. if (key) {
  351. /* The key is two half length keys in reality */
  352. const int bytes = EVP_CIPHER_CTX_key_length(ctx) / 2;
  353. /*
  354. * Verify that the two keys are different.
  355. *
  356. * This addresses Rogaway's vulnerability.
  357. * See comment in aes_xts_init_key() below.
  358. */
  359. if (enc && CRYPTO_memcmp(key, key + bytes, bytes) == 0) {
  360. EVPerr(EVP_F_AESNI_XTS_INIT_KEY, EVP_R_XTS_DUPLICATED_KEYS);
  361. return 0;
  362. }
  363. /* key_len is two AES keys */
  364. if (enc) {
  365. aesni_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 4,
  366. &xctx->ks1.ks);
  367. xctx->xts.block1 = (block128_f) aesni_encrypt;
  368. xctx->stream = aesni_xts_encrypt;
  369. } else {
  370. aesni_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 4,
  371. &xctx->ks1.ks);
  372. xctx->xts.block1 = (block128_f) aesni_decrypt;
  373. xctx->stream = aesni_xts_decrypt;
  374. }
  375. aesni_set_encrypt_key(key + EVP_CIPHER_CTX_key_length(ctx) / 2,
  376. EVP_CIPHER_CTX_key_length(ctx) * 4,
  377. &xctx->ks2.ks);
  378. xctx->xts.block2 = (block128_f) aesni_encrypt;
  379. xctx->xts.key1 = &xctx->ks1;
  380. }
  381. if (iv) {
  382. xctx->xts.key2 = &xctx->ks2;
  383. memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), iv, 16);
  384. }
  385. return 1;
  386. }
  387. # define aesni_xts_cipher aes_xts_cipher
  388. static int aesni_xts_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  389. const unsigned char *in, size_t len);
  390. static int aesni_ccm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
  391. const unsigned char *iv, int enc)
  392. {
  393. EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX,ctx);
  394. if (!iv && !key)
  395. return 1;
  396. if (key) {
  397. aesni_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
  398. &cctx->ks.ks);
  399. CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L,
  400. &cctx->ks, (block128_f) aesni_encrypt);
  401. cctx->str = enc ? (ccm128_f) aesni_ccm64_encrypt_blocks :
  402. (ccm128_f) aesni_ccm64_decrypt_blocks;
  403. cctx->key_set = 1;
  404. }
  405. if (iv) {
  406. memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), iv, 15 - cctx->L);
  407. cctx->iv_set = 1;
  408. }
  409. return 1;
  410. }
  411. # define aesni_ccm_cipher aes_ccm_cipher
  412. static int aesni_ccm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  413. const unsigned char *in, size_t len);
  414. # ifndef OPENSSL_NO_OCB
  415. void aesni_ocb_encrypt(const unsigned char *in, unsigned char *out,
  416. size_t blocks, const void *key,
  417. size_t start_block_num,
  418. unsigned char offset_i[16],
  419. const unsigned char L_[][16],
  420. unsigned char checksum[16]);
  421. void aesni_ocb_decrypt(const unsigned char *in, unsigned char *out,
  422. size_t blocks, const void *key,
  423. size_t start_block_num,
  424. unsigned char offset_i[16],
  425. const unsigned char L_[][16],
  426. unsigned char checksum[16]);
  427. static int aesni_ocb_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
  428. const unsigned char *iv, int enc)
  429. {
  430. EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX,ctx);
  431. if (!iv && !key)
  432. return 1;
  433. if (key) {
  434. do {
  435. /*
  436. * We set both the encrypt and decrypt key here because decrypt
  437. * needs both. We could possibly optimise to remove setting the
  438. * decrypt for an encryption operation.
  439. */
  440. aesni_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
  441. &octx->ksenc.ks);
  442. aesni_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
  443. &octx->ksdec.ks);
  444. if (!CRYPTO_ocb128_init(&octx->ocb,
  445. &octx->ksenc.ks, &octx->ksdec.ks,
  446. (block128_f) aesni_encrypt,
  447. (block128_f) aesni_decrypt,
  448. enc ? aesni_ocb_encrypt
  449. : aesni_ocb_decrypt))
  450. return 0;
  451. }
  452. while (0);
  453. /*
  454. * If we have an iv we can set it directly, otherwise use saved IV.
  455. */
  456. if (iv == NULL && octx->iv_set)
  457. iv = octx->iv;
  458. if (iv) {
  459. if (CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen)
  460. != 1)
  461. return 0;
  462. octx->iv_set = 1;
  463. }
  464. octx->key_set = 1;
  465. } else {
  466. /* If key set use IV, otherwise copy */
  467. if (octx->key_set)
  468. CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen);
  469. else
  470. memcpy(octx->iv, iv, octx->ivlen);
  471. octx->iv_set = 1;
  472. }
  473. return 1;
  474. }
  475. # define aesni_ocb_cipher aes_ocb_cipher
  476. static int aesni_ocb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  477. const unsigned char *in, size_t len);
  478. # endif /* OPENSSL_NO_OCB */
  479. # define BLOCK_CIPHER_generic(nid,keylen,blocksize,ivlen,nmode,mode,MODE,flags) \
  480. static const EVP_CIPHER aesni_##keylen##_##mode = { \
  481. nid##_##keylen##_##nmode,blocksize,keylen/8,ivlen, \
  482. flags|EVP_CIPH_##MODE##_MODE, \
  483. aesni_init_key, \
  484. aesni_##mode##_cipher, \
  485. NULL, \
  486. sizeof(EVP_AES_KEY), \
  487. NULL,NULL,NULL,NULL }; \
  488. static const EVP_CIPHER aes_##keylen##_##mode = { \
  489. nid##_##keylen##_##nmode,blocksize, \
  490. keylen/8,ivlen, \
  491. flags|EVP_CIPH_##MODE##_MODE, \
  492. aes_init_key, \
  493. aes_##mode##_cipher, \
  494. NULL, \
  495. sizeof(EVP_AES_KEY), \
  496. NULL,NULL,NULL,NULL }; \
  497. const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \
  498. { return AESNI_CAPABLE?&aesni_##keylen##_##mode:&aes_##keylen##_##mode; }
  499. # define BLOCK_CIPHER_custom(nid,keylen,blocksize,ivlen,mode,MODE,flags) \
  500. static const EVP_CIPHER aesni_##keylen##_##mode = { \
  501. nid##_##keylen##_##mode,blocksize, \
  502. (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE?2:1)*keylen/8, ivlen, \
  503. flags|EVP_CIPH_##MODE##_MODE, \
  504. aesni_##mode##_init_key, \
  505. aesni_##mode##_cipher, \
  506. aes_##mode##_cleanup, \
  507. sizeof(EVP_AES_##MODE##_CTX), \
  508. NULL,NULL,aes_##mode##_ctrl,NULL }; \
  509. static const EVP_CIPHER aes_##keylen##_##mode = { \
  510. nid##_##keylen##_##mode,blocksize, \
  511. (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE?2:1)*keylen/8, ivlen, \
  512. flags|EVP_CIPH_##MODE##_MODE, \
  513. aes_##mode##_init_key, \
  514. aes_##mode##_cipher, \
  515. aes_##mode##_cleanup, \
  516. sizeof(EVP_AES_##MODE##_CTX), \
  517. NULL,NULL,aes_##mode##_ctrl,NULL }; \
  518. const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \
  519. { return AESNI_CAPABLE?&aesni_##keylen##_##mode:&aes_##keylen##_##mode; }
  520. #elif defined(AES_ASM) && (defined(__sparc) || defined(__sparc__))
  521. # include "sparc_arch.h"
  522. extern unsigned int OPENSSL_sparcv9cap_P[];
  523. /*
  524. * Initial Fujitsu SPARC64 X support
  525. */
  526. # define HWAES_CAPABLE (OPENSSL_sparcv9cap_P[0] & SPARCV9_FJAESX)
  527. # define HWAES_set_encrypt_key aes_fx_set_encrypt_key
  528. # define HWAES_set_decrypt_key aes_fx_set_decrypt_key
  529. # define HWAES_encrypt aes_fx_encrypt
  530. # define HWAES_decrypt aes_fx_decrypt
  531. # define HWAES_cbc_encrypt aes_fx_cbc_encrypt
  532. # define HWAES_ctr32_encrypt_blocks aes_fx_ctr32_encrypt_blocks
  533. # define SPARC_AES_CAPABLE (OPENSSL_sparcv9cap_P[1] & CFR_AES)
  534. void aes_t4_set_encrypt_key(const unsigned char *key, int bits, AES_KEY *ks);
  535. void aes_t4_set_decrypt_key(const unsigned char *key, int bits, AES_KEY *ks);
  536. void aes_t4_encrypt(const unsigned char *in, unsigned char *out,
  537. const AES_KEY *key);
  538. void aes_t4_decrypt(const unsigned char *in, unsigned char *out,
  539. const AES_KEY *key);
  540. /*
  541. * Key-length specific subroutines were chosen for following reason.
  542. * Each SPARC T4 core can execute up to 8 threads which share core's
  543. * resources. Loading as much key material to registers allows to
  544. * minimize references to shared memory interface, as well as amount
  545. * of instructions in inner loops [much needed on T4]. But then having
  546. * non-key-length specific routines would require conditional branches
  547. * either in inner loops or on subroutines' entries. Former is hardly
  548. * acceptable, while latter means code size increase to size occupied
  549. * by multiple key-length specific subroutines, so why fight?
  550. */
  551. void aes128_t4_cbc_encrypt(const unsigned char *in, unsigned char *out,
  552. size_t len, const AES_KEY *key,
  553. unsigned char *ivec);
  554. void aes128_t4_cbc_decrypt(const unsigned char *in, unsigned char *out,
  555. size_t len, const AES_KEY *key,
  556. unsigned char *ivec);
  557. void aes192_t4_cbc_encrypt(const unsigned char *in, unsigned char *out,
  558. size_t len, const AES_KEY *key,
  559. unsigned char *ivec);
  560. void aes192_t4_cbc_decrypt(const unsigned char *in, unsigned char *out,
  561. size_t len, const AES_KEY *key,
  562. unsigned char *ivec);
  563. void aes256_t4_cbc_encrypt(const unsigned char *in, unsigned char *out,
  564. size_t len, const AES_KEY *key,
  565. unsigned char *ivec);
  566. void aes256_t4_cbc_decrypt(const unsigned char *in, unsigned char *out,
  567. size_t len, const AES_KEY *key,
  568. unsigned char *ivec);
  569. void aes128_t4_ctr32_encrypt(const unsigned char *in, unsigned char *out,
  570. size_t blocks, const AES_KEY *key,
  571. unsigned char *ivec);
  572. void aes192_t4_ctr32_encrypt(const unsigned char *in, unsigned char *out,
  573. size_t blocks, const AES_KEY *key,
  574. unsigned char *ivec);
  575. void aes256_t4_ctr32_encrypt(const unsigned char *in, unsigned char *out,
  576. size_t blocks, const AES_KEY *key,
  577. unsigned char *ivec);
  578. void aes128_t4_xts_encrypt(const unsigned char *in, unsigned char *out,
  579. size_t blocks, const AES_KEY *key1,
  580. const AES_KEY *key2, const unsigned char *ivec);
  581. void aes128_t4_xts_decrypt(const unsigned char *in, unsigned char *out,
  582. size_t blocks, const AES_KEY *key1,
  583. const AES_KEY *key2, const unsigned char *ivec);
  584. void aes256_t4_xts_encrypt(const unsigned char *in, unsigned char *out,
  585. size_t blocks, const AES_KEY *key1,
  586. const AES_KEY *key2, const unsigned char *ivec);
  587. void aes256_t4_xts_decrypt(const unsigned char *in, unsigned char *out,
  588. size_t blocks, const AES_KEY *key1,
  589. const AES_KEY *key2, const unsigned char *ivec);
  590. static int aes_t4_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
  591. const unsigned char *iv, int enc)
  592. {
  593. int ret, mode, bits;
  594. EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);
  595. mode = EVP_CIPHER_CTX_mode(ctx);
  596. bits = EVP_CIPHER_CTX_key_length(ctx) * 8;
  597. if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE)
  598. && !enc) {
  599. ret = 0;
  600. aes_t4_set_decrypt_key(key, bits, &dat->ks.ks);
  601. dat->block = (block128_f) aes_t4_decrypt;
  602. switch (bits) {
  603. case 128:
  604. dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
  605. (cbc128_f) aes128_t4_cbc_decrypt : NULL;
  606. break;
  607. case 192:
  608. dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
  609. (cbc128_f) aes192_t4_cbc_decrypt : NULL;
  610. break;
  611. case 256:
  612. dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
  613. (cbc128_f) aes256_t4_cbc_decrypt : NULL;
  614. break;
  615. default:
  616. ret = -1;
  617. }
  618. } else {
  619. ret = 0;
  620. aes_t4_set_encrypt_key(key, bits, &dat->ks.ks);
  621. dat->block = (block128_f) aes_t4_encrypt;
  622. switch (bits) {
  623. case 128:
  624. if (mode == EVP_CIPH_CBC_MODE)
  625. dat->stream.cbc = (cbc128_f) aes128_t4_cbc_encrypt;
  626. else if (mode == EVP_CIPH_CTR_MODE)
  627. dat->stream.ctr = (ctr128_f) aes128_t4_ctr32_encrypt;
  628. else
  629. dat->stream.cbc = NULL;
  630. break;
  631. case 192:
  632. if (mode == EVP_CIPH_CBC_MODE)
  633. dat->stream.cbc = (cbc128_f) aes192_t4_cbc_encrypt;
  634. else if (mode == EVP_CIPH_CTR_MODE)
  635. dat->stream.ctr = (ctr128_f) aes192_t4_ctr32_encrypt;
  636. else
  637. dat->stream.cbc = NULL;
  638. break;
  639. case 256:
  640. if (mode == EVP_CIPH_CBC_MODE)
  641. dat->stream.cbc = (cbc128_f) aes256_t4_cbc_encrypt;
  642. else if (mode == EVP_CIPH_CTR_MODE)
  643. dat->stream.ctr = (ctr128_f) aes256_t4_ctr32_encrypt;
  644. else
  645. dat->stream.cbc = NULL;
  646. break;
  647. default:
  648. ret = -1;
  649. }
  650. }
  651. if (ret < 0) {
  652. EVPerr(EVP_F_AES_T4_INIT_KEY, EVP_R_AES_KEY_SETUP_FAILED);
  653. return 0;
  654. }
  655. return 1;
  656. }
  657. # define aes_t4_cbc_cipher aes_cbc_cipher
  658. static int aes_t4_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  659. const unsigned char *in, size_t len);
  660. # define aes_t4_ecb_cipher aes_ecb_cipher
  661. static int aes_t4_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  662. const unsigned char *in, size_t len);
  663. # define aes_t4_ofb_cipher aes_ofb_cipher
  664. static int aes_t4_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  665. const unsigned char *in, size_t len);
  666. # define aes_t4_cfb_cipher aes_cfb_cipher
  667. static int aes_t4_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  668. const unsigned char *in, size_t len);
  669. # define aes_t4_cfb8_cipher aes_cfb8_cipher
  670. static int aes_t4_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  671. const unsigned char *in, size_t len);
  672. # define aes_t4_cfb1_cipher aes_cfb1_cipher
  673. static int aes_t4_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  674. const unsigned char *in, size_t len);
  675. # define aes_t4_ctr_cipher aes_ctr_cipher
  676. static int aes_t4_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  677. const unsigned char *in, size_t len);
  678. static int aes_t4_gcm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
  679. const unsigned char *iv, int enc)
  680. {
  681. EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,ctx);
  682. if (!iv && !key)
  683. return 1;
  684. if (key) {
  685. int bits = EVP_CIPHER_CTX_key_length(ctx) * 8;
  686. aes_t4_set_encrypt_key(key, bits, &gctx->ks.ks);
  687. CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks,
  688. (block128_f) aes_t4_encrypt);
  689. switch (bits) {
  690. case 128:
  691. gctx->ctr = (ctr128_f) aes128_t4_ctr32_encrypt;
  692. break;
  693. case 192:
  694. gctx->ctr = (ctr128_f) aes192_t4_ctr32_encrypt;
  695. break;
  696. case 256:
  697. gctx->ctr = (ctr128_f) aes256_t4_ctr32_encrypt;
  698. break;
  699. default:
  700. return 0;
  701. }
  702. /*
  703. * If we have an iv can set it directly, otherwise use saved IV.
  704. */
  705. if (iv == NULL && gctx->iv_set)
  706. iv = gctx->iv;
  707. if (iv) {
  708. CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
  709. gctx->iv_set = 1;
  710. }
  711. gctx->key_set = 1;
  712. } else {
  713. /* If key set use IV, otherwise copy */
  714. if (gctx->key_set)
  715. CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
  716. else
  717. memcpy(gctx->iv, iv, gctx->ivlen);
  718. gctx->iv_set = 1;
  719. gctx->iv_gen = 0;
  720. }
  721. return 1;
  722. }
  723. # define aes_t4_gcm_cipher aes_gcm_cipher
  724. static int aes_t4_gcm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  725. const unsigned char *in, size_t len);
  726. static int aes_t4_xts_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
  727. const unsigned char *iv, int enc)
  728. {
  729. EVP_AES_XTS_CTX *xctx = EVP_C_DATA(EVP_AES_XTS_CTX,ctx);
  730. if (!iv && !key)
  731. return 1;
  732. if (key) {
  733. /* The key is two half length keys in reality */
  734. const int bytes = EVP_CIPHER_CTX_key_length(ctx) / 2;
  735. const int bits = bytes * 8;
  736. /*
  737. * Verify that the two keys are different.
  738. *
  739. * This addresses Rogaway's vulnerability.
  740. * See comment in aes_xts_init_key() below.
  741. */
  742. if (enc && CRYPTO_memcmp(key, key + bytes, bytes) == 0) {
  743. EVPerr(EVP_F_AES_T4_XTS_INIT_KEY, EVP_R_XTS_DUPLICATED_KEYS);
  744. return 0;
  745. }
  746. xctx->stream = NULL;
  747. /* key_len is two AES keys */
  748. if (enc) {
  749. aes_t4_set_encrypt_key(key, bits, &xctx->ks1.ks);
  750. xctx->xts.block1 = (block128_f) aes_t4_encrypt;
  751. switch (bits) {
  752. case 128:
  753. xctx->stream = aes128_t4_xts_encrypt;
  754. break;
  755. case 256:
  756. xctx->stream = aes256_t4_xts_encrypt;
  757. break;
  758. default:
  759. return 0;
  760. }
  761. } else {
  762. aes_t4_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 4,
  763. &xctx->ks1.ks);
  764. xctx->xts.block1 = (block128_f) aes_t4_decrypt;
  765. switch (bits) {
  766. case 128:
  767. xctx->stream = aes128_t4_xts_decrypt;
  768. break;
  769. case 256:
  770. xctx->stream = aes256_t4_xts_decrypt;
  771. break;
  772. default:
  773. return 0;
  774. }
  775. }
  776. aes_t4_set_encrypt_key(key + EVP_CIPHER_CTX_key_length(ctx) / 2,
  777. EVP_CIPHER_CTX_key_length(ctx) * 4,
  778. &xctx->ks2.ks);
  779. xctx->xts.block2 = (block128_f) aes_t4_encrypt;
  780. xctx->xts.key1 = &xctx->ks1;
  781. }
  782. if (iv) {
  783. xctx->xts.key2 = &xctx->ks2;
  784. memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), iv, 16);
  785. }
  786. return 1;
  787. }
  788. # define aes_t4_xts_cipher aes_xts_cipher
  789. static int aes_t4_xts_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  790. const unsigned char *in, size_t len);
  791. static int aes_t4_ccm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
  792. const unsigned char *iv, int enc)
  793. {
  794. EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX,ctx);
  795. if (!iv && !key)
  796. return 1;
  797. if (key) {
  798. int bits = EVP_CIPHER_CTX_key_length(ctx) * 8;
  799. aes_t4_set_encrypt_key(key, bits, &cctx->ks.ks);
  800. CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L,
  801. &cctx->ks, (block128_f) aes_t4_encrypt);
  802. cctx->str = NULL;
  803. cctx->key_set = 1;
  804. }
  805. if (iv) {
  806. memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), iv, 15 - cctx->L);
  807. cctx->iv_set = 1;
  808. }
  809. return 1;
  810. }
  811. # define aes_t4_ccm_cipher aes_ccm_cipher
  812. static int aes_t4_ccm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  813. const unsigned char *in, size_t len);
  814. # ifndef OPENSSL_NO_OCB
  815. static int aes_t4_ocb_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
  816. const unsigned char *iv, int enc)
  817. {
  818. EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX,ctx);
  819. if (!iv && !key)
  820. return 1;
  821. if (key) {
  822. do {
  823. /*
  824. * We set both the encrypt and decrypt key here because decrypt
  825. * needs both. We could possibly optimise to remove setting the
  826. * decrypt for an encryption operation.
  827. */
  828. aes_t4_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
  829. &octx->ksenc.ks);
  830. aes_t4_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
  831. &octx->ksdec.ks);
  832. if (!CRYPTO_ocb128_init(&octx->ocb,
  833. &octx->ksenc.ks, &octx->ksdec.ks,
  834. (block128_f) aes_t4_encrypt,
  835. (block128_f) aes_t4_decrypt,
  836. NULL))
  837. return 0;
  838. }
  839. while (0);
  840. /*
  841. * If we have an iv we can set it directly, otherwise use saved IV.
  842. */
  843. if (iv == NULL && octx->iv_set)
  844. iv = octx->iv;
  845. if (iv) {
  846. if (CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen)
  847. != 1)
  848. return 0;
  849. octx->iv_set = 1;
  850. }
  851. octx->key_set = 1;
  852. } else {
  853. /* If key set use IV, otherwise copy */
  854. if (octx->key_set)
  855. CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen);
  856. else
  857. memcpy(octx->iv, iv, octx->ivlen);
  858. octx->iv_set = 1;
  859. }
  860. return 1;
  861. }
  862. # define aes_t4_ocb_cipher aes_ocb_cipher
  863. static int aes_t4_ocb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  864. const unsigned char *in, size_t len);
  865. # endif /* OPENSSL_NO_OCB */
  866. # define BLOCK_CIPHER_generic(nid,keylen,blocksize,ivlen,nmode,mode,MODE,flags) \
  867. static const EVP_CIPHER aes_t4_##keylen##_##mode = { \
  868. nid##_##keylen##_##nmode,blocksize,keylen/8,ivlen, \
  869. flags|EVP_CIPH_##MODE##_MODE, \
  870. aes_t4_init_key, \
  871. aes_t4_##mode##_cipher, \
  872. NULL, \
  873. sizeof(EVP_AES_KEY), \
  874. NULL,NULL,NULL,NULL }; \
  875. static const EVP_CIPHER aes_##keylen##_##mode = { \
  876. nid##_##keylen##_##nmode,blocksize, \
  877. keylen/8,ivlen, \
  878. flags|EVP_CIPH_##MODE##_MODE, \
  879. aes_init_key, \
  880. aes_##mode##_cipher, \
  881. NULL, \
  882. sizeof(EVP_AES_KEY), \
  883. NULL,NULL,NULL,NULL }; \
  884. const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \
  885. { return SPARC_AES_CAPABLE?&aes_t4_##keylen##_##mode:&aes_##keylen##_##mode; }
  886. # define BLOCK_CIPHER_custom(nid,keylen,blocksize,ivlen,mode,MODE,flags) \
  887. static const EVP_CIPHER aes_t4_##keylen##_##mode = { \
  888. nid##_##keylen##_##mode,blocksize, \
  889. (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE?2:1)*keylen/8, ivlen, \
  890. flags|EVP_CIPH_##MODE##_MODE, \
  891. aes_t4_##mode##_init_key, \
  892. aes_t4_##mode##_cipher, \
  893. aes_##mode##_cleanup, \
  894. sizeof(EVP_AES_##MODE##_CTX), \
  895. NULL,NULL,aes_##mode##_ctrl,NULL }; \
  896. static const EVP_CIPHER aes_##keylen##_##mode = { \
  897. nid##_##keylen##_##mode,blocksize, \
  898. (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE?2:1)*keylen/8, ivlen, \
  899. flags|EVP_CIPH_##MODE##_MODE, \
  900. aes_##mode##_init_key, \
  901. aes_##mode##_cipher, \
  902. aes_##mode##_cleanup, \
  903. sizeof(EVP_AES_##MODE##_CTX), \
  904. NULL,NULL,aes_##mode##_ctrl,NULL }; \
  905. const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \
  906. { return SPARC_AES_CAPABLE?&aes_t4_##keylen##_##mode:&aes_##keylen##_##mode; }
  907. #elif defined(OPENSSL_CPUID_OBJ) && defined(__s390__)
  908. /*
  909. * IBM S390X support
  910. */
  911. # include "s390x_arch.h"
  912. typedef struct {
  913. union {
  914. double align;
  915. /*-
  916. * KM-AES parameter block - begin
  917. * (see z/Architecture Principles of Operation >= SA22-7832-06)
  918. */
  919. struct {
  920. unsigned char k[32];
  921. } param;
  922. /* KM-AES parameter block - end */
  923. } km;
  924. unsigned int fc;
  925. } S390X_AES_ECB_CTX;
  926. typedef struct {
  927. union {
  928. double align;
  929. /*-
  930. * KMO-AES parameter block - begin
  931. * (see z/Architecture Principles of Operation >= SA22-7832-08)
  932. */
  933. struct {
  934. unsigned char cv[16];
  935. unsigned char k[32];
  936. } param;
  937. /* KMO-AES parameter block - end */
  938. } kmo;
  939. unsigned int fc;
  940. int res;
  941. } S390X_AES_OFB_CTX;
  942. typedef struct {
  943. union {
  944. double align;
  945. /*-
  946. * KMF-AES parameter block - begin
  947. * (see z/Architecture Principles of Operation >= SA22-7832-08)
  948. */
  949. struct {
  950. unsigned char cv[16];
  951. unsigned char k[32];
  952. } param;
  953. /* KMF-AES parameter block - end */
  954. } kmf;
  955. unsigned int fc;
  956. int res;
  957. } S390X_AES_CFB_CTX;
  958. typedef struct {
  959. union {
  960. double align;
  961. /*-
  962. * KMA-GCM-AES parameter block - begin
  963. * (see z/Architecture Principles of Operation >= SA22-7832-11)
  964. */
  965. struct {
  966. unsigned char reserved[12];
  967. union {
  968. unsigned int w;
  969. unsigned char b[4];
  970. } cv;
  971. union {
  972. unsigned long long g[2];
  973. unsigned char b[16];
  974. } t;
  975. unsigned char h[16];
  976. unsigned long long taadl;
  977. unsigned long long tpcl;
  978. union {
  979. unsigned long long g[2];
  980. unsigned int w[4];
  981. } j0;
  982. unsigned char k[32];
  983. } param;
  984. /* KMA-GCM-AES parameter block - end */
  985. } kma;
  986. unsigned int fc;
  987. int key_set;
  988. unsigned char *iv;
  989. int ivlen;
  990. int iv_set;
  991. int iv_gen;
  992. int taglen;
  993. unsigned char ares[16];
  994. unsigned char mres[16];
  995. unsigned char kres[16];
  996. int areslen;
  997. int mreslen;
  998. int kreslen;
  999. int tls_aad_len;
  1000. } S390X_AES_GCM_CTX;
  1001. typedef struct {
  1002. union {
  1003. double align;
  1004. /*-
  1005. * Padding is chosen so that ccm.kmac_param.k overlaps with key.k and
  1006. * ccm.fc with key.k.rounds. Remember that on s390x, an AES_KEY's
  1007. * rounds field is used to store the function code and that the key
  1008. * schedule is not stored (if aes hardware support is detected).
  1009. */
  1010. struct {
  1011. unsigned char pad[16];
  1012. AES_KEY k;
  1013. } key;
  1014. struct {
  1015. /*-
  1016. * KMAC-AES parameter block - begin
  1017. * (see z/Architecture Principles of Operation >= SA22-7832-08)
  1018. */
  1019. struct {
  1020. union {
  1021. unsigned long long g[2];
  1022. unsigned char b[16];
  1023. } icv;
  1024. unsigned char k[32];
  1025. } kmac_param;
  1026. /* KMAC-AES parameter block - end */
  1027. union {
  1028. unsigned long long g[2];
  1029. unsigned char b[16];
  1030. } nonce;
  1031. union {
  1032. unsigned long long g[2];
  1033. unsigned char b[16];
  1034. } buf;
  1035. unsigned long long blocks;
  1036. int l;
  1037. int m;
  1038. int tls_aad_len;
  1039. int iv_set;
  1040. int tag_set;
  1041. int len_set;
  1042. int key_set;
  1043. unsigned char pad[140];
  1044. unsigned int fc;
  1045. } ccm;
  1046. } aes;
  1047. } S390X_AES_CCM_CTX;
  1048. /* Convert key size to function code: [16,24,32] -> [18,19,20]. */
  1049. # define S390X_AES_FC(keylen) (S390X_AES_128 + ((((keylen) << 3) - 128) >> 6))
  1050. /* Most modes of operation need km for partial block processing. */
  1051. # define S390X_aes_128_CAPABLE (OPENSSL_s390xcap_P.km[0] & \
  1052. S390X_CAPBIT(S390X_AES_128))
  1053. # define S390X_aes_192_CAPABLE (OPENSSL_s390xcap_P.km[0] & \
  1054. S390X_CAPBIT(S390X_AES_192))
  1055. # define S390X_aes_256_CAPABLE (OPENSSL_s390xcap_P.km[0] & \
  1056. S390X_CAPBIT(S390X_AES_256))
  1057. # define s390x_aes_init_key aes_init_key
  1058. static int s390x_aes_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
  1059. const unsigned char *iv, int enc);
  1060. # define S390X_aes_128_cbc_CAPABLE 1 /* checked by callee */
  1061. # define S390X_aes_192_cbc_CAPABLE 1
  1062. # define S390X_aes_256_cbc_CAPABLE 1
  1063. # define S390X_AES_CBC_CTX EVP_AES_KEY
  1064. # define s390x_aes_cbc_init_key aes_init_key
  1065. # define s390x_aes_cbc_cipher aes_cbc_cipher
  1066. static int s390x_aes_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  1067. const unsigned char *in, size_t len);
  1068. # define S390X_aes_128_ecb_CAPABLE S390X_aes_128_CAPABLE
  1069. # define S390X_aes_192_ecb_CAPABLE S390X_aes_192_CAPABLE
  1070. # define S390X_aes_256_ecb_CAPABLE S390X_aes_256_CAPABLE
  1071. static int s390x_aes_ecb_init_key(EVP_CIPHER_CTX *ctx,
  1072. const unsigned char *key,
  1073. const unsigned char *iv, int enc)
  1074. {
  1075. S390X_AES_ECB_CTX *cctx = EVP_C_DATA(S390X_AES_ECB_CTX, ctx);
  1076. const int keylen = EVP_CIPHER_CTX_key_length(ctx);
  1077. cctx->fc = S390X_AES_FC(keylen);
  1078. if (!enc)
  1079. cctx->fc |= S390X_DECRYPT;
  1080. memcpy(cctx->km.param.k, key, keylen);
  1081. return 1;
  1082. }
  1083. static int s390x_aes_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  1084. const unsigned char *in, size_t len)
  1085. {
  1086. S390X_AES_ECB_CTX *cctx = EVP_C_DATA(S390X_AES_ECB_CTX, ctx);
  1087. s390x_km(in, len, out, cctx->fc, &cctx->km.param);
  1088. return 1;
  1089. }
  1090. # define S390X_aes_128_ofb_CAPABLE (S390X_aes_128_CAPABLE && \
  1091. (OPENSSL_s390xcap_P.kmo[0] & \
  1092. S390X_CAPBIT(S390X_AES_128)))
  1093. # define S390X_aes_192_ofb_CAPABLE (S390X_aes_192_CAPABLE && \
  1094. (OPENSSL_s390xcap_P.kmo[0] & \
  1095. S390X_CAPBIT(S390X_AES_192)))
  1096. # define S390X_aes_256_ofb_CAPABLE (S390X_aes_256_CAPABLE && \
  1097. (OPENSSL_s390xcap_P.kmo[0] & \
  1098. S390X_CAPBIT(S390X_AES_256)))
  1099. static int s390x_aes_ofb_init_key(EVP_CIPHER_CTX *ctx,
  1100. const unsigned char *key,
  1101. const unsigned char *ivec, int enc)
  1102. {
  1103. S390X_AES_OFB_CTX *cctx = EVP_C_DATA(S390X_AES_OFB_CTX, ctx);
  1104. const unsigned char *iv = EVP_CIPHER_CTX_original_iv(ctx);
  1105. const int keylen = EVP_CIPHER_CTX_key_length(ctx);
  1106. const int ivlen = EVP_CIPHER_CTX_iv_length(ctx);
  1107. memcpy(cctx->kmo.param.cv, iv, ivlen);
  1108. memcpy(cctx->kmo.param.k, key, keylen);
  1109. cctx->fc = S390X_AES_FC(keylen);
  1110. cctx->res = 0;
  1111. return 1;
  1112. }
  1113. static int s390x_aes_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  1114. const unsigned char *in, size_t len)
  1115. {
  1116. S390X_AES_OFB_CTX *cctx = EVP_C_DATA(S390X_AES_OFB_CTX, ctx);
  1117. int n = cctx->res;
  1118. int rem;
  1119. while (n && len) {
  1120. *out = *in ^ cctx->kmo.param.cv[n];
  1121. n = (n + 1) & 0xf;
  1122. --len;
  1123. ++in;
  1124. ++out;
  1125. }
  1126. rem = len & 0xf;
  1127. len &= ~(size_t)0xf;
  1128. if (len) {
  1129. s390x_kmo(in, len, out, cctx->fc, &cctx->kmo.param);
  1130. out += len;
  1131. in += len;
  1132. }
  1133. if (rem) {
  1134. s390x_km(cctx->kmo.param.cv, 16, cctx->kmo.param.cv, cctx->fc,
  1135. cctx->kmo.param.k);
  1136. while (rem--) {
  1137. out[n] = in[n] ^ cctx->kmo.param.cv[n];
  1138. ++n;
  1139. }
  1140. }
  1141. cctx->res = n;
  1142. return 1;
  1143. }
  1144. # define S390X_aes_128_cfb_CAPABLE (S390X_aes_128_CAPABLE && \
  1145. (OPENSSL_s390xcap_P.kmf[0] & \
  1146. S390X_CAPBIT(S390X_AES_128)))
  1147. # define S390X_aes_192_cfb_CAPABLE (S390X_aes_192_CAPABLE && \
  1148. (OPENSSL_s390xcap_P.kmf[0] & \
  1149. S390X_CAPBIT(S390X_AES_192)))
  1150. # define S390X_aes_256_cfb_CAPABLE (S390X_aes_256_CAPABLE && \
  1151. (OPENSSL_s390xcap_P.kmf[0] & \
  1152. S390X_CAPBIT(S390X_AES_256)))
  1153. static int s390x_aes_cfb_init_key(EVP_CIPHER_CTX *ctx,
  1154. const unsigned char *key,
  1155. const unsigned char *ivec, int enc)
  1156. {
  1157. S390X_AES_CFB_CTX *cctx = EVP_C_DATA(S390X_AES_CFB_CTX, ctx);
  1158. const unsigned char *iv = EVP_CIPHER_CTX_original_iv(ctx);
  1159. const int keylen = EVP_CIPHER_CTX_key_length(ctx);
  1160. const int ivlen = EVP_CIPHER_CTX_iv_length(ctx);
  1161. cctx->fc = S390X_AES_FC(keylen);
  1162. cctx->fc |= 16 << 24; /* 16 bytes cipher feedback */
  1163. if (!enc)
  1164. cctx->fc |= S390X_DECRYPT;
  1165. cctx->res = 0;
  1166. memcpy(cctx->kmf.param.cv, iv, ivlen);
  1167. memcpy(cctx->kmf.param.k, key, keylen);
  1168. return 1;
  1169. }
  1170. static int s390x_aes_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  1171. const unsigned char *in, size_t len)
  1172. {
  1173. S390X_AES_CFB_CTX *cctx = EVP_C_DATA(S390X_AES_CFB_CTX, ctx);
  1174. const int keylen = EVP_CIPHER_CTX_key_length(ctx);
  1175. const int enc = EVP_CIPHER_CTX_encrypting(ctx);
  1176. int n = cctx->res;
  1177. int rem;
  1178. unsigned char tmp;
  1179. while (n && len) {
  1180. tmp = *in;
  1181. *out = cctx->kmf.param.cv[n] ^ tmp;
  1182. cctx->kmf.param.cv[n] = enc ? *out : tmp;
  1183. n = (n + 1) & 0xf;
  1184. --len;
  1185. ++in;
  1186. ++out;
  1187. }
  1188. rem = len & 0xf;
  1189. len &= ~(size_t)0xf;
  1190. if (len) {
  1191. s390x_kmf(in, len, out, cctx->fc, &cctx->kmf.param);
  1192. out += len;
  1193. in += len;
  1194. }
  1195. if (rem) {
  1196. s390x_km(cctx->kmf.param.cv, 16, cctx->kmf.param.cv,
  1197. S390X_AES_FC(keylen), cctx->kmf.param.k);
  1198. while (rem--) {
  1199. tmp = in[n];
  1200. out[n] = cctx->kmf.param.cv[n] ^ tmp;
  1201. cctx->kmf.param.cv[n] = enc ? out[n] : tmp;
  1202. ++n;
  1203. }
  1204. }
  1205. cctx->res = n;
  1206. return 1;
  1207. }
  1208. # define S390X_aes_128_cfb8_CAPABLE (OPENSSL_s390xcap_P.kmf[0] & \
  1209. S390X_CAPBIT(S390X_AES_128))
  1210. # define S390X_aes_192_cfb8_CAPABLE (OPENSSL_s390xcap_P.kmf[0] & \
  1211. S390X_CAPBIT(S390X_AES_192))
  1212. # define S390X_aes_256_cfb8_CAPABLE (OPENSSL_s390xcap_P.kmf[0] & \
  1213. S390X_CAPBIT(S390X_AES_256))
  1214. static int s390x_aes_cfb8_init_key(EVP_CIPHER_CTX *ctx,
  1215. const unsigned char *key,
  1216. const unsigned char *ivec, int enc)
  1217. {
  1218. S390X_AES_CFB_CTX *cctx = EVP_C_DATA(S390X_AES_CFB_CTX, ctx);
  1219. const unsigned char *iv = EVP_CIPHER_CTX_original_iv(ctx);
  1220. const int keylen = EVP_CIPHER_CTX_key_length(ctx);
  1221. const int ivlen = EVP_CIPHER_CTX_iv_length(ctx);
  1222. cctx->fc = S390X_AES_FC(keylen);
  1223. cctx->fc |= 1 << 24; /* 1 byte cipher feedback */
  1224. if (!enc)
  1225. cctx->fc |= S390X_DECRYPT;
  1226. memcpy(cctx->kmf.param.cv, iv, ivlen);
  1227. memcpy(cctx->kmf.param.k, key, keylen);
  1228. return 1;
  1229. }
  1230. static int s390x_aes_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  1231. const unsigned char *in, size_t len)
  1232. {
  1233. S390X_AES_CFB_CTX *cctx = EVP_C_DATA(S390X_AES_CFB_CTX, ctx);
  1234. s390x_kmf(in, len, out, cctx->fc, &cctx->kmf.param);
  1235. return 1;
  1236. }
  1237. # define S390X_aes_128_cfb1_CAPABLE 0
  1238. # define S390X_aes_192_cfb1_CAPABLE 0
  1239. # define S390X_aes_256_cfb1_CAPABLE 0
  1240. # define s390x_aes_cfb1_init_key aes_init_key
  1241. # define s390x_aes_cfb1_cipher aes_cfb1_cipher
  1242. static int s390x_aes_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  1243. const unsigned char *in, size_t len);
  1244. # define S390X_aes_128_ctr_CAPABLE 1 /* checked by callee */
  1245. # define S390X_aes_192_ctr_CAPABLE 1
  1246. # define S390X_aes_256_ctr_CAPABLE 1
  1247. # define S390X_AES_CTR_CTX EVP_AES_KEY
  1248. # define s390x_aes_ctr_init_key aes_init_key
  1249. # define s390x_aes_ctr_cipher aes_ctr_cipher
  1250. static int s390x_aes_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  1251. const unsigned char *in, size_t len);
  1252. # define S390X_aes_128_gcm_CAPABLE (S390X_aes_128_CAPABLE && \
  1253. (OPENSSL_s390xcap_P.kma[0] & \
  1254. S390X_CAPBIT(S390X_AES_128)))
  1255. # define S390X_aes_192_gcm_CAPABLE (S390X_aes_192_CAPABLE && \
  1256. (OPENSSL_s390xcap_P.kma[0] & \
  1257. S390X_CAPBIT(S390X_AES_192)))
  1258. # define S390X_aes_256_gcm_CAPABLE (S390X_aes_256_CAPABLE && \
  1259. (OPENSSL_s390xcap_P.kma[0] & \
  1260. S390X_CAPBIT(S390X_AES_256)))
  1261. /* iv + padding length for iv lengths != 12 */
  1262. # define S390X_gcm_ivpadlen(i) ((((i) + 15) >> 4 << 4) + 16)
  1263. /*-
  1264. * Process additional authenticated data. Returns 0 on success. Code is
  1265. * big-endian.
  1266. */
  1267. static int s390x_aes_gcm_aad(S390X_AES_GCM_CTX *ctx, const unsigned char *aad,
  1268. size_t len)
  1269. {
  1270. unsigned long long alen;
  1271. int n, rem;
  1272. if (ctx->kma.param.tpcl)
  1273. return -2;
  1274. alen = ctx->kma.param.taadl + len;
  1275. if (alen > (U64(1) << 61) || (sizeof(len) == 8 && alen < len))
  1276. return -1;
  1277. ctx->kma.param.taadl = alen;
  1278. n = ctx->areslen;
  1279. if (n) {
  1280. while (n && len) {
  1281. ctx->ares[n] = *aad;
  1282. n = (n + 1) & 0xf;
  1283. ++aad;
  1284. --len;
  1285. }
  1286. /* ctx->ares contains a complete block if offset has wrapped around */
  1287. if (!n) {
  1288. s390x_kma(ctx->ares, 16, NULL, 0, NULL, ctx->fc, &ctx->kma.param);
  1289. ctx->fc |= S390X_KMA_HS;
  1290. }
  1291. ctx->areslen = n;
  1292. }
  1293. rem = len & 0xf;
  1294. len &= ~(size_t)0xf;
  1295. if (len) {
  1296. s390x_kma(aad, len, NULL, 0, NULL, ctx->fc, &ctx->kma.param);
  1297. aad += len;
  1298. ctx->fc |= S390X_KMA_HS;
  1299. }
  1300. if (rem) {
  1301. ctx->areslen = rem;
  1302. do {
  1303. --rem;
  1304. ctx->ares[rem] = aad[rem];
  1305. } while (rem);
  1306. }
  1307. return 0;
  1308. }
  1309. /*-
  1310. * En/de-crypt plain/cipher-text and authenticate ciphertext. Returns 0 for
  1311. * success. Code is big-endian.
  1312. */
  1313. static int s390x_aes_gcm(S390X_AES_GCM_CTX *ctx, const unsigned char *in,
  1314. unsigned char *out, size_t len)
  1315. {
  1316. const unsigned char *inptr;
  1317. unsigned long long mlen;
  1318. union {
  1319. unsigned int w[4];
  1320. unsigned char b[16];
  1321. } buf;
  1322. size_t inlen;
  1323. int n, rem, i;
  1324. mlen = ctx->kma.param.tpcl + len;
  1325. if (mlen > ((U64(1) << 36) - 32) || (sizeof(len) == 8 && mlen < len))
  1326. return -1;
  1327. ctx->kma.param.tpcl = mlen;
  1328. n = ctx->mreslen;
  1329. if (n) {
  1330. inptr = in;
  1331. inlen = len;
  1332. while (n && inlen) {
  1333. ctx->mres[n] = *inptr;
  1334. n = (n + 1) & 0xf;
  1335. ++inptr;
  1336. --inlen;
  1337. }
  1338. /* ctx->mres contains a complete block if offset has wrapped around */
  1339. if (!n) {
  1340. s390x_kma(ctx->ares, ctx->areslen, ctx->mres, 16, buf.b,
  1341. ctx->fc | S390X_KMA_LAAD, &ctx->kma.param);
  1342. ctx->fc |= S390X_KMA_HS;
  1343. ctx->areslen = 0;
  1344. /* previous call already encrypted/decrypted its remainder,
  1345. * see comment below */
  1346. n = ctx->mreslen;
  1347. while (n) {
  1348. *out = buf.b[n];
  1349. n = (n + 1) & 0xf;
  1350. ++out;
  1351. ++in;
  1352. --len;
  1353. }
  1354. ctx->mreslen = 0;
  1355. }
  1356. }
  1357. rem = len & 0xf;
  1358. len &= ~(size_t)0xf;
  1359. if (len) {
  1360. s390x_kma(ctx->ares, ctx->areslen, in, len, out,
  1361. ctx->fc | S390X_KMA_LAAD, &ctx->kma.param);
  1362. in += len;
  1363. out += len;
  1364. ctx->fc |= S390X_KMA_HS;
  1365. ctx->areslen = 0;
  1366. }
  1367. /*-
  1368. * If there is a remainder, it has to be saved such that it can be
  1369. * processed by kma later. However, we also have to do the for-now
  1370. * unauthenticated encryption/decryption part here and now...
  1371. */
  1372. if (rem) {
  1373. if (!ctx->mreslen) {
  1374. buf.w[0] = ctx->kma.param.j0.w[0];
  1375. buf.w[1] = ctx->kma.param.j0.w[1];
  1376. buf.w[2] = ctx->kma.param.j0.w[2];
  1377. buf.w[3] = ctx->kma.param.cv.w + 1;
  1378. s390x_km(buf.b, 16, ctx->kres, ctx->fc & 0x1f, &ctx->kma.param.k);
  1379. }
  1380. n = ctx->mreslen;
  1381. for (i = 0; i < rem; i++) {
  1382. ctx->mres[n + i] = in[i];
  1383. out[i] = in[i] ^ ctx->kres[n + i];
  1384. }
  1385. ctx->mreslen += rem;
  1386. }
  1387. return 0;
  1388. }
  1389. /*-
  1390. * Initialize context structure. Code is big-endian.
  1391. */
  1392. static void s390x_aes_gcm_setiv(S390X_AES_GCM_CTX *ctx,
  1393. const unsigned char *iv)
  1394. {
  1395. ctx->kma.param.t.g[0] = 0;
  1396. ctx->kma.param.t.g[1] = 0;
  1397. ctx->kma.param.tpcl = 0;
  1398. ctx->kma.param.taadl = 0;
  1399. ctx->mreslen = 0;
  1400. ctx->areslen = 0;
  1401. ctx->kreslen = 0;
  1402. if (ctx->ivlen == 12) {
  1403. memcpy(&ctx->kma.param.j0, iv, ctx->ivlen);
  1404. ctx->kma.param.j0.w[3] = 1;
  1405. ctx->kma.param.cv.w = 1;
  1406. } else {
  1407. /* ctx->iv has the right size and is already padded. */
  1408. memcpy(ctx->iv, iv, ctx->ivlen);
  1409. s390x_kma(ctx->iv, S390X_gcm_ivpadlen(ctx->ivlen), NULL, 0, NULL,
  1410. ctx->fc, &ctx->kma.param);
  1411. ctx->fc |= S390X_KMA_HS;
  1412. ctx->kma.param.j0.g[0] = ctx->kma.param.t.g[0];
  1413. ctx->kma.param.j0.g[1] = ctx->kma.param.t.g[1];
  1414. ctx->kma.param.cv.w = ctx->kma.param.j0.w[3];
  1415. ctx->kma.param.t.g[0] = 0;
  1416. ctx->kma.param.t.g[1] = 0;
  1417. }
  1418. }
  1419. /*-
  1420. * Performs various operations on the context structure depending on control
  1421. * type. Returns 1 for success, 0 for failure and -1 for unknown control type.
  1422. * Code is big-endian.
  1423. */
  1424. static int s390x_aes_gcm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr)
  1425. {
  1426. S390X_AES_GCM_CTX *gctx = EVP_C_DATA(S390X_AES_GCM_CTX, c);
  1427. S390X_AES_GCM_CTX *gctx_out;
  1428. EVP_CIPHER_CTX *out;
  1429. unsigned char *buf, *iv;
  1430. int ivlen, enc, len;
  1431. switch (type) {
  1432. case EVP_CTRL_INIT:
  1433. ivlen = EVP_CIPHER_iv_length(c->cipher);
  1434. iv = EVP_CIPHER_CTX_iv_noconst(c);
  1435. gctx->key_set = 0;
  1436. gctx->iv_set = 0;
  1437. gctx->ivlen = ivlen;
  1438. gctx->iv = iv;
  1439. gctx->taglen = -1;
  1440. gctx->iv_gen = 0;
  1441. gctx->tls_aad_len = -1;
  1442. return 1;
  1443. case EVP_CTRL_GET_IVLEN:
  1444. *(int *)ptr = gctx->ivlen;
  1445. return 1;
  1446. case EVP_CTRL_AEAD_SET_IVLEN:
  1447. if (arg <= 0)
  1448. return 0;
  1449. if (arg != 12) {
  1450. iv = EVP_CIPHER_CTX_iv_noconst(c);
  1451. len = S390X_gcm_ivpadlen(arg);
  1452. /* Allocate memory for iv if needed. */
  1453. if (gctx->ivlen == 12 || len > S390X_gcm_ivpadlen(gctx->ivlen)) {
  1454. if (gctx->iv != iv)
  1455. OPENSSL_free(gctx->iv);
  1456. if ((gctx->iv = OPENSSL_malloc(len)) == NULL) {
  1457. EVPerr(EVP_F_S390X_AES_GCM_CTRL, ERR_R_MALLOC_FAILURE);
  1458. return 0;
  1459. }
  1460. }
  1461. /* Add padding. */
  1462. memset(gctx->iv + arg, 0, len - arg - 8);
  1463. *((unsigned long long *)(gctx->iv + len - 8)) = arg << 3;
  1464. }
  1465. gctx->ivlen = arg;
  1466. return 1;
  1467. case EVP_CTRL_AEAD_SET_TAG:
  1468. buf = EVP_CIPHER_CTX_buf_noconst(c);
  1469. enc = EVP_CIPHER_CTX_encrypting(c);
  1470. if (arg <= 0 || arg > 16 || enc)
  1471. return 0;
  1472. memcpy(buf, ptr, arg);
  1473. gctx->taglen = arg;
  1474. return 1;
  1475. case EVP_CTRL_AEAD_GET_TAG:
  1476. enc = EVP_CIPHER_CTX_encrypting(c);
  1477. if (arg <= 0 || arg > 16 || !enc || gctx->taglen < 0)
  1478. return 0;
  1479. memcpy(ptr, gctx->kma.param.t.b, arg);
  1480. return 1;
  1481. case EVP_CTRL_GCM_SET_IV_FIXED:
  1482. /* Special case: -1 length restores whole iv */
  1483. if (arg == -1) {
  1484. memcpy(gctx->iv, ptr, gctx->ivlen);
  1485. gctx->iv_gen = 1;
  1486. return 1;
  1487. }
  1488. /*
  1489. * Fixed field must be at least 4 bytes and invocation field at least
  1490. * 8.
  1491. */
  1492. if ((arg < 4) || (gctx->ivlen - arg) < 8)
  1493. return 0;
  1494. if (arg)
  1495. memcpy(gctx->iv, ptr, arg);
  1496. enc = EVP_CIPHER_CTX_encrypting(c);
  1497. if (enc && RAND_bytes(gctx->iv + arg, gctx->ivlen - arg) <= 0)
  1498. return 0;
  1499. gctx->iv_gen = 1;
  1500. return 1;
  1501. case EVP_CTRL_GCM_IV_GEN:
  1502. if (gctx->iv_gen == 0 || gctx->key_set == 0)
  1503. return 0;
  1504. s390x_aes_gcm_setiv(gctx, gctx->iv);
  1505. if (arg <= 0 || arg > gctx->ivlen)
  1506. arg = gctx->ivlen;
  1507. memcpy(ptr, gctx->iv + gctx->ivlen - arg, arg);
  1508. /*
  1509. * Invocation field will be at least 8 bytes in size and so no need
  1510. * to check wrap around or increment more than last 8 bytes.
  1511. */
  1512. ctr64_inc(gctx->iv + gctx->ivlen - 8);
  1513. gctx->iv_set = 1;
  1514. return 1;
  1515. case EVP_CTRL_GCM_SET_IV_INV:
  1516. enc = EVP_CIPHER_CTX_encrypting(c);
  1517. if (gctx->iv_gen == 0 || gctx->key_set == 0 || enc)
  1518. return 0;
  1519. memcpy(gctx->iv + gctx->ivlen - arg, ptr, arg);
  1520. s390x_aes_gcm_setiv(gctx, gctx->iv);
  1521. gctx->iv_set = 1;
  1522. return 1;
  1523. case EVP_CTRL_AEAD_TLS1_AAD:
  1524. /* Save the aad for later use. */
  1525. if (arg != EVP_AEAD_TLS1_AAD_LEN)
  1526. return 0;
  1527. buf = EVP_CIPHER_CTX_buf_noconst(c);
  1528. memcpy(buf, ptr, arg);
  1529. gctx->tls_aad_len = arg;
  1530. len = buf[arg - 2] << 8 | buf[arg - 1];
  1531. /* Correct length for explicit iv. */
  1532. if (len < EVP_GCM_TLS_EXPLICIT_IV_LEN)
  1533. return 0;
  1534. len -= EVP_GCM_TLS_EXPLICIT_IV_LEN;
  1535. /* If decrypting correct for tag too. */
  1536. enc = EVP_CIPHER_CTX_encrypting(c);
  1537. if (!enc) {
  1538. if (len < EVP_GCM_TLS_TAG_LEN)
  1539. return 0;
  1540. len -= EVP_GCM_TLS_TAG_LEN;
  1541. }
  1542. buf[arg - 2] = len >> 8;
  1543. buf[arg - 1] = len & 0xff;
  1544. /* Extra padding: tag appended to record. */
  1545. return EVP_GCM_TLS_TAG_LEN;
  1546. case EVP_CTRL_COPY:
  1547. out = ptr;
  1548. gctx_out = EVP_C_DATA(S390X_AES_GCM_CTX, out);
  1549. iv = EVP_CIPHER_CTX_iv_noconst(c);
  1550. if (gctx->iv == iv) {
  1551. gctx_out->iv = EVP_CIPHER_CTX_iv_noconst(out);
  1552. } else {
  1553. len = S390X_gcm_ivpadlen(gctx->ivlen);
  1554. if ((gctx_out->iv = OPENSSL_malloc(len)) == NULL) {
  1555. EVPerr(EVP_F_S390X_AES_GCM_CTRL, ERR_R_MALLOC_FAILURE);
  1556. return 0;
  1557. }
  1558. memcpy(gctx_out->iv, gctx->iv, len);
  1559. }
  1560. return 1;
  1561. default:
  1562. return -1;
  1563. }
  1564. }
  1565. /*-
  1566. * Set key and/or iv. Returns 1 on success. Otherwise 0 is returned.
  1567. */
  1568. static int s390x_aes_gcm_init_key(EVP_CIPHER_CTX *ctx,
  1569. const unsigned char *key,
  1570. const unsigned char *iv, int enc)
  1571. {
  1572. S390X_AES_GCM_CTX *gctx = EVP_C_DATA(S390X_AES_GCM_CTX, ctx);
  1573. int keylen;
  1574. if (iv == NULL && key == NULL)
  1575. return 1;
  1576. if (key != NULL) {
  1577. keylen = EVP_CIPHER_CTX_key_length(ctx);
  1578. memcpy(&gctx->kma.param.k, key, keylen);
  1579. gctx->fc = S390X_AES_FC(keylen);
  1580. if (!enc)
  1581. gctx->fc |= S390X_DECRYPT;
  1582. if (iv == NULL && gctx->iv_set)
  1583. iv = gctx->iv;
  1584. if (iv != NULL) {
  1585. s390x_aes_gcm_setiv(gctx, iv);
  1586. gctx->iv_set = 1;
  1587. }
  1588. gctx->key_set = 1;
  1589. } else {
  1590. if (gctx->key_set)
  1591. s390x_aes_gcm_setiv(gctx, iv);
  1592. else
  1593. memcpy(gctx->iv, iv, gctx->ivlen);
  1594. gctx->iv_set = 1;
  1595. gctx->iv_gen = 0;
  1596. }
  1597. return 1;
  1598. }
  1599. /*-
  1600. * En/de-crypt and authenticate TLS packet. Returns the number of bytes written
  1601. * if successful. Otherwise -1 is returned. Code is big-endian.
  1602. */
  1603. static int s390x_aes_gcm_tls_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  1604. const unsigned char *in, size_t len)
  1605. {
  1606. S390X_AES_GCM_CTX *gctx = EVP_C_DATA(S390X_AES_GCM_CTX, ctx);
  1607. const unsigned char *buf = EVP_CIPHER_CTX_buf_noconst(ctx);
  1608. const int enc = EVP_CIPHER_CTX_encrypting(ctx);
  1609. int rv = -1;
  1610. if (out != in || len < (EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN))
  1611. return -1;
  1612. if (EVP_CIPHER_CTX_ctrl(ctx, enc ? EVP_CTRL_GCM_IV_GEN
  1613. : EVP_CTRL_GCM_SET_IV_INV,
  1614. EVP_GCM_TLS_EXPLICIT_IV_LEN, out) <= 0)
  1615. goto err;
  1616. in += EVP_GCM_TLS_EXPLICIT_IV_LEN;
  1617. out += EVP_GCM_TLS_EXPLICIT_IV_LEN;
  1618. len -= EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN;
  1619. gctx->kma.param.taadl = gctx->tls_aad_len << 3;
  1620. gctx->kma.param.tpcl = len << 3;
  1621. s390x_kma(buf, gctx->tls_aad_len, in, len, out,
  1622. gctx->fc | S390X_KMA_LAAD | S390X_KMA_LPC, &gctx->kma.param);
  1623. if (enc) {
  1624. memcpy(out + len, gctx->kma.param.t.b, EVP_GCM_TLS_TAG_LEN);
  1625. rv = len + EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN;
  1626. } else {
  1627. if (CRYPTO_memcmp(gctx->kma.param.t.b, in + len,
  1628. EVP_GCM_TLS_TAG_LEN)) {
  1629. OPENSSL_cleanse(out, len);
  1630. goto err;
  1631. }
  1632. rv = len;
  1633. }
  1634. err:
  1635. gctx->iv_set = 0;
  1636. gctx->tls_aad_len = -1;
  1637. return rv;
  1638. }
  1639. /*-
  1640. * Called from EVP layer to initialize context, process additional
  1641. * authenticated data, en/de-crypt plain/cipher-text and authenticate
  1642. * ciphertext or process a TLS packet, depending on context. Returns bytes
  1643. * written on success. Otherwise -1 is returned. Code is big-endian.
  1644. */
  1645. static int s390x_aes_gcm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  1646. const unsigned char *in, size_t len)
  1647. {
  1648. S390X_AES_GCM_CTX *gctx = EVP_C_DATA(S390X_AES_GCM_CTX, ctx);
  1649. unsigned char *buf, tmp[16];
  1650. int enc;
  1651. if (!gctx->key_set)
  1652. return -1;
  1653. if (gctx->tls_aad_len >= 0)
  1654. return s390x_aes_gcm_tls_cipher(ctx, out, in, len);
  1655. if (!gctx->iv_set)
  1656. return -1;
  1657. if (in != NULL) {
  1658. if (out == NULL) {
  1659. if (s390x_aes_gcm_aad(gctx, in, len))
  1660. return -1;
  1661. } else {
  1662. if (s390x_aes_gcm(gctx, in, out, len))
  1663. return -1;
  1664. }
  1665. return len;
  1666. } else {
  1667. gctx->kma.param.taadl <<= 3;
  1668. gctx->kma.param.tpcl <<= 3;
  1669. s390x_kma(gctx->ares, gctx->areslen, gctx->mres, gctx->mreslen, tmp,
  1670. gctx->fc | S390X_KMA_LAAD | S390X_KMA_LPC, &gctx->kma.param);
  1671. /* recall that we already did en-/decrypt gctx->mres
  1672. * and returned it to caller... */
  1673. OPENSSL_cleanse(tmp, gctx->mreslen);
  1674. gctx->iv_set = 0;
  1675. enc = EVP_CIPHER_CTX_encrypting(ctx);
  1676. if (enc) {
  1677. gctx->taglen = 16;
  1678. } else {
  1679. if (gctx->taglen < 0)
  1680. return -1;
  1681. buf = EVP_CIPHER_CTX_buf_noconst(ctx);
  1682. if (CRYPTO_memcmp(buf, gctx->kma.param.t.b, gctx->taglen))
  1683. return -1;
  1684. }
  1685. return 0;
  1686. }
  1687. }
  1688. static int s390x_aes_gcm_cleanup(EVP_CIPHER_CTX *c)
  1689. {
  1690. S390X_AES_GCM_CTX *gctx = EVP_C_DATA(S390X_AES_GCM_CTX, c);
  1691. const unsigned char *iv;
  1692. if (gctx == NULL)
  1693. return 0;
  1694. iv = EVP_CIPHER_CTX_iv(c);
  1695. if (iv != gctx->iv)
  1696. OPENSSL_free(gctx->iv);
  1697. OPENSSL_cleanse(gctx, sizeof(*gctx));
  1698. return 1;
  1699. }
  1700. # define S390X_AES_XTS_CTX EVP_AES_XTS_CTX
  1701. # define S390X_aes_128_xts_CAPABLE 1 /* checked by callee */
  1702. # define S390X_aes_256_xts_CAPABLE 1
  1703. # define s390x_aes_xts_init_key aes_xts_init_key
  1704. static int s390x_aes_xts_init_key(EVP_CIPHER_CTX *ctx,
  1705. const unsigned char *key,
  1706. const unsigned char *iv, int enc);
  1707. # define s390x_aes_xts_cipher aes_xts_cipher
  1708. static int s390x_aes_xts_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  1709. const unsigned char *in, size_t len);
  1710. # define s390x_aes_xts_ctrl aes_xts_ctrl
  1711. static int s390x_aes_xts_ctrl(EVP_CIPHER_CTX *, int type, int arg, void *ptr);
  1712. # define s390x_aes_xts_cleanup aes_xts_cleanup
  1713. # define S390X_aes_128_ccm_CAPABLE (S390X_aes_128_CAPABLE && \
  1714. (OPENSSL_s390xcap_P.kmac[0] & \
  1715. S390X_CAPBIT(S390X_AES_128)))
  1716. # define S390X_aes_192_ccm_CAPABLE (S390X_aes_192_CAPABLE && \
  1717. (OPENSSL_s390xcap_P.kmac[0] & \
  1718. S390X_CAPBIT(S390X_AES_192)))
  1719. # define S390X_aes_256_ccm_CAPABLE (S390X_aes_256_CAPABLE && \
  1720. (OPENSSL_s390xcap_P.kmac[0] & \
  1721. S390X_CAPBIT(S390X_AES_256)))
  1722. # define S390X_CCM_AAD_FLAG 0x40
  1723. /*-
  1724. * Set nonce and length fields. Code is big-endian.
  1725. */
  1726. static inline void s390x_aes_ccm_setiv(S390X_AES_CCM_CTX *ctx,
  1727. const unsigned char *nonce,
  1728. size_t mlen)
  1729. {
  1730. ctx->aes.ccm.nonce.b[0] &= ~S390X_CCM_AAD_FLAG;
  1731. ctx->aes.ccm.nonce.g[1] = mlen;
  1732. memcpy(ctx->aes.ccm.nonce.b + 1, nonce, 15 - ctx->aes.ccm.l);
  1733. }
  1734. /*-
  1735. * Process additional authenticated data. Code is big-endian.
  1736. */
  1737. static void s390x_aes_ccm_aad(S390X_AES_CCM_CTX *ctx, const unsigned char *aad,
  1738. size_t alen)
  1739. {
  1740. unsigned char *ptr;
  1741. int i, rem;
  1742. if (!alen)
  1743. return;
  1744. ctx->aes.ccm.nonce.b[0] |= S390X_CCM_AAD_FLAG;
  1745. /* Suppress 'type-punned pointer dereference' warning. */
  1746. ptr = ctx->aes.ccm.buf.b;
  1747. if (alen < ((1 << 16) - (1 << 8))) {
  1748. *(uint16_t *)ptr = alen;
  1749. i = 2;
  1750. } else if (sizeof(alen) == 8
  1751. && alen >= (size_t)1 << (32 % (sizeof(alen) * 8))) {
  1752. *(uint16_t *)ptr = 0xffff;
  1753. *(uint64_t *)(ptr + 2) = alen;
  1754. i = 10;
  1755. } else {
  1756. *(uint16_t *)ptr = 0xfffe;
  1757. *(uint32_t *)(ptr + 2) = alen;
  1758. i = 6;
  1759. }
  1760. while (i < 16 && alen) {
  1761. ctx->aes.ccm.buf.b[i] = *aad;
  1762. ++aad;
  1763. --alen;
  1764. ++i;
  1765. }
  1766. while (i < 16) {
  1767. ctx->aes.ccm.buf.b[i] = 0;
  1768. ++i;
  1769. }
  1770. ctx->aes.ccm.kmac_param.icv.g[0] = 0;
  1771. ctx->aes.ccm.kmac_param.icv.g[1] = 0;
  1772. s390x_kmac(ctx->aes.ccm.nonce.b, 32, ctx->aes.ccm.fc,
  1773. &ctx->aes.ccm.kmac_param);
  1774. ctx->aes.ccm.blocks += 2;
  1775. rem = alen & 0xf;
  1776. alen &= ~(size_t)0xf;
  1777. if (alen) {
  1778. s390x_kmac(aad, alen, ctx->aes.ccm.fc, &ctx->aes.ccm.kmac_param);
  1779. ctx->aes.ccm.blocks += alen >> 4;
  1780. aad += alen;
  1781. }
  1782. if (rem) {
  1783. for (i = 0; i < rem; i++)
  1784. ctx->aes.ccm.kmac_param.icv.b[i] ^= aad[i];
  1785. s390x_km(ctx->aes.ccm.kmac_param.icv.b, 16,
  1786. ctx->aes.ccm.kmac_param.icv.b, ctx->aes.ccm.fc,
  1787. ctx->aes.ccm.kmac_param.k);
  1788. ctx->aes.ccm.blocks++;
  1789. }
  1790. }
  1791. /*-
  1792. * En/de-crypt plain/cipher-text. Compute tag from plaintext. Returns 0 for
  1793. * success.
  1794. */
  1795. static int s390x_aes_ccm(S390X_AES_CCM_CTX *ctx, const unsigned char *in,
  1796. unsigned char *out, size_t len, int enc)
  1797. {
  1798. size_t n, rem;
  1799. unsigned int i, l, num;
  1800. unsigned char flags;
  1801. flags = ctx->aes.ccm.nonce.b[0];
  1802. if (!(flags & S390X_CCM_AAD_FLAG)) {
  1803. s390x_km(ctx->aes.ccm.nonce.b, 16, ctx->aes.ccm.kmac_param.icv.b,
  1804. ctx->aes.ccm.fc, ctx->aes.ccm.kmac_param.k);
  1805. ctx->aes.ccm.blocks++;
  1806. }
  1807. l = flags & 0x7;
  1808. ctx->aes.ccm.nonce.b[0] = l;
  1809. /*-
  1810. * Reconstruct length from encoded length field
  1811. * and initialize it with counter value.
  1812. */
  1813. n = 0;
  1814. for (i = 15 - l; i < 15; i++) {
  1815. n |= ctx->aes.ccm.nonce.b[i];
  1816. ctx->aes.ccm.nonce.b[i] = 0;
  1817. n <<= 8;
  1818. }
  1819. n |= ctx->aes.ccm.nonce.b[15];
  1820. ctx->aes.ccm.nonce.b[15] = 1;
  1821. if (n != len)
  1822. return -1; /* length mismatch */
  1823. if (enc) {
  1824. /* Two operations per block plus one for tag encryption */
  1825. ctx->aes.ccm.blocks += (((len + 15) >> 4) << 1) + 1;
  1826. if (ctx->aes.ccm.blocks > (1ULL << 61))
  1827. return -2; /* too much data */
  1828. }
  1829. num = 0;
  1830. rem = len & 0xf;
  1831. len &= ~(size_t)0xf;
  1832. if (enc) {
  1833. /* mac-then-encrypt */
  1834. if (len)
  1835. s390x_kmac(in, len, ctx->aes.ccm.fc, &ctx->aes.ccm.kmac_param);
  1836. if (rem) {
  1837. for (i = 0; i < rem; i++)
  1838. ctx->aes.ccm.kmac_param.icv.b[i] ^= in[len + i];
  1839. s390x_km(ctx->aes.ccm.kmac_param.icv.b, 16,
  1840. ctx->aes.ccm.kmac_param.icv.b, ctx->aes.ccm.fc,
  1841. ctx->aes.ccm.kmac_param.k);
  1842. }
  1843. CRYPTO_ctr128_encrypt_ctr32(in, out, len + rem, &ctx->aes.key.k,
  1844. ctx->aes.ccm.nonce.b, ctx->aes.ccm.buf.b,
  1845. &num, (ctr128_f)AES_ctr32_encrypt);
  1846. } else {
  1847. /* decrypt-then-mac */
  1848. CRYPTO_ctr128_encrypt_ctr32(in, out, len + rem, &ctx->aes.key.k,
  1849. ctx->aes.ccm.nonce.b, ctx->aes.ccm.buf.b,
  1850. &num, (ctr128_f)AES_ctr32_encrypt);
  1851. if (len)
  1852. s390x_kmac(out, len, ctx->aes.ccm.fc, &ctx->aes.ccm.kmac_param);
  1853. if (rem) {
  1854. for (i = 0; i < rem; i++)
  1855. ctx->aes.ccm.kmac_param.icv.b[i] ^= out[len + i];
  1856. s390x_km(ctx->aes.ccm.kmac_param.icv.b, 16,
  1857. ctx->aes.ccm.kmac_param.icv.b, ctx->aes.ccm.fc,
  1858. ctx->aes.ccm.kmac_param.k);
  1859. }
  1860. }
  1861. /* encrypt tag */
  1862. for (i = 15 - l; i < 16; i++)
  1863. ctx->aes.ccm.nonce.b[i] = 0;
  1864. s390x_km(ctx->aes.ccm.nonce.b, 16, ctx->aes.ccm.buf.b, ctx->aes.ccm.fc,
  1865. ctx->aes.ccm.kmac_param.k);
  1866. ctx->aes.ccm.kmac_param.icv.g[0] ^= ctx->aes.ccm.buf.g[0];
  1867. ctx->aes.ccm.kmac_param.icv.g[1] ^= ctx->aes.ccm.buf.g[1];
  1868. ctx->aes.ccm.nonce.b[0] = flags; /* restore flags field */
  1869. return 0;
  1870. }
  1871. /*-
  1872. * En/de-crypt and authenticate TLS packet. Returns the number of bytes written
  1873. * if successful. Otherwise -1 is returned.
  1874. */
  1875. static int s390x_aes_ccm_tls_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  1876. const unsigned char *in, size_t len)
  1877. {
  1878. S390X_AES_CCM_CTX *cctx = EVP_C_DATA(S390X_AES_CCM_CTX, ctx);
  1879. unsigned char *ivec = EVP_CIPHER_CTX_iv_noconst(ctx);
  1880. unsigned char *buf = EVP_CIPHER_CTX_buf_noconst(ctx);
  1881. const int enc = EVP_CIPHER_CTX_encrypting(ctx);
  1882. if (out != in
  1883. || len < (EVP_CCM_TLS_EXPLICIT_IV_LEN + (size_t)cctx->aes.ccm.m))
  1884. return -1;
  1885. if (enc) {
  1886. /* Set explicit iv (sequence number). */
  1887. memcpy(out, buf, EVP_CCM_TLS_EXPLICIT_IV_LEN);
  1888. }
  1889. len -= EVP_CCM_TLS_EXPLICIT_IV_LEN + cctx->aes.ccm.m;
  1890. /*-
  1891. * Get explicit iv (sequence number). We already have fixed iv
  1892. * (server/client_write_iv) here.
  1893. */
  1894. memcpy(ivec + EVP_CCM_TLS_FIXED_IV_LEN, in, EVP_CCM_TLS_EXPLICIT_IV_LEN);
  1895. s390x_aes_ccm_setiv(cctx, ivec, len);
  1896. /* Process aad (sequence number|type|version|length) */
  1897. s390x_aes_ccm_aad(cctx, buf, cctx->aes.ccm.tls_aad_len);
  1898. in += EVP_CCM_TLS_EXPLICIT_IV_LEN;
  1899. out += EVP_CCM_TLS_EXPLICIT_IV_LEN;
  1900. if (enc) {
  1901. if (s390x_aes_ccm(cctx, in, out, len, enc))
  1902. return -1;
  1903. memcpy(out + len, cctx->aes.ccm.kmac_param.icv.b, cctx->aes.ccm.m);
  1904. return len + EVP_CCM_TLS_EXPLICIT_IV_LEN + cctx->aes.ccm.m;
  1905. } else {
  1906. if (!s390x_aes_ccm(cctx, in, out, len, enc)) {
  1907. if (!CRYPTO_memcmp(cctx->aes.ccm.kmac_param.icv.b, in + len,
  1908. cctx->aes.ccm.m))
  1909. return len;
  1910. }
  1911. OPENSSL_cleanse(out, len);
  1912. return -1;
  1913. }
  1914. }
  1915. /*-
  1916. * Set key and flag field and/or iv. Returns 1 if successful. Otherwise 0 is
  1917. * returned.
  1918. */
  1919. static int s390x_aes_ccm_init_key(EVP_CIPHER_CTX *ctx,
  1920. const unsigned char *key,
  1921. const unsigned char *iv, int enc)
  1922. {
  1923. S390X_AES_CCM_CTX *cctx = EVP_C_DATA(S390X_AES_CCM_CTX, ctx);
  1924. unsigned char *ivec;
  1925. int keylen;
  1926. if (iv == NULL && key == NULL)
  1927. return 1;
  1928. if (key != NULL) {
  1929. keylen = EVP_CIPHER_CTX_key_length(ctx);
  1930. cctx->aes.ccm.fc = S390X_AES_FC(keylen);
  1931. memcpy(cctx->aes.ccm.kmac_param.k, key, keylen);
  1932. /* Store encoded m and l. */
  1933. cctx->aes.ccm.nonce.b[0] = ((cctx->aes.ccm.l - 1) & 0x7)
  1934. | (((cctx->aes.ccm.m - 2) >> 1) & 0x7) << 3;
  1935. memset(cctx->aes.ccm.nonce.b + 1, 0,
  1936. sizeof(cctx->aes.ccm.nonce.b));
  1937. cctx->aes.ccm.blocks = 0;
  1938. cctx->aes.ccm.key_set = 1;
  1939. }
  1940. if (iv != NULL) {
  1941. ivec = EVP_CIPHER_CTX_iv_noconst(ctx);
  1942. memcpy(ivec, iv, 15 - cctx->aes.ccm.l);
  1943. cctx->aes.ccm.iv_set = 1;
  1944. }
  1945. return 1;
  1946. }
  1947. /*-
  1948. * Called from EVP layer to initialize context, process additional
  1949. * authenticated data, en/de-crypt plain/cipher-text and authenticate
  1950. * plaintext or process a TLS packet, depending on context. Returns bytes
  1951. * written on success. Otherwise -1 is returned.
  1952. */
  1953. static int s390x_aes_ccm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  1954. const unsigned char *in, size_t len)
  1955. {
  1956. S390X_AES_CCM_CTX *cctx = EVP_C_DATA(S390X_AES_CCM_CTX, ctx);
  1957. const int enc = EVP_CIPHER_CTX_encrypting(ctx);
  1958. int rv;
  1959. unsigned char *buf, *ivec;
  1960. if (!cctx->aes.ccm.key_set)
  1961. return -1;
  1962. if (cctx->aes.ccm.tls_aad_len >= 0)
  1963. return s390x_aes_ccm_tls_cipher(ctx, out, in, len);
  1964. /*-
  1965. * Final(): Does not return any data. Recall that ccm is mac-then-encrypt
  1966. * so integrity must be checked already at Update() i.e., before
  1967. * potentially corrupted data is output.
  1968. */
  1969. if (in == NULL && out != NULL)
  1970. return 0;
  1971. if (!cctx->aes.ccm.iv_set)
  1972. return -1;
  1973. if (out == NULL) {
  1974. /* Update(): Pass message length. */
  1975. if (in == NULL) {
  1976. ivec = EVP_CIPHER_CTX_iv_noconst(ctx);
  1977. s390x_aes_ccm_setiv(cctx, ivec, len);
  1978. cctx->aes.ccm.len_set = 1;
  1979. return len;
  1980. }
  1981. /* Update(): Process aad. */
  1982. if (!cctx->aes.ccm.len_set && len)
  1983. return -1;
  1984. s390x_aes_ccm_aad(cctx, in, len);
  1985. return len;
  1986. }
  1987. /* The tag must be set before actually decrypting data */
  1988. if (!enc && !cctx->aes.ccm.tag_set)
  1989. return -1;
  1990. /* Update(): Process message. */
  1991. if (!cctx->aes.ccm.len_set) {
  1992. /*-
  1993. * In case message length was not previously set explicitly via
  1994. * Update(), set it now.
  1995. */
  1996. ivec = EVP_CIPHER_CTX_iv_noconst(ctx);
  1997. s390x_aes_ccm_setiv(cctx, ivec, len);
  1998. cctx->aes.ccm.len_set = 1;
  1999. }
  2000. if (enc) {
  2001. if (s390x_aes_ccm(cctx, in, out, len, enc))
  2002. return -1;
  2003. cctx->aes.ccm.tag_set = 1;
  2004. return len;
  2005. } else {
  2006. rv = -1;
  2007. if (!s390x_aes_ccm(cctx, in, out, len, enc)) {
  2008. buf = EVP_CIPHER_CTX_buf_noconst(ctx);
  2009. if (!CRYPTO_memcmp(cctx->aes.ccm.kmac_param.icv.b, buf,
  2010. cctx->aes.ccm.m))
  2011. rv = len;
  2012. }
  2013. if (rv == -1)
  2014. OPENSSL_cleanse(out, len);
  2015. cctx->aes.ccm.iv_set = 0;
  2016. cctx->aes.ccm.tag_set = 0;
  2017. cctx->aes.ccm.len_set = 0;
  2018. return rv;
  2019. }
  2020. }
  2021. /*-
  2022. * Performs various operations on the context structure depending on control
  2023. * type. Returns 1 for success, 0 for failure and -1 for unknown control type.
  2024. * Code is big-endian.
  2025. */
  2026. static int s390x_aes_ccm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr)
  2027. {
  2028. S390X_AES_CCM_CTX *cctx = EVP_C_DATA(S390X_AES_CCM_CTX, c);
  2029. unsigned char *buf, *iv;
  2030. int enc, len;
  2031. switch (type) {
  2032. case EVP_CTRL_INIT:
  2033. cctx->aes.ccm.key_set = 0;
  2034. cctx->aes.ccm.iv_set = 0;
  2035. cctx->aes.ccm.l = 8;
  2036. cctx->aes.ccm.m = 12;
  2037. cctx->aes.ccm.tag_set = 0;
  2038. cctx->aes.ccm.len_set = 0;
  2039. cctx->aes.ccm.tls_aad_len = -1;
  2040. return 1;
  2041. case EVP_CTRL_GET_IVLEN:
  2042. *(int *)ptr = 15 - cctx->aes.ccm.l;
  2043. return 1;
  2044. case EVP_CTRL_AEAD_TLS1_AAD:
  2045. if (arg != EVP_AEAD_TLS1_AAD_LEN)
  2046. return 0;
  2047. /* Save the aad for later use. */
  2048. buf = EVP_CIPHER_CTX_buf_noconst(c);
  2049. memcpy(buf, ptr, arg);
  2050. cctx->aes.ccm.tls_aad_len = arg;
  2051. len = buf[arg - 2] << 8 | buf[arg - 1];
  2052. if (len < EVP_CCM_TLS_EXPLICIT_IV_LEN)
  2053. return 0;
  2054. /* Correct length for explicit iv. */
  2055. len -= EVP_CCM_TLS_EXPLICIT_IV_LEN;
  2056. enc = EVP_CIPHER_CTX_encrypting(c);
  2057. if (!enc) {
  2058. if (len < cctx->aes.ccm.m)
  2059. return 0;
  2060. /* Correct length for tag. */
  2061. len -= cctx->aes.ccm.m;
  2062. }
  2063. buf[arg - 2] = len >> 8;
  2064. buf[arg - 1] = len & 0xff;
  2065. /* Extra padding: tag appended to record. */
  2066. return cctx->aes.ccm.m;
  2067. case EVP_CTRL_CCM_SET_IV_FIXED:
  2068. if (arg != EVP_CCM_TLS_FIXED_IV_LEN)
  2069. return 0;
  2070. /* Copy to first part of the iv. */
  2071. iv = EVP_CIPHER_CTX_iv_noconst(c);
  2072. memcpy(iv, ptr, arg);
  2073. return 1;
  2074. case EVP_CTRL_AEAD_SET_IVLEN:
  2075. arg = 15 - arg;
  2076. /* fall-through */
  2077. case EVP_CTRL_CCM_SET_L:
  2078. if (arg < 2 || arg > 8)
  2079. return 0;
  2080. cctx->aes.ccm.l = arg;
  2081. return 1;
  2082. case EVP_CTRL_AEAD_SET_TAG:
  2083. if ((arg & 1) || arg < 4 || arg > 16)
  2084. return 0;
  2085. enc = EVP_CIPHER_CTX_encrypting(c);
  2086. if (enc && ptr)
  2087. return 0;
  2088. if (ptr) {
  2089. cctx->aes.ccm.tag_set = 1;
  2090. buf = EVP_CIPHER_CTX_buf_noconst(c);
  2091. memcpy(buf, ptr, arg);
  2092. }
  2093. cctx->aes.ccm.m = arg;
  2094. return 1;
  2095. case EVP_CTRL_AEAD_GET_TAG:
  2096. enc = EVP_CIPHER_CTX_encrypting(c);
  2097. if (!enc || !cctx->aes.ccm.tag_set)
  2098. return 0;
  2099. if(arg < cctx->aes.ccm.m)
  2100. return 0;
  2101. memcpy(ptr, cctx->aes.ccm.kmac_param.icv.b, cctx->aes.ccm.m);
  2102. cctx->aes.ccm.tag_set = 0;
  2103. cctx->aes.ccm.iv_set = 0;
  2104. cctx->aes.ccm.len_set = 0;
  2105. return 1;
  2106. case EVP_CTRL_COPY:
  2107. return 1;
  2108. default:
  2109. return -1;
  2110. }
  2111. }
  2112. # define s390x_aes_ccm_cleanup aes_ccm_cleanup
  2113. # ifndef OPENSSL_NO_OCB
  2114. # define S390X_AES_OCB_CTX EVP_AES_OCB_CTX
  2115. # define S390X_aes_128_ocb_CAPABLE 0
  2116. # define S390X_aes_192_ocb_CAPABLE 0
  2117. # define S390X_aes_256_ocb_CAPABLE 0
  2118. # define s390x_aes_ocb_init_key aes_ocb_init_key
  2119. static int s390x_aes_ocb_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
  2120. const unsigned char *iv, int enc);
  2121. # define s390x_aes_ocb_cipher aes_ocb_cipher
  2122. static int s390x_aes_ocb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  2123. const unsigned char *in, size_t len);
  2124. # define s390x_aes_ocb_cleanup aes_ocb_cleanup
  2125. static int s390x_aes_ocb_cleanup(EVP_CIPHER_CTX *);
  2126. # define s390x_aes_ocb_ctrl aes_ocb_ctrl
  2127. static int s390x_aes_ocb_ctrl(EVP_CIPHER_CTX *, int type, int arg, void *ptr);
  2128. # endif
  2129. # define BLOCK_CIPHER_generic(nid,keylen,blocksize,ivlen,nmode,mode, \
  2130. MODE,flags) \
  2131. static const EVP_CIPHER s390x_aes_##keylen##_##mode = { \
  2132. nid##_##keylen##_##nmode,blocksize, \
  2133. keylen / 8, \
  2134. ivlen, \
  2135. flags | EVP_CIPH_##MODE##_MODE, \
  2136. s390x_aes_##mode##_init_key, \
  2137. s390x_aes_##mode##_cipher, \
  2138. NULL, \
  2139. sizeof(S390X_AES_##MODE##_CTX), \
  2140. NULL, \
  2141. NULL, \
  2142. NULL, \
  2143. NULL \
  2144. }; \
  2145. static const EVP_CIPHER aes_##keylen##_##mode = { \
  2146. nid##_##keylen##_##nmode, \
  2147. blocksize, \
  2148. keylen / 8, \
  2149. ivlen, \
  2150. flags | EVP_CIPH_##MODE##_MODE, \
  2151. aes_init_key, \
  2152. aes_##mode##_cipher, \
  2153. NULL, \
  2154. sizeof(EVP_AES_KEY), \
  2155. NULL, \
  2156. NULL, \
  2157. NULL, \
  2158. NULL \
  2159. }; \
  2160. const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \
  2161. { \
  2162. return S390X_aes_##keylen##_##mode##_CAPABLE ? \
  2163. &s390x_aes_##keylen##_##mode : &aes_##keylen##_##mode; \
  2164. }
  2165. # define BLOCK_CIPHER_custom(nid,keylen,blocksize,ivlen,mode,MODE,flags)\
  2166. static const EVP_CIPHER s390x_aes_##keylen##_##mode = { \
  2167. nid##_##keylen##_##mode, \
  2168. blocksize, \
  2169. (EVP_CIPH_##MODE##_MODE == EVP_CIPH_XTS_MODE ? 2 : 1) * keylen / 8, \
  2170. ivlen, \
  2171. flags | EVP_CIPH_##MODE##_MODE, \
  2172. s390x_aes_##mode##_init_key, \
  2173. s390x_aes_##mode##_cipher, \
  2174. s390x_aes_##mode##_cleanup, \
  2175. sizeof(S390X_AES_##MODE##_CTX), \
  2176. NULL, \
  2177. NULL, \
  2178. s390x_aes_##mode##_ctrl, \
  2179. NULL \
  2180. }; \
  2181. static const EVP_CIPHER aes_##keylen##_##mode = { \
  2182. nid##_##keylen##_##mode,blocksize, \
  2183. (EVP_CIPH_##MODE##_MODE == EVP_CIPH_XTS_MODE ? 2 : 1) * keylen / 8, \
  2184. ivlen, \
  2185. flags | EVP_CIPH_##MODE##_MODE, \
  2186. aes_##mode##_init_key, \
  2187. aes_##mode##_cipher, \
  2188. aes_##mode##_cleanup, \
  2189. sizeof(EVP_AES_##MODE##_CTX), \
  2190. NULL, \
  2191. NULL, \
  2192. aes_##mode##_ctrl, \
  2193. NULL \
  2194. }; \
  2195. const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \
  2196. { \
  2197. return S390X_aes_##keylen##_##mode##_CAPABLE ? \
  2198. &s390x_aes_##keylen##_##mode : &aes_##keylen##_##mode; \
  2199. }
  2200. #else
  2201. # define BLOCK_CIPHER_generic(nid,keylen,blocksize,ivlen,nmode,mode,MODE,flags) \
  2202. static const EVP_CIPHER aes_##keylen##_##mode = { \
  2203. nid##_##keylen##_##nmode,blocksize,keylen/8,ivlen, \
  2204. flags|EVP_CIPH_##MODE##_MODE, \
  2205. aes_init_key, \
  2206. aes_##mode##_cipher, \
  2207. NULL, \
  2208. sizeof(EVP_AES_KEY), \
  2209. NULL,NULL,NULL,NULL }; \
  2210. const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \
  2211. { return &aes_##keylen##_##mode; }
  2212. # define BLOCK_CIPHER_custom(nid,keylen,blocksize,ivlen,mode,MODE,flags) \
  2213. static const EVP_CIPHER aes_##keylen##_##mode = { \
  2214. nid##_##keylen##_##mode,blocksize, \
  2215. (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE?2:1)*keylen/8, ivlen, \
  2216. flags|EVP_CIPH_##MODE##_MODE, \
  2217. aes_##mode##_init_key, \
  2218. aes_##mode##_cipher, \
  2219. aes_##mode##_cleanup, \
  2220. sizeof(EVP_AES_##MODE##_CTX), \
  2221. NULL,NULL,aes_##mode##_ctrl,NULL }; \
  2222. const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \
  2223. { return &aes_##keylen##_##mode; }
  2224. #endif
  2225. #if defined(OPENSSL_CPUID_OBJ) && (defined(__arm__) || defined(__arm) || defined(__aarch64__))
  2226. # include "arm_arch.h"
  2227. # if __ARM_MAX_ARCH__>=7
  2228. # if defined(BSAES_ASM)
  2229. # define BSAES_CAPABLE (OPENSSL_armcap_P & ARMV7_NEON)
  2230. # endif
  2231. # if defined(VPAES_ASM)
  2232. # define VPAES_CAPABLE (OPENSSL_armcap_P & ARMV7_NEON)
  2233. # endif
  2234. # define HWAES_CAPABLE (OPENSSL_armcap_P & ARMV8_AES)
  2235. # define HWAES_set_encrypt_key aes_v8_set_encrypt_key
  2236. # define HWAES_set_decrypt_key aes_v8_set_decrypt_key
  2237. # define HWAES_encrypt aes_v8_encrypt
  2238. # define HWAES_decrypt aes_v8_decrypt
  2239. # define HWAES_cbc_encrypt aes_v8_cbc_encrypt
  2240. # define HWAES_ctr32_encrypt_blocks aes_v8_ctr32_encrypt_blocks
  2241. # endif
  2242. #endif
  2243. #if defined(HWAES_CAPABLE)
  2244. int HWAES_set_encrypt_key(const unsigned char *userKey, const int bits,
  2245. AES_KEY *key);
  2246. int HWAES_set_decrypt_key(const unsigned char *userKey, const int bits,
  2247. AES_KEY *key);
  2248. void HWAES_encrypt(const unsigned char *in, unsigned char *out,
  2249. const AES_KEY *key);
  2250. void HWAES_decrypt(const unsigned char *in, unsigned char *out,
  2251. const AES_KEY *key);
  2252. void HWAES_cbc_encrypt(const unsigned char *in, unsigned char *out,
  2253. size_t length, const AES_KEY *key,
  2254. unsigned char *ivec, const int enc);
  2255. void HWAES_ctr32_encrypt_blocks(const unsigned char *in, unsigned char *out,
  2256. size_t len, const AES_KEY *key,
  2257. const unsigned char ivec[16]);
  2258. void HWAES_xts_encrypt(const unsigned char *inp, unsigned char *out,
  2259. size_t len, const AES_KEY *key1,
  2260. const AES_KEY *key2, const unsigned char iv[16]);
  2261. void HWAES_xts_decrypt(const unsigned char *inp, unsigned char *out,
  2262. size_t len, const AES_KEY *key1,
  2263. const AES_KEY *key2, const unsigned char iv[16]);
  2264. #endif
  2265. #define BLOCK_CIPHER_generic_pack(nid,keylen,flags) \
  2266. BLOCK_CIPHER_generic(nid,keylen,16,16,cbc,cbc,CBC,flags|EVP_CIPH_FLAG_DEFAULT_ASN1) \
  2267. BLOCK_CIPHER_generic(nid,keylen,16,0,ecb,ecb,ECB,flags|EVP_CIPH_FLAG_DEFAULT_ASN1) \
  2268. BLOCK_CIPHER_generic(nid,keylen,1,16,ofb128,ofb,OFB,flags|EVP_CIPH_FLAG_DEFAULT_ASN1) \
  2269. BLOCK_CIPHER_generic(nid,keylen,1,16,cfb128,cfb,CFB,flags|EVP_CIPH_FLAG_DEFAULT_ASN1) \
  2270. BLOCK_CIPHER_generic(nid,keylen,1,16,cfb1,cfb1,CFB,flags) \
  2271. BLOCK_CIPHER_generic(nid,keylen,1,16,cfb8,cfb8,CFB,flags) \
  2272. BLOCK_CIPHER_generic(nid,keylen,1,16,ctr,ctr,CTR,flags)
  2273. static int aes_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
  2274. const unsigned char *iv, int enc)
  2275. {
  2276. int ret, mode;
  2277. EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);
  2278. mode = EVP_CIPHER_CTX_mode(ctx);
  2279. if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE)
  2280. && !enc) {
  2281. #ifdef HWAES_CAPABLE
  2282. if (HWAES_CAPABLE) {
  2283. ret = HWAES_set_decrypt_key(key,
  2284. EVP_CIPHER_CTX_key_length(ctx) * 8,
  2285. &dat->ks.ks);
  2286. dat->block = (block128_f) HWAES_decrypt;
  2287. dat->stream.cbc = NULL;
  2288. # ifdef HWAES_cbc_encrypt
  2289. if (mode == EVP_CIPH_CBC_MODE)
  2290. dat->stream.cbc = (cbc128_f) HWAES_cbc_encrypt;
  2291. # endif
  2292. } else
  2293. #endif
  2294. #ifdef BSAES_CAPABLE
  2295. if (BSAES_CAPABLE && mode == EVP_CIPH_CBC_MODE) {
  2296. ret = AES_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
  2297. &dat->ks.ks);
  2298. dat->block = (block128_f) AES_decrypt;
  2299. dat->stream.cbc = (cbc128_f) bsaes_cbc_encrypt;
  2300. } else
  2301. #endif
  2302. #ifdef VPAES_CAPABLE
  2303. if (VPAES_CAPABLE) {
  2304. ret = vpaes_set_decrypt_key(key,
  2305. EVP_CIPHER_CTX_key_length(ctx) * 8,
  2306. &dat->ks.ks);
  2307. dat->block = (block128_f) vpaes_decrypt;
  2308. dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
  2309. (cbc128_f) vpaes_cbc_encrypt : NULL;
  2310. } else
  2311. #endif
  2312. {
  2313. ret = AES_set_decrypt_key(key,
  2314. EVP_CIPHER_CTX_key_length(ctx) * 8,
  2315. &dat->ks.ks);
  2316. dat->block = (block128_f) AES_decrypt;
  2317. dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
  2318. (cbc128_f) AES_cbc_encrypt : NULL;
  2319. }
  2320. } else
  2321. #ifdef HWAES_CAPABLE
  2322. if (HWAES_CAPABLE) {
  2323. ret = HWAES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
  2324. &dat->ks.ks);
  2325. dat->block = (block128_f) HWAES_encrypt;
  2326. dat->stream.cbc = NULL;
  2327. # ifdef HWAES_cbc_encrypt
  2328. if (mode == EVP_CIPH_CBC_MODE)
  2329. dat->stream.cbc = (cbc128_f) HWAES_cbc_encrypt;
  2330. else
  2331. # endif
  2332. # ifdef HWAES_ctr32_encrypt_blocks
  2333. if (mode == EVP_CIPH_CTR_MODE)
  2334. dat->stream.ctr = (ctr128_f) HWAES_ctr32_encrypt_blocks;
  2335. else
  2336. # endif
  2337. (void)0; /* terminate potentially open 'else' */
  2338. } else
  2339. #endif
  2340. #ifdef BSAES_CAPABLE
  2341. if (BSAES_CAPABLE && mode == EVP_CIPH_CTR_MODE) {
  2342. ret = AES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
  2343. &dat->ks.ks);
  2344. dat->block = (block128_f) AES_encrypt;
  2345. dat->stream.ctr = (ctr128_f) bsaes_ctr32_encrypt_blocks;
  2346. } else
  2347. #endif
  2348. #ifdef VPAES_CAPABLE
  2349. if (VPAES_CAPABLE) {
  2350. ret = vpaes_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
  2351. &dat->ks.ks);
  2352. dat->block = (block128_f) vpaes_encrypt;
  2353. dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
  2354. (cbc128_f) vpaes_cbc_encrypt : NULL;
  2355. } else
  2356. #endif
  2357. {
  2358. ret = AES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
  2359. &dat->ks.ks);
  2360. dat->block = (block128_f) AES_encrypt;
  2361. dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
  2362. (cbc128_f) AES_cbc_encrypt : NULL;
  2363. #ifdef AES_CTR_ASM
  2364. if (mode == EVP_CIPH_CTR_MODE)
  2365. dat->stream.ctr = (ctr128_f) AES_ctr32_encrypt;
  2366. #endif
  2367. }
  2368. if (ret < 0) {
  2369. EVPerr(EVP_F_AES_INIT_KEY, EVP_R_AES_KEY_SETUP_FAILED);
  2370. return 0;
  2371. }
  2372. return 1;
  2373. }
  2374. static int aes_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  2375. const unsigned char *in, size_t len)
  2376. {
  2377. EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);
  2378. if (dat->stream.cbc)
  2379. (*dat->stream.cbc) (in, out, len, &dat->ks,
  2380. EVP_CIPHER_CTX_iv_noconst(ctx),
  2381. EVP_CIPHER_CTX_encrypting(ctx));
  2382. else if (EVP_CIPHER_CTX_encrypting(ctx))
  2383. CRYPTO_cbc128_encrypt(in, out, len, &dat->ks,
  2384. EVP_CIPHER_CTX_iv_noconst(ctx), dat->block);
  2385. else
  2386. CRYPTO_cbc128_decrypt(in, out, len, &dat->ks,
  2387. EVP_CIPHER_CTX_iv_noconst(ctx), dat->block);
  2388. return 1;
  2389. }
  2390. static int aes_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  2391. const unsigned char *in, size_t len)
  2392. {
  2393. size_t bl = EVP_CIPHER_CTX_block_size(ctx);
  2394. size_t i;
  2395. EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);
  2396. if (len < bl)
  2397. return 1;
  2398. for (i = 0, len -= bl; i <= len; i += bl)
  2399. (*dat->block) (in + i, out + i, &dat->ks);
  2400. return 1;
  2401. }
  2402. static int aes_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  2403. const unsigned char *in, size_t len)
  2404. {
  2405. EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);
  2406. int num = EVP_CIPHER_CTX_num(ctx);
  2407. CRYPTO_ofb128_encrypt(in, out, len, &dat->ks,
  2408. EVP_CIPHER_CTX_iv_noconst(ctx), &num, dat->block);
  2409. EVP_CIPHER_CTX_set_num(ctx, num);
  2410. return 1;
  2411. }
  2412. static int aes_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  2413. const unsigned char *in, size_t len)
  2414. {
  2415. EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);
  2416. int num = EVP_CIPHER_CTX_num(ctx);
  2417. CRYPTO_cfb128_encrypt(in, out, len, &dat->ks,
  2418. EVP_CIPHER_CTX_iv_noconst(ctx), &num,
  2419. EVP_CIPHER_CTX_encrypting(ctx), dat->block);
  2420. EVP_CIPHER_CTX_set_num(ctx, num);
  2421. return 1;
  2422. }
  2423. static int aes_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  2424. const unsigned char *in, size_t len)
  2425. {
  2426. EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);
  2427. int num = EVP_CIPHER_CTX_num(ctx);
  2428. CRYPTO_cfb128_8_encrypt(in, out, len, &dat->ks,
  2429. EVP_CIPHER_CTX_iv_noconst(ctx), &num,
  2430. EVP_CIPHER_CTX_encrypting(ctx), dat->block);
  2431. EVP_CIPHER_CTX_set_num(ctx, num);
  2432. return 1;
  2433. }
  2434. static int aes_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  2435. const unsigned char *in, size_t len)
  2436. {
  2437. EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);
  2438. if (EVP_CIPHER_CTX_test_flags(ctx, EVP_CIPH_FLAG_LENGTH_BITS)) {
  2439. int num = EVP_CIPHER_CTX_num(ctx);
  2440. CRYPTO_cfb128_1_encrypt(in, out, len, &dat->ks,
  2441. EVP_CIPHER_CTX_iv_noconst(ctx), &num,
  2442. EVP_CIPHER_CTX_encrypting(ctx), dat->block);
  2443. EVP_CIPHER_CTX_set_num(ctx, num);
  2444. return 1;
  2445. }
  2446. while (len >= MAXBITCHUNK) {
  2447. int num = EVP_CIPHER_CTX_num(ctx);
  2448. CRYPTO_cfb128_1_encrypt(in, out, MAXBITCHUNK * 8, &dat->ks,
  2449. EVP_CIPHER_CTX_iv_noconst(ctx), &num,
  2450. EVP_CIPHER_CTX_encrypting(ctx), dat->block);
  2451. EVP_CIPHER_CTX_set_num(ctx, num);
  2452. len -= MAXBITCHUNK;
  2453. out += MAXBITCHUNK;
  2454. in += MAXBITCHUNK;
  2455. }
  2456. if (len) {
  2457. int num = EVP_CIPHER_CTX_num(ctx);
  2458. CRYPTO_cfb128_1_encrypt(in, out, len * 8, &dat->ks,
  2459. EVP_CIPHER_CTX_iv_noconst(ctx), &num,
  2460. EVP_CIPHER_CTX_encrypting(ctx), dat->block);
  2461. EVP_CIPHER_CTX_set_num(ctx, num);
  2462. }
  2463. return 1;
  2464. }
  2465. static int aes_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  2466. const unsigned char *in, size_t len)
  2467. {
  2468. unsigned int num = EVP_CIPHER_CTX_num(ctx);
  2469. EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);
  2470. if (dat->stream.ctr)
  2471. CRYPTO_ctr128_encrypt_ctr32(in, out, len, &dat->ks,
  2472. EVP_CIPHER_CTX_iv_noconst(ctx),
  2473. EVP_CIPHER_CTX_buf_noconst(ctx),
  2474. &num, dat->stream.ctr);
  2475. else
  2476. CRYPTO_ctr128_encrypt(in, out, len, &dat->ks,
  2477. EVP_CIPHER_CTX_iv_noconst(ctx),
  2478. EVP_CIPHER_CTX_buf_noconst(ctx), &num,
  2479. dat->block);
  2480. EVP_CIPHER_CTX_set_num(ctx, num);
  2481. return 1;
  2482. }
  2483. BLOCK_CIPHER_generic_pack(NID_aes, 128, 0)
  2484. BLOCK_CIPHER_generic_pack(NID_aes, 192, 0)
  2485. BLOCK_CIPHER_generic_pack(NID_aes, 256, 0)
  2486. static int aes_gcm_cleanup(EVP_CIPHER_CTX *c)
  2487. {
  2488. EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,c);
  2489. if (gctx == NULL)
  2490. return 0;
  2491. OPENSSL_cleanse(&gctx->gcm, sizeof(gctx->gcm));
  2492. if (gctx->iv != EVP_CIPHER_CTX_iv_noconst(c))
  2493. OPENSSL_free(gctx->iv);
  2494. return 1;
  2495. }
  2496. static int aes_gcm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr)
  2497. {
  2498. EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,c);
  2499. switch (type) {
  2500. case EVP_CTRL_INIT:
  2501. gctx->key_set = 0;
  2502. gctx->iv_set = 0;
  2503. gctx->ivlen = EVP_CIPHER_iv_length(c->cipher);
  2504. gctx->iv = c->iv;
  2505. gctx->taglen = -1;
  2506. gctx->iv_gen = 0;
  2507. gctx->tls_aad_len = -1;
  2508. return 1;
  2509. case EVP_CTRL_GET_IVLEN:
  2510. *(int *)ptr = gctx->ivlen;
  2511. return 1;
  2512. case EVP_CTRL_AEAD_SET_IVLEN:
  2513. if (arg <= 0)
  2514. return 0;
  2515. /* Allocate memory for IV if needed */
  2516. if ((arg > EVP_MAX_IV_LENGTH) && (arg > gctx->ivlen)) {
  2517. if (gctx->iv != c->iv)
  2518. OPENSSL_free(gctx->iv);
  2519. if ((gctx->iv = OPENSSL_malloc(arg)) == NULL) {
  2520. EVPerr(EVP_F_AES_GCM_CTRL, ERR_R_MALLOC_FAILURE);
  2521. return 0;
  2522. }
  2523. }
  2524. gctx->ivlen = arg;
  2525. return 1;
  2526. case EVP_CTRL_AEAD_SET_TAG:
  2527. if (arg <= 0 || arg > 16 || c->encrypt)
  2528. return 0;
  2529. memcpy(c->buf, ptr, arg);
  2530. gctx->taglen = arg;
  2531. return 1;
  2532. case EVP_CTRL_AEAD_GET_TAG:
  2533. if (arg <= 0 || arg > 16 || !c->encrypt
  2534. || gctx->taglen < 0)
  2535. return 0;
  2536. memcpy(ptr, c->buf, arg);
  2537. return 1;
  2538. case EVP_CTRL_GCM_SET_IV_FIXED:
  2539. /* Special case: -1 length restores whole IV */
  2540. if (arg == -1) {
  2541. memcpy(gctx->iv, ptr, gctx->ivlen);
  2542. gctx->iv_gen = 1;
  2543. return 1;
  2544. }
  2545. /*
  2546. * Fixed field must be at least 4 bytes and invocation field at least
  2547. * 8.
  2548. */
  2549. if ((arg < 4) || (gctx->ivlen - arg) < 8)
  2550. return 0;
  2551. if (arg)
  2552. memcpy(gctx->iv, ptr, arg);
  2553. if (c->encrypt && RAND_bytes(gctx->iv + arg, gctx->ivlen - arg) <= 0)
  2554. return 0;
  2555. gctx->iv_gen = 1;
  2556. return 1;
  2557. case EVP_CTRL_GCM_IV_GEN:
  2558. if (gctx->iv_gen == 0 || gctx->key_set == 0)
  2559. return 0;
  2560. CRYPTO_gcm128_setiv(&gctx->gcm, gctx->iv, gctx->ivlen);
  2561. if (arg <= 0 || arg > gctx->ivlen)
  2562. arg = gctx->ivlen;
  2563. memcpy(ptr, gctx->iv + gctx->ivlen - arg, arg);
  2564. /*
  2565. * Invocation field will be at least 8 bytes in size and so no need
  2566. * to check wrap around or increment more than last 8 bytes.
  2567. */
  2568. ctr64_inc(gctx->iv + gctx->ivlen - 8);
  2569. gctx->iv_set = 1;
  2570. return 1;
  2571. case EVP_CTRL_GCM_SET_IV_INV:
  2572. if (gctx->iv_gen == 0 || gctx->key_set == 0 || c->encrypt)
  2573. return 0;
  2574. memcpy(gctx->iv + gctx->ivlen - arg, ptr, arg);
  2575. CRYPTO_gcm128_setiv(&gctx->gcm, gctx->iv, gctx->ivlen);
  2576. gctx->iv_set = 1;
  2577. return 1;
  2578. case EVP_CTRL_AEAD_TLS1_AAD:
  2579. /* Save the AAD for later use */
  2580. if (arg != EVP_AEAD_TLS1_AAD_LEN)
  2581. return 0;
  2582. memcpy(c->buf, ptr, arg);
  2583. gctx->tls_aad_len = arg;
  2584. {
  2585. unsigned int len = c->buf[arg - 2] << 8 | c->buf[arg - 1];
  2586. /* Correct length for explicit IV */
  2587. if (len < EVP_GCM_TLS_EXPLICIT_IV_LEN)
  2588. return 0;
  2589. len -= EVP_GCM_TLS_EXPLICIT_IV_LEN;
  2590. /* If decrypting correct for tag too */
  2591. if (!c->encrypt) {
  2592. if (len < EVP_GCM_TLS_TAG_LEN)
  2593. return 0;
  2594. len -= EVP_GCM_TLS_TAG_LEN;
  2595. }
  2596. c->buf[arg - 2] = len >> 8;
  2597. c->buf[arg - 1] = len & 0xff;
  2598. }
  2599. /* Extra padding: tag appended to record */
  2600. return EVP_GCM_TLS_TAG_LEN;
  2601. case EVP_CTRL_COPY:
  2602. {
  2603. EVP_CIPHER_CTX *out = ptr;
  2604. EVP_AES_GCM_CTX *gctx_out = EVP_C_DATA(EVP_AES_GCM_CTX,out);
  2605. if (gctx->gcm.key) {
  2606. if (gctx->gcm.key != &gctx->ks)
  2607. return 0;
  2608. gctx_out->gcm.key = &gctx_out->ks;
  2609. }
  2610. if (gctx->iv == c->iv)
  2611. gctx_out->iv = out->iv;
  2612. else {
  2613. if ((gctx_out->iv = OPENSSL_malloc(gctx->ivlen)) == NULL) {
  2614. EVPerr(EVP_F_AES_GCM_CTRL, ERR_R_MALLOC_FAILURE);
  2615. return 0;
  2616. }
  2617. memcpy(gctx_out->iv, gctx->iv, gctx->ivlen);
  2618. }
  2619. return 1;
  2620. }
  2621. default:
  2622. return -1;
  2623. }
  2624. }
  2625. static int aes_gcm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
  2626. const unsigned char *iv, int enc)
  2627. {
  2628. EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,ctx);
  2629. if (!iv && !key)
  2630. return 1;
  2631. if (key) {
  2632. do {
  2633. #ifdef HWAES_CAPABLE
  2634. if (HWAES_CAPABLE) {
  2635. HWAES_set_encrypt_key(key, ctx->key_len * 8, &gctx->ks.ks);
  2636. CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks,
  2637. (block128_f) HWAES_encrypt);
  2638. # ifdef HWAES_ctr32_encrypt_blocks
  2639. gctx->ctr = (ctr128_f) HWAES_ctr32_encrypt_blocks;
  2640. # else
  2641. gctx->ctr = NULL;
  2642. # endif
  2643. break;
  2644. } else
  2645. #endif
  2646. #ifdef BSAES_CAPABLE
  2647. if (BSAES_CAPABLE) {
  2648. AES_set_encrypt_key(key, ctx->key_len * 8, &gctx->ks.ks);
  2649. CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks,
  2650. (block128_f) AES_encrypt);
  2651. gctx->ctr = (ctr128_f) bsaes_ctr32_encrypt_blocks;
  2652. break;
  2653. } else
  2654. #endif
  2655. #ifdef VPAES_CAPABLE
  2656. if (VPAES_CAPABLE) {
  2657. vpaes_set_encrypt_key(key, ctx->key_len * 8, &gctx->ks.ks);
  2658. CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks,
  2659. (block128_f) vpaes_encrypt);
  2660. gctx->ctr = NULL;
  2661. break;
  2662. } else
  2663. #endif
  2664. (void)0; /* terminate potentially open 'else' */
  2665. AES_set_encrypt_key(key, ctx->key_len * 8, &gctx->ks.ks);
  2666. CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks,
  2667. (block128_f) AES_encrypt);
  2668. #ifdef AES_CTR_ASM
  2669. gctx->ctr = (ctr128_f) AES_ctr32_encrypt;
  2670. #else
  2671. gctx->ctr = NULL;
  2672. #endif
  2673. } while (0);
  2674. /*
  2675. * If we have an iv can set it directly, otherwise use saved IV.
  2676. */
  2677. if (iv == NULL && gctx->iv_set)
  2678. iv = gctx->iv;
  2679. if (iv) {
  2680. CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
  2681. gctx->iv_set = 1;
  2682. }
  2683. gctx->key_set = 1;
  2684. } else {
  2685. /* If key set use IV, otherwise copy */
  2686. if (gctx->key_set)
  2687. CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
  2688. else
  2689. memcpy(gctx->iv, iv, gctx->ivlen);
  2690. gctx->iv_set = 1;
  2691. gctx->iv_gen = 0;
  2692. }
  2693. return 1;
  2694. }
  2695. /*
  2696. * Handle TLS GCM packet format. This consists of the last portion of the IV
  2697. * followed by the payload and finally the tag. On encrypt generate IV,
  2698. * encrypt payload and write the tag. On verify retrieve IV, decrypt payload
  2699. * and verify tag.
  2700. */
  2701. static int aes_gcm_tls_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  2702. const unsigned char *in, size_t len)
  2703. {
  2704. EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,ctx);
  2705. int rv = -1;
  2706. /* Encrypt/decrypt must be performed in place */
  2707. if (out != in
  2708. || len < (EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN))
  2709. return -1;
  2710. /*
  2711. * Set IV from start of buffer or generate IV and write to start of
  2712. * buffer.
  2713. */
  2714. if (EVP_CIPHER_CTX_ctrl(ctx, ctx->encrypt ? EVP_CTRL_GCM_IV_GEN
  2715. : EVP_CTRL_GCM_SET_IV_INV,
  2716. EVP_GCM_TLS_EXPLICIT_IV_LEN, out) <= 0)
  2717. goto err;
  2718. /* Use saved AAD */
  2719. if (CRYPTO_gcm128_aad(&gctx->gcm, ctx->buf, gctx->tls_aad_len))
  2720. goto err;
  2721. /* Fix buffer and length to point to payload */
  2722. in += EVP_GCM_TLS_EXPLICIT_IV_LEN;
  2723. out += EVP_GCM_TLS_EXPLICIT_IV_LEN;
  2724. len -= EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN;
  2725. if (ctx->encrypt) {
  2726. /* Encrypt payload */
  2727. if (gctx->ctr) {
  2728. size_t bulk = 0;
  2729. #if defined(AES_GCM_ASM)
  2730. if (len >= 32 && AES_GCM_ASM(gctx)) {
  2731. if (CRYPTO_gcm128_encrypt(&gctx->gcm, NULL, NULL, 0))
  2732. return -1;
  2733. bulk = AES_gcm_encrypt(in, out, len,
  2734. gctx->gcm.key,
  2735. gctx->gcm.Yi.c, gctx->gcm.Xi.u);
  2736. gctx->gcm.len.u[1] += bulk;
  2737. }
  2738. #endif
  2739. if (CRYPTO_gcm128_encrypt_ctr32(&gctx->gcm,
  2740. in + bulk,
  2741. out + bulk,
  2742. len - bulk, gctx->ctr))
  2743. goto err;
  2744. } else {
  2745. size_t bulk = 0;
  2746. #if defined(AES_GCM_ASM2)
  2747. if (len >= 32 && AES_GCM_ASM2(gctx)) {
  2748. if (CRYPTO_gcm128_encrypt(&gctx->gcm, NULL, NULL, 0))
  2749. return -1;
  2750. bulk = AES_gcm_encrypt(in, out, len,
  2751. gctx->gcm.key,
  2752. gctx->gcm.Yi.c, gctx->gcm.Xi.u);
  2753. gctx->gcm.len.u[1] += bulk;
  2754. }
  2755. #endif
  2756. if (CRYPTO_gcm128_encrypt(&gctx->gcm,
  2757. in + bulk, out + bulk, len - bulk))
  2758. goto err;
  2759. }
  2760. out += len;
  2761. /* Finally write tag */
  2762. CRYPTO_gcm128_tag(&gctx->gcm, out, EVP_GCM_TLS_TAG_LEN);
  2763. rv = len + EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN;
  2764. } else {
  2765. /* Decrypt */
  2766. if (gctx->ctr) {
  2767. size_t bulk = 0;
  2768. #if defined(AES_GCM_ASM)
  2769. if (len >= 16 && AES_GCM_ASM(gctx)) {
  2770. if (CRYPTO_gcm128_decrypt(&gctx->gcm, NULL, NULL, 0))
  2771. return -1;
  2772. bulk = AES_gcm_decrypt(in, out, len,
  2773. gctx->gcm.key,
  2774. gctx->gcm.Yi.c, gctx->gcm.Xi.u);
  2775. gctx->gcm.len.u[1] += bulk;
  2776. }
  2777. #endif
  2778. if (CRYPTO_gcm128_decrypt_ctr32(&gctx->gcm,
  2779. in + bulk,
  2780. out + bulk,
  2781. len - bulk, gctx->ctr))
  2782. goto err;
  2783. } else {
  2784. size_t bulk = 0;
  2785. #if defined(AES_GCM_ASM2)
  2786. if (len >= 16 && AES_GCM_ASM2(gctx)) {
  2787. if (CRYPTO_gcm128_decrypt(&gctx->gcm, NULL, NULL, 0))
  2788. return -1;
  2789. bulk = AES_gcm_decrypt(in, out, len,
  2790. gctx->gcm.key,
  2791. gctx->gcm.Yi.c, gctx->gcm.Xi.u);
  2792. gctx->gcm.len.u[1] += bulk;
  2793. }
  2794. #endif
  2795. if (CRYPTO_gcm128_decrypt(&gctx->gcm,
  2796. in + bulk, out + bulk, len - bulk))
  2797. goto err;
  2798. }
  2799. /* Retrieve tag */
  2800. CRYPTO_gcm128_tag(&gctx->gcm, ctx->buf, EVP_GCM_TLS_TAG_LEN);
  2801. /* If tag mismatch wipe buffer */
  2802. if (CRYPTO_memcmp(ctx->buf, in + len, EVP_GCM_TLS_TAG_LEN)) {
  2803. OPENSSL_cleanse(out, len);
  2804. goto err;
  2805. }
  2806. rv = len;
  2807. }
  2808. err:
  2809. gctx->iv_set = 0;
  2810. gctx->tls_aad_len = -1;
  2811. return rv;
  2812. }
  2813. static int aes_gcm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  2814. const unsigned char *in, size_t len)
  2815. {
  2816. EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,ctx);
  2817. /* If not set up, return error */
  2818. if (!gctx->key_set)
  2819. return -1;
  2820. if (gctx->tls_aad_len >= 0)
  2821. return aes_gcm_tls_cipher(ctx, out, in, len);
  2822. if (!gctx->iv_set)
  2823. return -1;
  2824. if (in) {
  2825. if (out == NULL) {
  2826. if (CRYPTO_gcm128_aad(&gctx->gcm, in, len))
  2827. return -1;
  2828. } else if (ctx->encrypt) {
  2829. if (gctx->ctr) {
  2830. size_t bulk = 0;
  2831. #if defined(AES_GCM_ASM)
  2832. if (len >= 32 && AES_GCM_ASM(gctx)) {
  2833. size_t res = (16 - gctx->gcm.mres) % 16;
  2834. if (CRYPTO_gcm128_encrypt(&gctx->gcm, in, out, res))
  2835. return -1;
  2836. bulk = AES_gcm_encrypt(in + res,
  2837. out + res, len - res,
  2838. gctx->gcm.key, gctx->gcm.Yi.c,
  2839. gctx->gcm.Xi.u);
  2840. gctx->gcm.len.u[1] += bulk;
  2841. bulk += res;
  2842. }
  2843. #endif
  2844. if (CRYPTO_gcm128_encrypt_ctr32(&gctx->gcm,
  2845. in + bulk,
  2846. out + bulk,
  2847. len - bulk, gctx->ctr))
  2848. return -1;
  2849. } else {
  2850. size_t bulk = 0;
  2851. #if defined(AES_GCM_ASM2)
  2852. if (len >= 32 && AES_GCM_ASM2(gctx)) {
  2853. size_t res = (16 - gctx->gcm.mres) % 16;
  2854. if (CRYPTO_gcm128_encrypt(&gctx->gcm, in, out, res))
  2855. return -1;
  2856. bulk = AES_gcm_encrypt(in + res,
  2857. out + res, len - res,
  2858. gctx->gcm.key, gctx->gcm.Yi.c,
  2859. gctx->gcm.Xi.u);
  2860. gctx->gcm.len.u[1] += bulk;
  2861. bulk += res;
  2862. }
  2863. #endif
  2864. if (CRYPTO_gcm128_encrypt(&gctx->gcm,
  2865. in + bulk, out + bulk, len - bulk))
  2866. return -1;
  2867. }
  2868. } else {
  2869. if (gctx->ctr) {
  2870. size_t bulk = 0;
  2871. #if defined(AES_GCM_ASM)
  2872. if (len >= 16 && AES_GCM_ASM(gctx)) {
  2873. size_t res = (16 - gctx->gcm.mres) % 16;
  2874. if (CRYPTO_gcm128_decrypt(&gctx->gcm, in, out, res))
  2875. return -1;
  2876. bulk = AES_gcm_decrypt(in + res,
  2877. out + res, len - res,
  2878. gctx->gcm.key,
  2879. gctx->gcm.Yi.c, gctx->gcm.Xi.u);
  2880. gctx->gcm.len.u[1] += bulk;
  2881. bulk += res;
  2882. }
  2883. #endif
  2884. if (CRYPTO_gcm128_decrypt_ctr32(&gctx->gcm,
  2885. in + bulk,
  2886. out + bulk,
  2887. len - bulk, gctx->ctr))
  2888. return -1;
  2889. } else {
  2890. size_t bulk = 0;
  2891. #if defined(AES_GCM_ASM2)
  2892. if (len >= 16 && AES_GCM_ASM2(gctx)) {
  2893. size_t res = (16 - gctx->gcm.mres) % 16;
  2894. if (CRYPTO_gcm128_decrypt(&gctx->gcm, in, out, res))
  2895. return -1;
  2896. bulk = AES_gcm_decrypt(in + res,
  2897. out + res, len - res,
  2898. gctx->gcm.key,
  2899. gctx->gcm.Yi.c, gctx->gcm.Xi.u);
  2900. gctx->gcm.len.u[1] += bulk;
  2901. bulk += res;
  2902. }
  2903. #endif
  2904. if (CRYPTO_gcm128_decrypt(&gctx->gcm,
  2905. in + bulk, out + bulk, len - bulk))
  2906. return -1;
  2907. }
  2908. }
  2909. return len;
  2910. } else {
  2911. if (!ctx->encrypt) {
  2912. if (gctx->taglen < 0)
  2913. return -1;
  2914. if (CRYPTO_gcm128_finish(&gctx->gcm, ctx->buf, gctx->taglen) != 0)
  2915. return -1;
  2916. gctx->iv_set = 0;
  2917. return 0;
  2918. }
  2919. CRYPTO_gcm128_tag(&gctx->gcm, ctx->buf, 16);
  2920. gctx->taglen = 16;
  2921. /* Don't reuse the IV */
  2922. gctx->iv_set = 0;
  2923. return 0;
  2924. }
  2925. }
  2926. #define CUSTOM_FLAGS (EVP_CIPH_FLAG_DEFAULT_ASN1 \
  2927. | EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER \
  2928. | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT \
  2929. | EVP_CIPH_CUSTOM_COPY | EVP_CIPH_CUSTOM_IV_LENGTH)
  2930. BLOCK_CIPHER_custom(NID_aes, 128, 1, 12, gcm, GCM,
  2931. EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS)
  2932. BLOCK_CIPHER_custom(NID_aes, 192, 1, 12, gcm, GCM,
  2933. EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS)
  2934. BLOCK_CIPHER_custom(NID_aes, 256, 1, 12, gcm, GCM,
  2935. EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS)
  2936. static int aes_xts_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr)
  2937. {
  2938. EVP_AES_XTS_CTX *xctx = EVP_C_DATA(EVP_AES_XTS_CTX, c);
  2939. if (type == EVP_CTRL_COPY) {
  2940. EVP_CIPHER_CTX *out = ptr;
  2941. EVP_AES_XTS_CTX *xctx_out = EVP_C_DATA(EVP_AES_XTS_CTX,out);
  2942. if (xctx->xts.key1) {
  2943. if (xctx->xts.key1 != &xctx->ks1)
  2944. return 0;
  2945. xctx_out->xts.key1 = &xctx_out->ks1;
  2946. }
  2947. if (xctx->xts.key2) {
  2948. if (xctx->xts.key2 != &xctx->ks2)
  2949. return 0;
  2950. xctx_out->xts.key2 = &xctx_out->ks2;
  2951. }
  2952. return 1;
  2953. } else if (type != EVP_CTRL_INIT)
  2954. return -1;
  2955. /* key1 and key2 are used as an indicator both key and IV are set */
  2956. xctx->xts.key1 = NULL;
  2957. xctx->xts.key2 = NULL;
  2958. return 1;
  2959. }
  2960. static int aes_xts_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
  2961. const unsigned char *iv, int enc)
  2962. {
  2963. EVP_AES_XTS_CTX *xctx = EVP_C_DATA(EVP_AES_XTS_CTX,ctx);
  2964. if (!iv && !key)
  2965. return 1;
  2966. if (key)
  2967. do {
  2968. /* The key is two half length keys in reality */
  2969. const int bytes = EVP_CIPHER_CTX_key_length(ctx) / 2;
  2970. /*
  2971. * Verify that the two keys are different.
  2972. *
  2973. * This addresses the vulnerability described in Rogaway's
  2974. * September 2004 paper:
  2975. *
  2976. * "Efficient Instantiations of Tweakable Blockciphers and
  2977. * Refinements to Modes OCB and PMAC".
  2978. * (http://web.cs.ucdavis.edu/~rogaway/papers/offsets.pdf)
  2979. *
  2980. * FIPS 140-2 IG A.9 XTS-AES Key Generation Requirements states
  2981. * that:
  2982. * "The check for Key_1 != Key_2 shall be done at any place
  2983. * BEFORE using the keys in the XTS-AES algorithm to process
  2984. * data with them."
  2985. */
  2986. if (enc && CRYPTO_memcmp(key, key + bytes, bytes) == 0) {
  2987. EVPerr(EVP_F_AES_XTS_INIT_KEY, EVP_R_XTS_DUPLICATED_KEYS);
  2988. return 0;
  2989. }
  2990. #ifdef AES_XTS_ASM
  2991. xctx->stream = enc ? AES_xts_encrypt : AES_xts_decrypt;
  2992. #else
  2993. xctx->stream = NULL;
  2994. #endif
  2995. /* key_len is two AES keys */
  2996. #ifdef HWAES_CAPABLE
  2997. if (HWAES_CAPABLE) {
  2998. if (enc) {
  2999. HWAES_set_encrypt_key(key,
  3000. EVP_CIPHER_CTX_key_length(ctx) * 4,
  3001. &xctx->ks1.ks);
  3002. xctx->xts.block1 = (block128_f) HWAES_encrypt;
  3003. # ifdef HWAES_xts_encrypt
  3004. xctx->stream = HWAES_xts_encrypt;
  3005. # endif
  3006. } else {
  3007. HWAES_set_decrypt_key(key,
  3008. EVP_CIPHER_CTX_key_length(ctx) * 4,
  3009. &xctx->ks1.ks);
  3010. xctx->xts.block1 = (block128_f) HWAES_decrypt;
  3011. # ifdef HWAES_xts_decrypt
  3012. xctx->stream = HWAES_xts_decrypt;
  3013. #endif
  3014. }
  3015. HWAES_set_encrypt_key(key + EVP_CIPHER_CTX_key_length(ctx) / 2,
  3016. EVP_CIPHER_CTX_key_length(ctx) * 4,
  3017. &xctx->ks2.ks);
  3018. xctx->xts.block2 = (block128_f) HWAES_encrypt;
  3019. xctx->xts.key1 = &xctx->ks1;
  3020. break;
  3021. } else
  3022. #endif
  3023. #ifdef BSAES_CAPABLE
  3024. if (BSAES_CAPABLE)
  3025. xctx->stream = enc ? bsaes_xts_encrypt : bsaes_xts_decrypt;
  3026. else
  3027. #endif
  3028. #ifdef VPAES_CAPABLE
  3029. if (VPAES_CAPABLE) {
  3030. if (enc) {
  3031. vpaes_set_encrypt_key(key,
  3032. EVP_CIPHER_CTX_key_length(ctx) * 4,
  3033. &xctx->ks1.ks);
  3034. xctx->xts.block1 = (block128_f) vpaes_encrypt;
  3035. } else {
  3036. vpaes_set_decrypt_key(key,
  3037. EVP_CIPHER_CTX_key_length(ctx) * 4,
  3038. &xctx->ks1.ks);
  3039. xctx->xts.block1 = (block128_f) vpaes_decrypt;
  3040. }
  3041. vpaes_set_encrypt_key(key + EVP_CIPHER_CTX_key_length(ctx) / 2,
  3042. EVP_CIPHER_CTX_key_length(ctx) * 4,
  3043. &xctx->ks2.ks);
  3044. xctx->xts.block2 = (block128_f) vpaes_encrypt;
  3045. xctx->xts.key1 = &xctx->ks1;
  3046. break;
  3047. } else
  3048. #endif
  3049. (void)0; /* terminate potentially open 'else' */
  3050. if (enc) {
  3051. AES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 4,
  3052. &xctx->ks1.ks);
  3053. xctx->xts.block1 = (block128_f) AES_encrypt;
  3054. } else {
  3055. AES_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 4,
  3056. &xctx->ks1.ks);
  3057. xctx->xts.block1 = (block128_f) AES_decrypt;
  3058. }
  3059. AES_set_encrypt_key(key + EVP_CIPHER_CTX_key_length(ctx) / 2,
  3060. EVP_CIPHER_CTX_key_length(ctx) * 4,
  3061. &xctx->ks2.ks);
  3062. xctx->xts.block2 = (block128_f) AES_encrypt;
  3063. xctx->xts.key1 = &xctx->ks1;
  3064. } while (0);
  3065. if (iv) {
  3066. xctx->xts.key2 = &xctx->ks2;
  3067. memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), iv, 16);
  3068. }
  3069. return 1;
  3070. }
  3071. static int aes_xts_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  3072. const unsigned char *in, size_t len)
  3073. {
  3074. EVP_AES_XTS_CTX *xctx = EVP_C_DATA(EVP_AES_XTS_CTX,ctx);
  3075. if (!xctx->xts.key1 || !xctx->xts.key2)
  3076. return 0;
  3077. if (!out || !in || len < AES_BLOCK_SIZE)
  3078. return 0;
  3079. if (xctx->stream)
  3080. (*xctx->stream) (in, out, len,
  3081. xctx->xts.key1, xctx->xts.key2,
  3082. EVP_CIPHER_CTX_iv_noconst(ctx));
  3083. else if (CRYPTO_xts128_encrypt(&xctx->xts, EVP_CIPHER_CTX_iv_noconst(ctx),
  3084. in, out, len,
  3085. EVP_CIPHER_CTX_encrypting(ctx)))
  3086. return 0;
  3087. return 1;
  3088. }
  3089. #define aes_xts_cleanup NULL
  3090. #define XTS_FLAGS (EVP_CIPH_FLAG_DEFAULT_ASN1 | EVP_CIPH_CUSTOM_IV \
  3091. | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT \
  3092. | EVP_CIPH_CUSTOM_COPY)
  3093. BLOCK_CIPHER_custom(NID_aes, 128, 1, 16, xts, XTS, XTS_FLAGS)
  3094. BLOCK_CIPHER_custom(NID_aes, 256, 1, 16, xts, XTS, XTS_FLAGS)
  3095. static int aes_ccm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr)
  3096. {
  3097. EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX,c);
  3098. switch (type) {
  3099. case EVP_CTRL_INIT:
  3100. cctx->key_set = 0;
  3101. cctx->iv_set = 0;
  3102. cctx->L = 8;
  3103. cctx->M = 12;
  3104. cctx->tag_set = 0;
  3105. cctx->len_set = 0;
  3106. cctx->tls_aad_len = -1;
  3107. return 1;
  3108. case EVP_CTRL_GET_IVLEN:
  3109. *(int *)ptr = 15 - cctx->L;
  3110. return 1;
  3111. case EVP_CTRL_AEAD_TLS1_AAD:
  3112. /* Save the AAD for later use */
  3113. if (arg != EVP_AEAD_TLS1_AAD_LEN)
  3114. return 0;
  3115. memcpy(EVP_CIPHER_CTX_buf_noconst(c), ptr, arg);
  3116. cctx->tls_aad_len = arg;
  3117. {
  3118. uint16_t len =
  3119. EVP_CIPHER_CTX_buf_noconst(c)[arg - 2] << 8
  3120. | EVP_CIPHER_CTX_buf_noconst(c)[arg - 1];
  3121. /* Correct length for explicit IV */
  3122. if (len < EVP_CCM_TLS_EXPLICIT_IV_LEN)
  3123. return 0;
  3124. len -= EVP_CCM_TLS_EXPLICIT_IV_LEN;
  3125. /* If decrypting correct for tag too */
  3126. if (!EVP_CIPHER_CTX_encrypting(c)) {
  3127. if (len < cctx->M)
  3128. return 0;
  3129. len -= cctx->M;
  3130. }
  3131. EVP_CIPHER_CTX_buf_noconst(c)[arg - 2] = len >> 8;
  3132. EVP_CIPHER_CTX_buf_noconst(c)[arg - 1] = len & 0xff;
  3133. }
  3134. /* Extra padding: tag appended to record */
  3135. return cctx->M;
  3136. case EVP_CTRL_CCM_SET_IV_FIXED:
  3137. /* Sanity check length */
  3138. if (arg != EVP_CCM_TLS_FIXED_IV_LEN)
  3139. return 0;
  3140. /* Just copy to first part of IV */
  3141. memcpy(EVP_CIPHER_CTX_iv_noconst(c), ptr, arg);
  3142. return 1;
  3143. case EVP_CTRL_AEAD_SET_IVLEN:
  3144. arg = 15 - arg;
  3145. /* fall thru */
  3146. case EVP_CTRL_CCM_SET_L:
  3147. if (arg < 2 || arg > 8)
  3148. return 0;
  3149. cctx->L = arg;
  3150. return 1;
  3151. case EVP_CTRL_AEAD_SET_TAG:
  3152. if ((arg & 1) || arg < 4 || arg > 16)
  3153. return 0;
  3154. if (EVP_CIPHER_CTX_encrypting(c) && ptr)
  3155. return 0;
  3156. if (ptr) {
  3157. cctx->tag_set = 1;
  3158. memcpy(EVP_CIPHER_CTX_buf_noconst(c), ptr, arg);
  3159. }
  3160. cctx->M = arg;
  3161. return 1;
  3162. case EVP_CTRL_AEAD_GET_TAG:
  3163. if (!EVP_CIPHER_CTX_encrypting(c) || !cctx->tag_set)
  3164. return 0;
  3165. if (!CRYPTO_ccm128_tag(&cctx->ccm, ptr, (size_t)arg))
  3166. return 0;
  3167. cctx->tag_set = 0;
  3168. cctx->iv_set = 0;
  3169. cctx->len_set = 0;
  3170. return 1;
  3171. case EVP_CTRL_COPY:
  3172. {
  3173. EVP_CIPHER_CTX *out = ptr;
  3174. EVP_AES_CCM_CTX *cctx_out = EVP_C_DATA(EVP_AES_CCM_CTX,out);
  3175. if (cctx->ccm.key) {
  3176. if (cctx->ccm.key != &cctx->ks)
  3177. return 0;
  3178. cctx_out->ccm.key = &cctx_out->ks;
  3179. }
  3180. return 1;
  3181. }
  3182. default:
  3183. return -1;
  3184. }
  3185. }
  3186. static int aes_ccm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
  3187. const unsigned char *iv, int enc)
  3188. {
  3189. EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX,ctx);
  3190. if (!iv && !key)
  3191. return 1;
  3192. if (key)
  3193. do {
  3194. #ifdef HWAES_CAPABLE
  3195. if (HWAES_CAPABLE) {
  3196. HWAES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
  3197. &cctx->ks.ks);
  3198. CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L,
  3199. &cctx->ks, (block128_f) HWAES_encrypt);
  3200. cctx->str = NULL;
  3201. cctx->key_set = 1;
  3202. break;
  3203. } else
  3204. #endif
  3205. #ifdef VPAES_CAPABLE
  3206. if (VPAES_CAPABLE) {
  3207. vpaes_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
  3208. &cctx->ks.ks);
  3209. CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L,
  3210. &cctx->ks, (block128_f) vpaes_encrypt);
  3211. cctx->str = NULL;
  3212. cctx->key_set = 1;
  3213. break;
  3214. }
  3215. #endif
  3216. AES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
  3217. &cctx->ks.ks);
  3218. CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L,
  3219. &cctx->ks, (block128_f) AES_encrypt);
  3220. cctx->str = NULL;
  3221. cctx->key_set = 1;
  3222. } while (0);
  3223. if (iv) {
  3224. memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), iv, 15 - cctx->L);
  3225. cctx->iv_set = 1;
  3226. }
  3227. return 1;
  3228. }
  3229. static int aes_ccm_tls_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  3230. const unsigned char *in, size_t len)
  3231. {
  3232. EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX,ctx);
  3233. CCM128_CONTEXT *ccm = &cctx->ccm;
  3234. /* Encrypt/decrypt must be performed in place */
  3235. if (out != in || len < (EVP_CCM_TLS_EXPLICIT_IV_LEN + (size_t)cctx->M))
  3236. return -1;
  3237. /* If encrypting set explicit IV from sequence number (start of AAD) */
  3238. if (EVP_CIPHER_CTX_encrypting(ctx))
  3239. memcpy(out, EVP_CIPHER_CTX_buf_noconst(ctx),
  3240. EVP_CCM_TLS_EXPLICIT_IV_LEN);
  3241. /* Get rest of IV from explicit IV */
  3242. memcpy(EVP_CIPHER_CTX_iv_noconst(ctx) + EVP_CCM_TLS_FIXED_IV_LEN, in,
  3243. EVP_CCM_TLS_EXPLICIT_IV_LEN);
  3244. /* Correct length value */
  3245. len -= EVP_CCM_TLS_EXPLICIT_IV_LEN + cctx->M;
  3246. if (CRYPTO_ccm128_setiv(ccm, EVP_CIPHER_CTX_iv_noconst(ctx), 15 - cctx->L,
  3247. len))
  3248. return -1;
  3249. /* Use saved AAD */
  3250. CRYPTO_ccm128_aad(ccm, EVP_CIPHER_CTX_buf_noconst(ctx), cctx->tls_aad_len);
  3251. /* Fix buffer to point to payload */
  3252. in += EVP_CCM_TLS_EXPLICIT_IV_LEN;
  3253. out += EVP_CCM_TLS_EXPLICIT_IV_LEN;
  3254. if (EVP_CIPHER_CTX_encrypting(ctx)) {
  3255. if (cctx->str ? CRYPTO_ccm128_encrypt_ccm64(ccm, in, out, len,
  3256. cctx->str) :
  3257. CRYPTO_ccm128_encrypt(ccm, in, out, len))
  3258. return -1;
  3259. if (!CRYPTO_ccm128_tag(ccm, out + len, cctx->M))
  3260. return -1;
  3261. return len + EVP_CCM_TLS_EXPLICIT_IV_LEN + cctx->M;
  3262. } else {
  3263. if (cctx->str ? !CRYPTO_ccm128_decrypt_ccm64(ccm, in, out, len,
  3264. cctx->str) :
  3265. !CRYPTO_ccm128_decrypt(ccm, in, out, len)) {
  3266. unsigned char tag[16];
  3267. if (CRYPTO_ccm128_tag(ccm, tag, cctx->M)) {
  3268. if (!CRYPTO_memcmp(tag, in + len, cctx->M))
  3269. return len;
  3270. }
  3271. }
  3272. OPENSSL_cleanse(out, len);
  3273. return -1;
  3274. }
  3275. }
  3276. static int aes_ccm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  3277. const unsigned char *in, size_t len)
  3278. {
  3279. EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX,ctx);
  3280. CCM128_CONTEXT *ccm = &cctx->ccm;
  3281. /* If not set up, return error */
  3282. if (!cctx->key_set)
  3283. return -1;
  3284. if (cctx->tls_aad_len >= 0)
  3285. return aes_ccm_tls_cipher(ctx, out, in, len);
  3286. /* EVP_*Final() doesn't return any data */
  3287. if (in == NULL && out != NULL)
  3288. return 0;
  3289. if (!cctx->iv_set)
  3290. return -1;
  3291. if (!out) {
  3292. if (!in) {
  3293. if (CRYPTO_ccm128_setiv(ccm, EVP_CIPHER_CTX_iv_noconst(ctx),
  3294. 15 - cctx->L, len))
  3295. return -1;
  3296. cctx->len_set = 1;
  3297. return len;
  3298. }
  3299. /* If have AAD need message length */
  3300. if (!cctx->len_set && len)
  3301. return -1;
  3302. CRYPTO_ccm128_aad(ccm, in, len);
  3303. return len;
  3304. }
  3305. /* The tag must be set before actually decrypting data */
  3306. if (!EVP_CIPHER_CTX_encrypting(ctx) && !cctx->tag_set)
  3307. return -1;
  3308. /* If not set length yet do it */
  3309. if (!cctx->len_set) {
  3310. if (CRYPTO_ccm128_setiv(ccm, EVP_CIPHER_CTX_iv_noconst(ctx),
  3311. 15 - cctx->L, len))
  3312. return -1;
  3313. cctx->len_set = 1;
  3314. }
  3315. if (EVP_CIPHER_CTX_encrypting(ctx)) {
  3316. if (cctx->str ? CRYPTO_ccm128_encrypt_ccm64(ccm, in, out, len,
  3317. cctx->str) :
  3318. CRYPTO_ccm128_encrypt(ccm, in, out, len))
  3319. return -1;
  3320. cctx->tag_set = 1;
  3321. return len;
  3322. } else {
  3323. int rv = -1;
  3324. if (cctx->str ? !CRYPTO_ccm128_decrypt_ccm64(ccm, in, out, len,
  3325. cctx->str) :
  3326. !CRYPTO_ccm128_decrypt(ccm, in, out, len)) {
  3327. unsigned char tag[16];
  3328. if (CRYPTO_ccm128_tag(ccm, tag, cctx->M)) {
  3329. if (!CRYPTO_memcmp(tag, EVP_CIPHER_CTX_buf_noconst(ctx),
  3330. cctx->M))
  3331. rv = len;
  3332. }
  3333. }
  3334. if (rv == -1)
  3335. OPENSSL_cleanse(out, len);
  3336. cctx->iv_set = 0;
  3337. cctx->tag_set = 0;
  3338. cctx->len_set = 0;
  3339. return rv;
  3340. }
  3341. }
  3342. #define aes_ccm_cleanup NULL
  3343. BLOCK_CIPHER_custom(NID_aes, 128, 1, 12, ccm, CCM,
  3344. EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS)
  3345. BLOCK_CIPHER_custom(NID_aes, 192, 1, 12, ccm, CCM,
  3346. EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS)
  3347. BLOCK_CIPHER_custom(NID_aes, 256, 1, 12, ccm, CCM,
  3348. EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS)
  3349. typedef struct {
  3350. union {
  3351. double align;
  3352. AES_KEY ks;
  3353. } ks;
  3354. /* Indicates if IV has been set */
  3355. unsigned char *iv;
  3356. } EVP_AES_WRAP_CTX;
  3357. static int aes_wrap_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
  3358. const unsigned char *iv, int enc)
  3359. {
  3360. EVP_AES_WRAP_CTX *wctx = EVP_C_DATA(EVP_AES_WRAP_CTX,ctx);
  3361. if (!iv && !key)
  3362. return 1;
  3363. if (key) {
  3364. if (EVP_CIPHER_CTX_encrypting(ctx))
  3365. AES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
  3366. &wctx->ks.ks);
  3367. else
  3368. AES_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
  3369. &wctx->ks.ks);
  3370. if (!iv)
  3371. wctx->iv = NULL;
  3372. }
  3373. if (iv) {
  3374. memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), iv, EVP_CIPHER_CTX_iv_length(ctx));
  3375. wctx->iv = EVP_CIPHER_CTX_iv_noconst(ctx);
  3376. }
  3377. return 1;
  3378. }
  3379. static int aes_wrap_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  3380. const unsigned char *in, size_t inlen)
  3381. {
  3382. EVP_AES_WRAP_CTX *wctx = EVP_C_DATA(EVP_AES_WRAP_CTX,ctx);
  3383. size_t rv;
  3384. /* AES wrap with padding has IV length of 4, without padding 8 */
  3385. int pad = EVP_CIPHER_CTX_iv_length(ctx) == 4;
  3386. /* No final operation so always return zero length */
  3387. if (!in)
  3388. return 0;
  3389. /* Input length must always be non-zero */
  3390. if (!inlen)
  3391. return -1;
  3392. /* If decrypting need at least 16 bytes and multiple of 8 */
  3393. if (!EVP_CIPHER_CTX_encrypting(ctx) && (inlen < 16 || inlen & 0x7))
  3394. return -1;
  3395. /* If not padding input must be multiple of 8 */
  3396. if (!pad && inlen & 0x7)
  3397. return -1;
  3398. if (is_partially_overlapping(out, in, inlen)) {
  3399. EVPerr(EVP_F_AES_WRAP_CIPHER, EVP_R_PARTIALLY_OVERLAPPING);
  3400. return 0;
  3401. }
  3402. if (!out) {
  3403. if (EVP_CIPHER_CTX_encrypting(ctx)) {
  3404. /* If padding round up to multiple of 8 */
  3405. if (pad)
  3406. inlen = (inlen + 7) / 8 * 8;
  3407. /* 8 byte prefix */
  3408. return inlen + 8;
  3409. } else {
  3410. /*
  3411. * If not padding output will be exactly 8 bytes smaller than
  3412. * input. If padding it will be at least 8 bytes smaller but we
  3413. * don't know how much.
  3414. */
  3415. return inlen - 8;
  3416. }
  3417. }
  3418. if (pad) {
  3419. if (EVP_CIPHER_CTX_encrypting(ctx))
  3420. rv = CRYPTO_128_wrap_pad(&wctx->ks.ks, wctx->iv,
  3421. out, in, inlen,
  3422. (block128_f) AES_encrypt);
  3423. else
  3424. rv = CRYPTO_128_unwrap_pad(&wctx->ks.ks, wctx->iv,
  3425. out, in, inlen,
  3426. (block128_f) AES_decrypt);
  3427. } else {
  3428. if (EVP_CIPHER_CTX_encrypting(ctx))
  3429. rv = CRYPTO_128_wrap(&wctx->ks.ks, wctx->iv,
  3430. out, in, inlen, (block128_f) AES_encrypt);
  3431. else
  3432. rv = CRYPTO_128_unwrap(&wctx->ks.ks, wctx->iv,
  3433. out, in, inlen, (block128_f) AES_decrypt);
  3434. }
  3435. return rv ? (int)rv : -1;
  3436. }
  3437. #define WRAP_FLAGS (EVP_CIPH_WRAP_MODE \
  3438. | EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER \
  3439. | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_FLAG_DEFAULT_ASN1)
  3440. static const EVP_CIPHER aes_128_wrap = {
  3441. NID_id_aes128_wrap,
  3442. 8, 16, 8, WRAP_FLAGS,
  3443. aes_wrap_init_key, aes_wrap_cipher,
  3444. NULL,
  3445. sizeof(EVP_AES_WRAP_CTX),
  3446. NULL, NULL, NULL, NULL
  3447. };
  3448. const EVP_CIPHER *EVP_aes_128_wrap(void)
  3449. {
  3450. return &aes_128_wrap;
  3451. }
  3452. static const EVP_CIPHER aes_192_wrap = {
  3453. NID_id_aes192_wrap,
  3454. 8, 24, 8, WRAP_FLAGS,
  3455. aes_wrap_init_key, aes_wrap_cipher,
  3456. NULL,
  3457. sizeof(EVP_AES_WRAP_CTX),
  3458. NULL, NULL, NULL, NULL
  3459. };
  3460. const EVP_CIPHER *EVP_aes_192_wrap(void)
  3461. {
  3462. return &aes_192_wrap;
  3463. }
  3464. static const EVP_CIPHER aes_256_wrap = {
  3465. NID_id_aes256_wrap,
  3466. 8, 32, 8, WRAP_FLAGS,
  3467. aes_wrap_init_key, aes_wrap_cipher,
  3468. NULL,
  3469. sizeof(EVP_AES_WRAP_CTX),
  3470. NULL, NULL, NULL, NULL
  3471. };
  3472. const EVP_CIPHER *EVP_aes_256_wrap(void)
  3473. {
  3474. return &aes_256_wrap;
  3475. }
  3476. static const EVP_CIPHER aes_128_wrap_pad = {
  3477. NID_id_aes128_wrap_pad,
  3478. 8, 16, 4, WRAP_FLAGS,
  3479. aes_wrap_init_key, aes_wrap_cipher,
  3480. NULL,
  3481. sizeof(EVP_AES_WRAP_CTX),
  3482. NULL, NULL, NULL, NULL
  3483. };
  3484. const EVP_CIPHER *EVP_aes_128_wrap_pad(void)
  3485. {
  3486. return &aes_128_wrap_pad;
  3487. }
  3488. static const EVP_CIPHER aes_192_wrap_pad = {
  3489. NID_id_aes192_wrap_pad,
  3490. 8, 24, 4, WRAP_FLAGS,
  3491. aes_wrap_init_key, aes_wrap_cipher,
  3492. NULL,
  3493. sizeof(EVP_AES_WRAP_CTX),
  3494. NULL, NULL, NULL, NULL
  3495. };
  3496. const EVP_CIPHER *EVP_aes_192_wrap_pad(void)
  3497. {
  3498. return &aes_192_wrap_pad;
  3499. }
  3500. static const EVP_CIPHER aes_256_wrap_pad = {
  3501. NID_id_aes256_wrap_pad,
  3502. 8, 32, 4, WRAP_FLAGS,
  3503. aes_wrap_init_key, aes_wrap_cipher,
  3504. NULL,
  3505. sizeof(EVP_AES_WRAP_CTX),
  3506. NULL, NULL, NULL, NULL
  3507. };
  3508. const EVP_CIPHER *EVP_aes_256_wrap_pad(void)
  3509. {
  3510. return &aes_256_wrap_pad;
  3511. }
  3512. #ifndef OPENSSL_NO_OCB
  3513. static int aes_ocb_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr)
  3514. {
  3515. EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX,c);
  3516. EVP_CIPHER_CTX *newc;
  3517. EVP_AES_OCB_CTX *new_octx;
  3518. switch (type) {
  3519. case EVP_CTRL_INIT:
  3520. octx->key_set = 0;
  3521. octx->iv_set = 0;
  3522. octx->ivlen = EVP_CIPHER_iv_length(c->cipher);
  3523. octx->iv = EVP_CIPHER_CTX_iv_noconst(c);
  3524. octx->taglen = 16;
  3525. octx->data_buf_len = 0;
  3526. octx->aad_buf_len = 0;
  3527. return 1;
  3528. case EVP_CTRL_GET_IVLEN:
  3529. *(int *)ptr = octx->ivlen;
  3530. return 1;
  3531. case EVP_CTRL_AEAD_SET_IVLEN:
  3532. /* IV len must be 1 to 15 */
  3533. if (arg <= 0 || arg > 15)
  3534. return 0;
  3535. octx->ivlen = arg;
  3536. return 1;
  3537. case EVP_CTRL_AEAD_SET_TAG:
  3538. if (!ptr) {
  3539. /* Tag len must be 0 to 16 */
  3540. if (arg < 0 || arg > 16)
  3541. return 0;
  3542. octx->taglen = arg;
  3543. return 1;
  3544. }
  3545. if (arg != octx->taglen || EVP_CIPHER_CTX_encrypting(c))
  3546. return 0;
  3547. memcpy(octx->tag, ptr, arg);
  3548. return 1;
  3549. case EVP_CTRL_AEAD_GET_TAG:
  3550. if (arg != octx->taglen || !EVP_CIPHER_CTX_encrypting(c))
  3551. return 0;
  3552. memcpy(ptr, octx->tag, arg);
  3553. return 1;
  3554. case EVP_CTRL_COPY:
  3555. newc = (EVP_CIPHER_CTX *)ptr;
  3556. new_octx = EVP_C_DATA(EVP_AES_OCB_CTX,newc);
  3557. return CRYPTO_ocb128_copy_ctx(&new_octx->ocb, &octx->ocb,
  3558. &new_octx->ksenc.ks,
  3559. &new_octx->ksdec.ks);
  3560. default:
  3561. return -1;
  3562. }
  3563. }
  3564. # ifdef HWAES_CAPABLE
  3565. # ifdef HWAES_ocb_encrypt
  3566. void HWAES_ocb_encrypt(const unsigned char *in, unsigned char *out,
  3567. size_t blocks, const void *key,
  3568. size_t start_block_num,
  3569. unsigned char offset_i[16],
  3570. const unsigned char L_[][16],
  3571. unsigned char checksum[16]);
  3572. # else
  3573. # define HWAES_ocb_encrypt ((ocb128_f)NULL)
  3574. # endif
  3575. # ifdef HWAES_ocb_decrypt
  3576. void HWAES_ocb_decrypt(const unsigned char *in, unsigned char *out,
  3577. size_t blocks, const void *key,
  3578. size_t start_block_num,
  3579. unsigned char offset_i[16],
  3580. const unsigned char L_[][16],
  3581. unsigned char checksum[16]);
  3582. # else
  3583. # define HWAES_ocb_decrypt ((ocb128_f)NULL)
  3584. # endif
  3585. # endif
  3586. static int aes_ocb_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
  3587. const unsigned char *iv, int enc)
  3588. {
  3589. EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX,ctx);
  3590. if (!iv && !key)
  3591. return 1;
  3592. if (key) {
  3593. do {
  3594. /*
  3595. * We set both the encrypt and decrypt key here because decrypt
  3596. * needs both. We could possibly optimise to remove setting the
  3597. * decrypt for an encryption operation.
  3598. */
  3599. # ifdef HWAES_CAPABLE
  3600. if (HWAES_CAPABLE) {
  3601. HWAES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
  3602. &octx->ksenc.ks);
  3603. HWAES_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
  3604. &octx->ksdec.ks);
  3605. if (!CRYPTO_ocb128_init(&octx->ocb,
  3606. &octx->ksenc.ks, &octx->ksdec.ks,
  3607. (block128_f) HWAES_encrypt,
  3608. (block128_f) HWAES_decrypt,
  3609. enc ? HWAES_ocb_encrypt
  3610. : HWAES_ocb_decrypt))
  3611. return 0;
  3612. break;
  3613. }
  3614. # endif
  3615. # ifdef VPAES_CAPABLE
  3616. if (VPAES_CAPABLE) {
  3617. vpaes_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
  3618. &octx->ksenc.ks);
  3619. vpaes_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
  3620. &octx->ksdec.ks);
  3621. if (!CRYPTO_ocb128_init(&octx->ocb,
  3622. &octx->ksenc.ks, &octx->ksdec.ks,
  3623. (block128_f) vpaes_encrypt,
  3624. (block128_f) vpaes_decrypt,
  3625. NULL))
  3626. return 0;
  3627. break;
  3628. }
  3629. # endif
  3630. AES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
  3631. &octx->ksenc.ks);
  3632. AES_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
  3633. &octx->ksdec.ks);
  3634. if (!CRYPTO_ocb128_init(&octx->ocb,
  3635. &octx->ksenc.ks, &octx->ksdec.ks,
  3636. (block128_f) AES_encrypt,
  3637. (block128_f) AES_decrypt,
  3638. NULL))
  3639. return 0;
  3640. }
  3641. while (0);
  3642. /*
  3643. * If we have an iv we can set it directly, otherwise use saved IV.
  3644. */
  3645. if (iv == NULL && octx->iv_set)
  3646. iv = octx->iv;
  3647. if (iv) {
  3648. if (CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen)
  3649. != 1)
  3650. return 0;
  3651. octx->iv_set = 1;
  3652. }
  3653. octx->key_set = 1;
  3654. } else {
  3655. /* If key set use IV, otherwise copy */
  3656. if (octx->key_set)
  3657. CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen);
  3658. else
  3659. memcpy(octx->iv, iv, octx->ivlen);
  3660. octx->iv_set = 1;
  3661. }
  3662. return 1;
  3663. }
  3664. static int aes_ocb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  3665. const unsigned char *in, size_t len)
  3666. {
  3667. unsigned char *buf;
  3668. int *buf_len;
  3669. int written_len = 0;
  3670. size_t trailing_len;
  3671. EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX,ctx);
  3672. /* If IV or Key not set then return error */
  3673. if (!octx->iv_set)
  3674. return -1;
  3675. if (!octx->key_set)
  3676. return -1;
  3677. if (in != NULL) {
  3678. /*
  3679. * Need to ensure we are only passing full blocks to low level OCB
  3680. * routines. We do it here rather than in EVP_EncryptUpdate/
  3681. * EVP_DecryptUpdate because we need to pass full blocks of AAD too
  3682. * and those routines don't support that
  3683. */
  3684. /* Are we dealing with AAD or normal data here? */
  3685. if (out == NULL) {
  3686. buf = octx->aad_buf;
  3687. buf_len = &(octx->aad_buf_len);
  3688. } else {
  3689. buf = octx->data_buf;
  3690. buf_len = &(octx->data_buf_len);
  3691. if (is_partially_overlapping(out + *buf_len, in, len)) {
  3692. EVPerr(EVP_F_AES_OCB_CIPHER, EVP_R_PARTIALLY_OVERLAPPING);
  3693. return 0;
  3694. }
  3695. }
  3696. /*
  3697. * If we've got a partially filled buffer from a previous call then
  3698. * use that data first
  3699. */
  3700. if (*buf_len > 0) {
  3701. unsigned int remaining;
  3702. remaining = AES_BLOCK_SIZE - (*buf_len);
  3703. if (remaining > len) {
  3704. memcpy(buf + (*buf_len), in, len);
  3705. *(buf_len) += len;
  3706. return 0;
  3707. }
  3708. memcpy(buf + (*buf_len), in, remaining);
  3709. /*
  3710. * If we get here we've filled the buffer, so process it
  3711. */
  3712. len -= remaining;
  3713. in += remaining;
  3714. if (out == NULL) {
  3715. if (!CRYPTO_ocb128_aad(&octx->ocb, buf, AES_BLOCK_SIZE))
  3716. return -1;
  3717. } else if (EVP_CIPHER_CTX_encrypting(ctx)) {
  3718. if (!CRYPTO_ocb128_encrypt(&octx->ocb, buf, out,
  3719. AES_BLOCK_SIZE))
  3720. return -1;
  3721. } else {
  3722. if (!CRYPTO_ocb128_decrypt(&octx->ocb, buf, out,
  3723. AES_BLOCK_SIZE))
  3724. return -1;
  3725. }
  3726. written_len = AES_BLOCK_SIZE;
  3727. *buf_len = 0;
  3728. if (out != NULL)
  3729. out += AES_BLOCK_SIZE;
  3730. }
  3731. /* Do we have a partial block to handle at the end? */
  3732. trailing_len = len % AES_BLOCK_SIZE;
  3733. /*
  3734. * If we've got some full blocks to handle, then process these first
  3735. */
  3736. if (len != trailing_len) {
  3737. if (out == NULL) {
  3738. if (!CRYPTO_ocb128_aad(&octx->ocb, in, len - trailing_len))
  3739. return -1;
  3740. } else if (EVP_CIPHER_CTX_encrypting(ctx)) {
  3741. if (!CRYPTO_ocb128_encrypt
  3742. (&octx->ocb, in, out, len - trailing_len))
  3743. return -1;
  3744. } else {
  3745. if (!CRYPTO_ocb128_decrypt
  3746. (&octx->ocb, in, out, len - trailing_len))
  3747. return -1;
  3748. }
  3749. written_len += len - trailing_len;
  3750. in += len - trailing_len;
  3751. }
  3752. /* Handle any trailing partial block */
  3753. if (trailing_len > 0) {
  3754. memcpy(buf, in, trailing_len);
  3755. *buf_len = trailing_len;
  3756. }
  3757. return written_len;
  3758. } else {
  3759. /*
  3760. * First of all empty the buffer of any partial block that we might
  3761. * have been provided - both for data and AAD
  3762. */
  3763. if (octx->data_buf_len > 0) {
  3764. if (EVP_CIPHER_CTX_encrypting(ctx)) {
  3765. if (!CRYPTO_ocb128_encrypt(&octx->ocb, octx->data_buf, out,
  3766. octx->data_buf_len))
  3767. return -1;
  3768. } else {
  3769. if (!CRYPTO_ocb128_decrypt(&octx->ocb, octx->data_buf, out,
  3770. octx->data_buf_len))
  3771. return -1;
  3772. }
  3773. written_len = octx->data_buf_len;
  3774. octx->data_buf_len = 0;
  3775. }
  3776. if (octx->aad_buf_len > 0) {
  3777. if (!CRYPTO_ocb128_aad
  3778. (&octx->ocb, octx->aad_buf, octx->aad_buf_len))
  3779. return -1;
  3780. octx->aad_buf_len = 0;
  3781. }
  3782. /* If decrypting then verify */
  3783. if (!EVP_CIPHER_CTX_encrypting(ctx)) {
  3784. if (octx->taglen < 0)
  3785. return -1;
  3786. if (CRYPTO_ocb128_finish(&octx->ocb,
  3787. octx->tag, octx->taglen) != 0)
  3788. return -1;
  3789. octx->iv_set = 0;
  3790. return written_len;
  3791. }
  3792. /* If encrypting then just get the tag */
  3793. if (CRYPTO_ocb128_tag(&octx->ocb, octx->tag, 16) != 1)
  3794. return -1;
  3795. /* Don't reuse the IV */
  3796. octx->iv_set = 0;
  3797. return written_len;
  3798. }
  3799. }
  3800. static int aes_ocb_cleanup(EVP_CIPHER_CTX *c)
  3801. {
  3802. EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX,c);
  3803. CRYPTO_ocb128_cleanup(&octx->ocb);
  3804. return 1;
  3805. }
  3806. BLOCK_CIPHER_custom(NID_aes, 128, 16, 12, ocb, OCB,
  3807. EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS)
  3808. BLOCK_CIPHER_custom(NID_aes, 192, 16, 12, ocb, OCB,
  3809. EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS)
  3810. BLOCK_CIPHER_custom(NID_aes, 256, 16, 12, ocb, OCB,
  3811. EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS)
  3812. #endif /* OPENSSL_NO_OCB */