rsa_oaep.c 6.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235
  1. /* crypto/rsa/rsa_oaep.c */
  2. /* Written by Ulf Moeller. This software is distributed on an "AS IS"
  3. basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. */
  4. /* EME-OAEP as defined in RFC 2437 (PKCS #1 v2.0) */
  5. /* See Victor Shoup, "OAEP reconsidered," Nov. 2000,
  6. * <URL: http://www.shoup.net/papers/oaep.ps.Z>
  7. * for problems with the security proof for the
  8. * original OAEP scheme, which EME-OAEP is based on.
  9. *
  10. * A new proof can be found in E. Fujisaki, T. Okamoto,
  11. * D. Pointcheval, J. Stern, "RSA-OEAP is Still Alive!",
  12. * Dec. 2000, <URL: http://eprint.iacr.org/2000/061/>.
  13. * The new proof has stronger requirements for the
  14. * underlying permutation: "partial-one-wayness" instead
  15. * of one-wayness. For the RSA function, this is
  16. * an equivalent notion.
  17. */
  18. #if !defined(OPENSSL_NO_SHA) && !defined(OPENSSL_NO_SHA1)
  19. #include <stdio.h>
  20. #include "cryptlib.h"
  21. #include <openssl/bn.h>
  22. #include <openssl/rsa.h>
  23. #include <openssl/evp.h>
  24. #include <openssl/rand.h>
  25. #include <openssl/sha.h>
  26. static int MGF1(unsigned char *mask, long len,
  27. const unsigned char *seed, long seedlen);
  28. int RSA_padding_add_PKCS1_OAEP(unsigned char *to, int tlen,
  29. const unsigned char *from, int flen,
  30. const unsigned char *param, int plen)
  31. {
  32. int i, emlen = tlen - 1;
  33. unsigned char *db, *seed;
  34. unsigned char *dbmask, seedmask[SHA_DIGEST_LENGTH];
  35. if (flen > emlen - 2 * SHA_DIGEST_LENGTH - 1)
  36. {
  37. RSAerr(RSA_F_RSA_PADDING_ADD_PKCS1_OAEP,
  38. RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE);
  39. return 0;
  40. }
  41. if (emlen < 2 * SHA_DIGEST_LENGTH + 1)
  42. {
  43. RSAerr(RSA_F_RSA_PADDING_ADD_PKCS1_OAEP, RSA_R_KEY_SIZE_TOO_SMALL);
  44. return 0;
  45. }
  46. to[0] = 0;
  47. seed = to + 1;
  48. db = to + SHA_DIGEST_LENGTH + 1;
  49. if (!EVP_Digest((void *)param, plen, db, NULL, EVP_sha1(), NULL))
  50. return 0;
  51. memset(db + SHA_DIGEST_LENGTH, 0,
  52. emlen - flen - 2 * SHA_DIGEST_LENGTH - 1);
  53. db[emlen - flen - SHA_DIGEST_LENGTH - 1] = 0x01;
  54. memcpy(db + emlen - flen - SHA_DIGEST_LENGTH, from, (unsigned int) flen);
  55. if (RAND_bytes(seed, SHA_DIGEST_LENGTH) <= 0)
  56. return 0;
  57. #ifdef PKCS_TESTVECT
  58. memcpy(seed,
  59. "\xaa\xfd\x12\xf6\x59\xca\xe6\x34\x89\xb4\x79\xe5\x07\x6d\xde\xc2\xf0\x6c\xb5\x8f",
  60. 20);
  61. #endif
  62. dbmask = OPENSSL_malloc(emlen - SHA_DIGEST_LENGTH);
  63. if (dbmask == NULL)
  64. {
  65. RSAerr(RSA_F_RSA_PADDING_ADD_PKCS1_OAEP, ERR_R_MALLOC_FAILURE);
  66. return 0;
  67. }
  68. if (MGF1(dbmask, emlen - SHA_DIGEST_LENGTH, seed, SHA_DIGEST_LENGTH) < 0)
  69. return 0;
  70. for (i = 0; i < emlen - SHA_DIGEST_LENGTH; i++)
  71. db[i] ^= dbmask[i];
  72. if (MGF1(seedmask, SHA_DIGEST_LENGTH, db, emlen - SHA_DIGEST_LENGTH) < 0)
  73. return 0;
  74. for (i = 0; i < SHA_DIGEST_LENGTH; i++)
  75. seed[i] ^= seedmask[i];
  76. OPENSSL_free(dbmask);
  77. return 1;
  78. }
  79. int RSA_padding_check_PKCS1_OAEP(unsigned char *to, int tlen,
  80. const unsigned char *from, int flen, int num,
  81. const unsigned char *param, int plen)
  82. {
  83. int i, dblen, mlen = -1;
  84. const unsigned char *maskeddb;
  85. int lzero;
  86. unsigned char *db = NULL, seed[SHA_DIGEST_LENGTH], phash[SHA_DIGEST_LENGTH];
  87. unsigned char *padded_from;
  88. int bad = 0;
  89. if (--num < 2 * SHA_DIGEST_LENGTH + 1)
  90. /* 'num' is the length of the modulus, i.e. does not depend on the
  91. * particular ciphertext. */
  92. goto decoding_err;
  93. lzero = num - flen;
  94. if (lzero < 0)
  95. {
  96. /* signalling this error immediately after detection might allow
  97. * for side-channel attacks (e.g. timing if 'plen' is huge
  98. * -- cf. James H. Manger, "A Chosen Ciphertext Attack on RSA Optimal
  99. * Asymmetric Encryption Padding (OAEP) [...]", CRYPTO 2001),
  100. * so we use a 'bad' flag */
  101. bad = 1;
  102. lzero = 0;
  103. flen = num; /* don't overflow the memcpy to padded_from */
  104. }
  105. dblen = num - SHA_DIGEST_LENGTH;
  106. db = OPENSSL_malloc(dblen + num);
  107. if (db == NULL)
  108. {
  109. RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_OAEP, ERR_R_MALLOC_FAILURE);
  110. return -1;
  111. }
  112. /* Always do this zero-padding copy (even when lzero == 0)
  113. * to avoid leaking timing info about the value of lzero. */
  114. padded_from = db + dblen;
  115. memset(padded_from, 0, lzero);
  116. memcpy(padded_from + lzero, from, flen);
  117. maskeddb = padded_from + SHA_DIGEST_LENGTH;
  118. if (MGF1(seed, SHA_DIGEST_LENGTH, maskeddb, dblen))
  119. return -1;
  120. for (i = 0; i < SHA_DIGEST_LENGTH; i++)
  121. seed[i] ^= padded_from[i];
  122. if (MGF1(db, dblen, seed, SHA_DIGEST_LENGTH))
  123. return -1;
  124. for (i = 0; i < dblen; i++)
  125. db[i] ^= maskeddb[i];
  126. if (!EVP_Digest((void *)param, plen, phash, NULL, EVP_sha1(), NULL))
  127. return -1;
  128. if (CRYPTO_memcmp(db, phash, SHA_DIGEST_LENGTH) != 0 || bad)
  129. goto decoding_err;
  130. else
  131. {
  132. for (i = SHA_DIGEST_LENGTH; i < dblen; i++)
  133. if (db[i] != 0x00)
  134. break;
  135. if (i == dblen || db[i] != 0x01)
  136. goto decoding_err;
  137. else
  138. {
  139. /* everything looks OK */
  140. mlen = dblen - ++i;
  141. if (tlen < mlen)
  142. {
  143. RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_OAEP, RSA_R_DATA_TOO_LARGE);
  144. mlen = -1;
  145. }
  146. else
  147. memcpy(to, db + i, mlen);
  148. }
  149. }
  150. OPENSSL_free(db);
  151. return mlen;
  152. decoding_err:
  153. /* to avoid chosen ciphertext attacks, the error message should not reveal
  154. * which kind of decoding error happened */
  155. RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_OAEP, RSA_R_OAEP_DECODING_ERROR);
  156. if (db != NULL) OPENSSL_free(db);
  157. return -1;
  158. }
  159. int PKCS1_MGF1(unsigned char *mask, long len,
  160. const unsigned char *seed, long seedlen, const EVP_MD *dgst)
  161. {
  162. long i, outlen = 0;
  163. unsigned char cnt[4];
  164. EVP_MD_CTX c;
  165. unsigned char md[EVP_MAX_MD_SIZE];
  166. int mdlen;
  167. int rv = -1;
  168. EVP_MD_CTX_init(&c);
  169. mdlen = EVP_MD_size(dgst);
  170. if (mdlen < 0)
  171. goto err;
  172. for (i = 0; outlen < len; i++)
  173. {
  174. cnt[0] = (unsigned char)((i >> 24) & 255);
  175. cnt[1] = (unsigned char)((i >> 16) & 255);
  176. cnt[2] = (unsigned char)((i >> 8)) & 255;
  177. cnt[3] = (unsigned char)(i & 255);
  178. if (!EVP_DigestInit_ex(&c,dgst, NULL)
  179. || !EVP_DigestUpdate(&c, seed, seedlen)
  180. || !EVP_DigestUpdate(&c, cnt, 4))
  181. goto err;
  182. if (outlen + mdlen <= len)
  183. {
  184. if (!EVP_DigestFinal_ex(&c, mask + outlen, NULL))
  185. goto err;
  186. outlen += mdlen;
  187. }
  188. else
  189. {
  190. if (!EVP_DigestFinal_ex(&c, md, NULL))
  191. goto err;
  192. memcpy(mask + outlen, md, len - outlen);
  193. outlen = len;
  194. }
  195. }
  196. rv = 0;
  197. err:
  198. EVP_MD_CTX_cleanup(&c);
  199. return rv;
  200. }
  201. static int MGF1(unsigned char *mask, long len, const unsigned char *seed,
  202. long seedlen)
  203. {
  204. return PKCS1_MGF1(mask, len, seed, seedlen, EVP_sha1());
  205. }
  206. #endif