sshdss.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490
  1. /*
  2. * Digital Signature Standard implementation for PuTTY.
  3. */
  4. #include <stdio.h>
  5. #include <stdlib.h>
  6. #include <assert.h>
  7. #include "ssh.h"
  8. #include "mpint.h"
  9. #include "misc.h"
  10. static void dss_freekey(ssh_key *key); /* forward reference */
  11. static ssh_key *dss_new_pub(const ssh_keyalg *self, ptrlen data)
  12. {
  13. BinarySource src[1];
  14. struct dss_key *dss;
  15. BinarySource_BARE_INIT_PL(src, data);
  16. if (!ptrlen_eq_string(get_string(src), "ssh-dss"))
  17. return NULL;
  18. dss = snew(struct dss_key);
  19. dss->sshk.vt = &ssh_dss;
  20. dss->p = get_mp_ssh2(src);
  21. dss->q = get_mp_ssh2(src);
  22. dss->g = get_mp_ssh2(src);
  23. dss->y = get_mp_ssh2(src);
  24. dss->x = NULL;
  25. if (get_err(src) ||
  26. mp_eq_integer(dss->p, 0) || mp_eq_integer(dss->q, 0)) {
  27. /* Invalid key. */
  28. dss_freekey(&dss->sshk);
  29. return NULL;
  30. }
  31. return &dss->sshk;
  32. }
  33. static void dss_freekey(ssh_key *key)
  34. {
  35. struct dss_key *dss = container_of(key, struct dss_key, sshk);
  36. if (dss->p)
  37. mp_free(dss->p);
  38. if (dss->q)
  39. mp_free(dss->q);
  40. if (dss->g)
  41. mp_free(dss->g);
  42. if (dss->y)
  43. mp_free(dss->y);
  44. if (dss->x)
  45. mp_free(dss->x);
  46. sfree(dss);
  47. }
  48. static void append_hex_to_strbuf(strbuf *sb, mp_int *x)
  49. {
  50. if (sb->len > 0)
  51. put_byte(sb, ',');
  52. put_data(sb, "0x", 2);
  53. char *hex = mp_get_hex(x);
  54. size_t hexlen = strlen(hex);
  55. put_data(sb, hex, hexlen);
  56. smemclr(hex, hexlen);
  57. sfree(hex);
  58. }
  59. static char *dss_cache_str(ssh_key *key)
  60. {
  61. struct dss_key *dss = container_of(key, struct dss_key, sshk);
  62. strbuf *sb = strbuf_new();
  63. if (!dss->p) {
  64. strbuf_free(sb);
  65. return NULL;
  66. }
  67. append_hex_to_strbuf(sb, dss->p);
  68. append_hex_to_strbuf(sb, dss->q);
  69. append_hex_to_strbuf(sb, dss->g);
  70. append_hex_to_strbuf(sb, dss->y);
  71. return strbuf_to_str(sb);
  72. }
  73. static char *dss_invalid(ssh_key *key, unsigned flags)
  74. {
  75. /* No validity criterion will stop us from using a DSA key at all */
  76. return NULL;
  77. }
  78. static bool dss_verify(ssh_key *key, ptrlen sig, ptrlen data)
  79. {
  80. struct dss_key *dss = container_of(key, struct dss_key, sshk);
  81. BinarySource src[1];
  82. unsigned char hash[20];
  83. bool toret;
  84. if (!dss->p)
  85. return false;
  86. BinarySource_BARE_INIT_PL(src, sig);
  87. /*
  88. * Commercial SSH (2.0.13) and OpenSSH disagree over the format
  89. * of a DSA signature. OpenSSH is in line with RFC 4253:
  90. * it uses a string "ssh-dss", followed by a 40-byte string
  91. * containing two 160-bit integers end-to-end. Commercial SSH
  92. * can't be bothered with the header bit, and considers a DSA
  93. * signature blob to be _just_ the 40-byte string containing
  94. * the two 160-bit integers. We tell them apart by measuring
  95. * the length: length 40 means the commercial-SSH bug, anything
  96. * else is assumed to be RFC-compliant.
  97. */
  98. if (sig.len != 40) { /* bug not present; read admin fields */
  99. ptrlen type = get_string(src);
  100. sig = get_string(src);
  101. if (get_err(src) || !ptrlen_eq_string(type, "ssh-dss") ||
  102. sig.len != 40)
  103. return false;
  104. }
  105. /* Now we're sitting on a 40-byte string for sure. */
  106. mp_int *r = mp_from_bytes_be(make_ptrlen(sig.ptr, 20));
  107. mp_int *s = mp_from_bytes_be(make_ptrlen((const char *)sig.ptr + 20, 20));
  108. if (!r || !s) {
  109. if (r)
  110. mp_free(r);
  111. if (s)
  112. mp_free(s);
  113. return false;
  114. }
  115. /* Basic sanity checks: 0 < r,s < q */
  116. unsigned invalid = 0;
  117. invalid |= mp_eq_integer(r, 0);
  118. invalid |= mp_eq_integer(s, 0);
  119. invalid |= mp_cmp_hs(r, dss->q);
  120. invalid |= mp_cmp_hs(s, dss->q);
  121. if (invalid) {
  122. mp_free(r);
  123. mp_free(s);
  124. return false;
  125. }
  126. /*
  127. * Step 1. w <- s^-1 mod q.
  128. */
  129. mp_int *w = mp_invert(s, dss->q);
  130. if (!w) {
  131. mp_free(r);
  132. mp_free(s);
  133. return false;
  134. }
  135. /*
  136. * Step 2. u1 <- SHA(message) * w mod q.
  137. */
  138. hash_simple(&ssh_sha1, data, hash);
  139. mp_int *sha = mp_from_bytes_be(make_ptrlen(hash, 20));
  140. mp_int *u1 = mp_modmul(sha, w, dss->q);
  141. /*
  142. * Step 3. u2 <- r * w mod q.
  143. */
  144. mp_int *u2 = mp_modmul(r, w, dss->q);
  145. /*
  146. * Step 4. v <- (g^u1 * y^u2 mod p) mod q.
  147. */
  148. mp_int *gu1p = mp_modpow(dss->g, u1, dss->p);
  149. mp_int *yu2p = mp_modpow(dss->y, u2, dss->p);
  150. mp_int *gu1yu2p = mp_modmul(gu1p, yu2p, dss->p);
  151. mp_int *v = mp_mod(gu1yu2p, dss->q);
  152. /*
  153. * Step 5. v should now be equal to r.
  154. */
  155. toret = mp_cmp_eq(v, r);
  156. mp_free(w);
  157. mp_free(sha);
  158. mp_free(u1);
  159. mp_free(u2);
  160. mp_free(gu1p);
  161. mp_free(yu2p);
  162. mp_free(gu1yu2p);
  163. mp_free(v);
  164. mp_free(r);
  165. mp_free(s);
  166. return toret;
  167. }
  168. static void dss_public_blob(ssh_key *key, BinarySink *bs)
  169. {
  170. struct dss_key *dss = container_of(key, struct dss_key, sshk);
  171. put_stringz(bs, "ssh-dss");
  172. put_mp_ssh2(bs, dss->p);
  173. put_mp_ssh2(bs, dss->q);
  174. put_mp_ssh2(bs, dss->g);
  175. put_mp_ssh2(bs, dss->y);
  176. }
  177. static void dss_private_blob(ssh_key *key, BinarySink *bs)
  178. {
  179. struct dss_key *dss = container_of(key, struct dss_key, sshk);
  180. put_mp_ssh2(bs, dss->x);
  181. }
  182. static ssh_key *dss_new_priv(const ssh_keyalg *self, ptrlen pub, ptrlen priv)
  183. {
  184. BinarySource src[1];
  185. ssh_key *sshk;
  186. struct dss_key *dss;
  187. ptrlen hash;
  188. unsigned char digest[20];
  189. mp_int *ytest;
  190. sshk = dss_new_pub(self, pub);
  191. if (!sshk)
  192. return NULL;
  193. dss = container_of(sshk, struct dss_key, sshk);
  194. BinarySource_BARE_INIT_PL(src, priv);
  195. dss->x = get_mp_ssh2(src);
  196. if (get_err(src)) {
  197. dss_freekey(&dss->sshk);
  198. return NULL;
  199. }
  200. /*
  201. * Check the obsolete hash in the old DSS key format.
  202. */
  203. hash = get_string(src);
  204. if (hash.len == 20) {
  205. ssh_hash *h = ssh_hash_new(&ssh_sha1);
  206. put_mp_ssh2(h, dss->p);
  207. put_mp_ssh2(h, dss->q);
  208. put_mp_ssh2(h, dss->g);
  209. ssh_hash_final(h, digest);
  210. if (!smemeq(hash.ptr, digest, 20)) {
  211. dss_freekey(&dss->sshk);
  212. return NULL;
  213. }
  214. }
  215. /*
  216. * Now ensure g^x mod p really is y.
  217. */
  218. ytest = mp_modpow(dss->g, dss->x, dss->p);
  219. if (!mp_cmp_eq(ytest, dss->y)) {
  220. mp_free(ytest);
  221. dss_freekey(&dss->sshk);
  222. return NULL;
  223. }
  224. mp_free(ytest);
  225. return &dss->sshk;
  226. }
  227. static ssh_key *dss_new_priv_openssh(const ssh_keyalg *self,
  228. BinarySource *src)
  229. {
  230. struct dss_key *dss;
  231. dss = snew(struct dss_key);
  232. dss->sshk.vt = &ssh_dss;
  233. dss->p = get_mp_ssh2(src);
  234. dss->q = get_mp_ssh2(src);
  235. dss->g = get_mp_ssh2(src);
  236. dss->y = get_mp_ssh2(src);
  237. dss->x = get_mp_ssh2(src);
  238. if (get_err(src) ||
  239. mp_eq_integer(dss->q, 0) || mp_eq_integer(dss->p, 0)) {
  240. /* Invalid key. */
  241. dss_freekey(&dss->sshk);
  242. return NULL;
  243. }
  244. return &dss->sshk;
  245. }
  246. static void dss_openssh_blob(ssh_key *key, BinarySink *bs)
  247. {
  248. struct dss_key *dss = container_of(key, struct dss_key, sshk);
  249. put_mp_ssh2(bs, dss->p);
  250. put_mp_ssh2(bs, dss->q);
  251. put_mp_ssh2(bs, dss->g);
  252. put_mp_ssh2(bs, dss->y);
  253. put_mp_ssh2(bs, dss->x);
  254. }
  255. static int dss_pubkey_bits(const ssh_keyalg *self, ptrlen pub)
  256. {
  257. ssh_key *sshk;
  258. struct dss_key *dss;
  259. int ret;
  260. sshk = dss_new_pub(self, pub);
  261. if (!sshk)
  262. return -1;
  263. dss = container_of(sshk, struct dss_key, sshk);
  264. ret = mp_get_nbits(dss->p);
  265. dss_freekey(&dss->sshk);
  266. return ret;
  267. }
  268. mp_int *dss_gen_k(const char *id_string, mp_int *modulus,
  269. mp_int *private_key,
  270. unsigned char *digest, int digest_len)
  271. {
  272. /*
  273. * The basic DSS signing algorithm is:
  274. *
  275. * - invent a random k between 1 and q-1 (exclusive).
  276. * - Compute r = (g^k mod p) mod q.
  277. * - Compute s = k^-1 * (hash + x*r) mod q.
  278. *
  279. * This has the dangerous properties that:
  280. *
  281. * - if an attacker in possession of the public key _and_ the
  282. * signature (for example, the host you just authenticated
  283. * to) can guess your k, he can reverse the computation of s
  284. * and work out x = r^-1 * (s*k - hash) mod q. That is, he
  285. * can deduce the private half of your key, and masquerade
  286. * as you for as long as the key is still valid.
  287. *
  288. * - since r is a function purely of k and the public key, if
  289. * the attacker only has a _range of possibilities_ for k
  290. * it's easy for him to work through them all and check each
  291. * one against r; he'll never be unsure of whether he's got
  292. * the right one.
  293. *
  294. * - if you ever sign two different hashes with the same k, it
  295. * will be immediately obvious because the two signatures
  296. * will have the same r, and moreover an attacker in
  297. * possession of both signatures (and the public key of
  298. * course) can compute k = (hash1-hash2) * (s1-s2)^-1 mod q,
  299. * and from there deduce x as before.
  300. *
  301. * - the Bleichenbacher attack on DSA makes use of methods of
  302. * generating k which are significantly non-uniformly
  303. * distributed; in particular, generating a 160-bit random
  304. * number and reducing it mod q is right out.
  305. *
  306. * For this reason we must be pretty careful about how we
  307. * generate our k. Since this code runs on Windows, with no
  308. * particularly good system entropy sources, we can't trust our
  309. * RNG itself to produce properly unpredictable data. Hence, we
  310. * use a totally different scheme instead.
  311. *
  312. * What we do is to take a SHA-512 (_big_) hash of the private
  313. * key x, and then feed this into another SHA-512 hash that
  314. * also includes the message hash being signed. That is:
  315. *
  316. * proto_k = SHA512 ( SHA512(x) || SHA160(message) )
  317. *
  318. * This number is 512 bits long, so reducing it mod q won't be
  319. * noticeably non-uniform. So
  320. *
  321. * k = proto_k mod q
  322. *
  323. * This has the interesting property that it's _deterministic_:
  324. * signing the same hash twice with the same key yields the
  325. * same signature.
  326. *
  327. * Despite this determinism, it's still not predictable to an
  328. * attacker, because in order to repeat the SHA-512
  329. * construction that created it, the attacker would have to
  330. * know the private key value x - and by assumption he doesn't,
  331. * because if he knew that he wouldn't be attacking k!
  332. *
  333. * (This trick doesn't, _per se_, protect against reuse of k.
  334. * Reuse of k is left to chance; all it does is prevent
  335. * _excessively high_ chances of reuse of k due to entropy
  336. * problems.)
  337. *
  338. * Thanks to Colin Plumb for the general idea of using x to
  339. * ensure k is hard to guess, and to the Cambridge University
  340. * Computer Security Group for helping to argue out all the
  341. * fine details.
  342. */
  343. ssh_hash *h;
  344. unsigned char digest512[64];
  345. /*
  346. * Hash some identifying text plus x.
  347. */
  348. h = ssh_hash_new(&ssh_sha512);
  349. put_asciz(h, id_string);
  350. put_mp_ssh2(h, private_key);
  351. ssh_hash_final(h, digest512);
  352. /*
  353. * Now hash that digest plus the message hash.
  354. */
  355. h = ssh_hash_new(&ssh_sha512);
  356. put_data(h, digest512, sizeof(digest512));
  357. put_data(h, digest, digest_len);
  358. ssh_hash_final(h, digest512);
  359. /*
  360. * Now convert the result into a bignum, and coerce it to the
  361. * range [2,q), which we do by reducing it mod q-2 and adding 2.
  362. */
  363. mp_int *modminus2 = mp_copy(modulus);
  364. mp_sub_integer_into(modminus2, modminus2, 2);
  365. mp_int *proto_k = mp_from_bytes_be(make_ptrlen(digest512, 64));
  366. mp_int *k = mp_mod(proto_k, modminus2);
  367. mp_free(proto_k);
  368. mp_free(modminus2);
  369. mp_add_integer_into(k, k, 2);
  370. smemclr(digest512, sizeof(digest512));
  371. return k;
  372. }
  373. static void dss_sign(ssh_key *key, ptrlen data, unsigned flags, BinarySink *bs)
  374. {
  375. struct dss_key *dss = container_of(key, struct dss_key, sshk);
  376. unsigned char digest[20];
  377. int i;
  378. hash_simple(&ssh_sha1, data, digest);
  379. mp_int *k = dss_gen_k("DSA deterministic k generator", dss->q, dss->x,
  380. digest, sizeof(digest));
  381. mp_int *kinv = mp_invert(k, dss->q); /* k^-1 mod q */
  382. /*
  383. * Now we have k, so just go ahead and compute the signature.
  384. */
  385. mp_int *gkp = mp_modpow(dss->g, k, dss->p); /* g^k mod p */
  386. mp_int *r = mp_mod(gkp, dss->q); /* r = (g^k mod p) mod q */
  387. mp_free(gkp);
  388. mp_int *hash = mp_from_bytes_be(make_ptrlen(digest, 20));
  389. mp_int *xr = mp_mul(dss->x, r);
  390. mp_int *hxr = mp_add(xr, hash); /* hash + x*r */
  391. mp_int *s = mp_modmul(kinv, hxr, dss->q); /* s = k^-1 * (hash+x*r) mod q */
  392. mp_free(hxr);
  393. mp_free(xr);
  394. mp_free(kinv);
  395. mp_free(k);
  396. mp_free(hash);
  397. put_stringz(bs, "ssh-dss");
  398. put_uint32(bs, 40);
  399. for (i = 0; i < 20; i++)
  400. put_byte(bs, mp_get_byte(r, 19 - i));
  401. for (i = 0; i < 20; i++)
  402. put_byte(bs, mp_get_byte(s, 19 - i));
  403. mp_free(r);
  404. mp_free(s);
  405. }
  406. const ssh_keyalg ssh_dss = {
  407. dss_new_pub,
  408. dss_new_priv,
  409. dss_new_priv_openssh,
  410. dss_freekey,
  411. dss_invalid,
  412. dss_sign,
  413. dss_verify,
  414. dss_public_blob,
  415. dss_private_blob,
  416. dss_openssh_blob,
  417. dss_cache_str,
  418. dss_pubkey_bits,
  419. "ssh-dss",
  420. "dss",
  421. NULL,
  422. 0, /* no supported flags */
  423. };