sshsha.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691
  1. /*
  2. * SHA1 hash algorithm. Used in SSH-2 as a MAC, and the transform is
  3. * also used as a `stirring' function for the PuTTY random number
  4. * pool. Implemented directly from the specification by Simon
  5. * Tatham.
  6. */
  7. #include "ssh.h"
  8. #include <assert.h>
  9. /* ----------------------------------------------------------------------
  10. * Core SHA algorithm: processes 16-word blocks into a message digest.
  11. */
  12. #define rol(x,y) ( ((x) << (y)) | (((uint32_t)x) >> (32-y)) )
  13. static void sha1_sw(SHA_State * s, const unsigned char *q, int len);
  14. static void sha1_ni(SHA_State * s, const unsigned char *q, int len);
  15. static void SHA_Core_Init(uint32_t h[5])
  16. {
  17. h[0] = 0x67452301;
  18. h[1] = 0xefcdab89;
  19. h[2] = 0x98badcfe;
  20. h[3] = 0x10325476;
  21. h[4] = 0xc3d2e1f0;
  22. }
  23. void SHATransform(uint32_t * digest, uint32_t * block)
  24. {
  25. uint32_t w[80];
  26. uint32_t a, b, c, d, e;
  27. int t;
  28. #ifdef RANDOM_DIAGNOSTICS
  29. {
  30. extern int random_diagnostics;
  31. if (random_diagnostics) {
  32. int i;
  33. printf("SHATransform:");
  34. for (i = 0; i < 5; i++)
  35. printf(" %08x", digest[i]);
  36. printf(" +");
  37. for (i = 0; i < 16; i++)
  38. printf(" %08x", block[i]);
  39. }
  40. }
  41. #endif
  42. for (t = 0; t < 16; t++)
  43. w[t] = block[t];
  44. for (t = 16; t < 80; t++) {
  45. uint32_t tmp = w[t - 3] ^ w[t - 8] ^ w[t - 14] ^ w[t - 16];
  46. w[t] = rol(tmp, 1);
  47. }
  48. a = digest[0];
  49. b = digest[1];
  50. c = digest[2];
  51. d = digest[3];
  52. e = digest[4];
  53. for (t = 0; t < 20; t++) {
  54. uint32_t tmp =
  55. rol(a, 5) + ((b & c) | (d & ~b)) + e + w[t] + 0x5a827999;
  56. e = d;
  57. d = c;
  58. c = rol(b, 30);
  59. b = a;
  60. a = tmp;
  61. }
  62. for (t = 20; t < 40; t++) {
  63. uint32_t tmp = rol(a, 5) + (b ^ c ^ d) + e + w[t] + 0x6ed9eba1;
  64. e = d;
  65. d = c;
  66. c = rol(b, 30);
  67. b = a;
  68. a = tmp;
  69. }
  70. for (t = 40; t < 60; t++) {
  71. uint32_t tmp = rol(a,
  72. 5) + ((b & c) | (b & d) | (c & d)) + e + w[t] +
  73. 0x8f1bbcdc;
  74. e = d;
  75. d = c;
  76. c = rol(b, 30);
  77. b = a;
  78. a = tmp;
  79. }
  80. for (t = 60; t < 80; t++) {
  81. uint32_t tmp = rol(a, 5) + (b ^ c ^ d) + e + w[t] + 0xca62c1d6;
  82. e = d;
  83. d = c;
  84. c = rol(b, 30);
  85. b = a;
  86. a = tmp;
  87. }
  88. digest[0] += a;
  89. digest[1] += b;
  90. digest[2] += c;
  91. digest[3] += d;
  92. digest[4] += e;
  93. #ifdef RANDOM_DIAGNOSTICS
  94. {
  95. extern int random_diagnostics;
  96. if (random_diagnostics) {
  97. int i;
  98. printf(" =");
  99. for (i = 0; i < 5; i++)
  100. printf(" %08x", digest[i]);
  101. printf("\n");
  102. }
  103. }
  104. #endif
  105. }
  106. /* ----------------------------------------------------------------------
  107. * Outer SHA algorithm: take an arbitrary length byte string,
  108. * convert it into 16-word blocks with the prescribed padding at
  109. * the end, and pass those blocks to the core SHA algorithm.
  110. */
  111. static void SHA_BinarySink_write(BinarySink *bs, const void *p, size_t len);
  112. void SHA_Init(SHA_State * s)
  113. {
  114. SHA_Core_Init(s->h);
  115. s->blkused = 0;
  116. s->len = 0;
  117. if (supports_sha_ni())
  118. s->sha1 = &sha1_ni;
  119. else
  120. s->sha1 = &sha1_sw;
  121. BinarySink_INIT(s, SHA_BinarySink_write);
  122. }
  123. static void SHA_BinarySink_write(BinarySink *bs, const void *p, size_t len)
  124. {
  125. struct SHA_State *s = BinarySink_DOWNCAST(bs, struct SHA_State);
  126. const unsigned char *q = (const unsigned char *) p;
  127. /*
  128. * Update the length field.
  129. */
  130. s->len += len;
  131. (*(s->sha1))(s, q, len);
  132. }
  133. static void sha1_sw(SHA_State * s, const unsigned char *q, int len)
  134. {
  135. uint32_t wordblock[16];
  136. int i;
  137. if (s->blkused && s->blkused + len < 64) {
  138. /*
  139. * Trivial case: just add to the block.
  140. */
  141. memcpy(s->block + s->blkused, q, len);
  142. s->blkused += len;
  143. } else {
  144. /*
  145. * We must complete and process at least one block.
  146. */
  147. while (s->blkused + len >= 64) {
  148. memcpy(s->block + s->blkused, q, 64 - s->blkused);
  149. q += 64 - s->blkused;
  150. len -= 64 - s->blkused;
  151. /* Now process the block. Gather bytes big-endian into words */
  152. for (i = 0; i < 16; i++) {
  153. wordblock[i] =
  154. (((uint32_t) s->block[i * 4 + 0]) << 24) |
  155. (((uint32_t) s->block[i * 4 + 1]) << 16) |
  156. (((uint32_t) s->block[i * 4 + 2]) << 8) |
  157. (((uint32_t) s->block[i * 4 + 3]) << 0);
  158. }
  159. SHATransform(s->h, wordblock);
  160. s->blkused = 0;
  161. }
  162. memcpy(s->block, q, len);
  163. s->blkused = len;
  164. }
  165. }
  166. void SHA_Final(SHA_State * s, unsigned char *output)
  167. {
  168. int i;
  169. int pad;
  170. unsigned char c[64];
  171. uint64_t len;
  172. if (s->blkused >= 56)
  173. pad = 56 + 64 - s->blkused;
  174. else
  175. pad = 56 - s->blkused;
  176. len = (s->len << 3);
  177. memset(c, 0, pad);
  178. c[0] = 0x80;
  179. put_data(s, &c, pad);
  180. put_uint64(s, len);
  181. for (i = 0; i < 5; i++) {
  182. output[i * 4] = (s->h[i] >> 24) & 0xFF;
  183. output[i * 4 + 1] = (s->h[i] >> 16) & 0xFF;
  184. output[i * 4 + 2] = (s->h[i] >> 8) & 0xFF;
  185. output[i * 4 + 3] = (s->h[i]) & 0xFF;
  186. }
  187. }
  188. void SHA_Simple(const void *p, int len, unsigned char *output)
  189. {
  190. SHA_State s;
  191. SHA_Init(&s);
  192. put_data(&s, p, len);
  193. SHA_Final(&s, output);
  194. smemclr(&s, sizeof(s));
  195. }
  196. /*
  197. * Thin abstraction for things where hashes are pluggable.
  198. */
  199. struct sha1_hash {
  200. SHA_State state;
  201. ssh_hash hash;
  202. };
  203. static ssh_hash *sha1_new(const ssh_hashalg *alg)
  204. {
  205. struct sha1_hash *h = snew(struct sha1_hash);
  206. SHA_Init(&h->state);
  207. h->hash.vt = alg;
  208. BinarySink_DELEGATE_INIT(&h->hash, &h->state);
  209. return &h->hash;
  210. }
  211. static ssh_hash *sha1_copy(ssh_hash *hashold)
  212. {
  213. struct sha1_hash *hold, *hnew;
  214. ssh_hash *hashnew = sha1_new(hashold->vt);
  215. hold = container_of(hashold, struct sha1_hash, hash);
  216. hnew = container_of(hashnew, struct sha1_hash, hash);
  217. hnew->state = hold->state;
  218. BinarySink_COPIED(&hnew->state);
  219. return hashnew;
  220. }
  221. static void sha1_free(ssh_hash *hash)
  222. {
  223. struct sha1_hash *h = container_of(hash, struct sha1_hash, hash);
  224. smemclr(h, sizeof(*h));
  225. sfree(h);
  226. }
  227. static void sha1_final(ssh_hash *hash, unsigned char *output)
  228. {
  229. struct sha1_hash *h = container_of(hash, struct sha1_hash, hash);
  230. SHA_Final(&h->state, output);
  231. sha1_free(hash);
  232. }
  233. const ssh_hashalg ssh_sha1 = {
  234. sha1_new, sha1_copy, sha1_final, sha1_free, 20, "SHA-1"
  235. };
  236. /* ----------------------------------------------------------------------
  237. * The above is the SHA-1 algorithm itself. Now we implement the
  238. * HMAC wrapper on it.
  239. */
  240. struct hmacsha1 {
  241. SHA_State sha[3];
  242. ssh2_mac mac;
  243. };
  244. static ssh2_mac *hmacsha1_new(
  245. const ssh2_macalg *alg, ssh2_cipher *cipher)
  246. {
  247. struct hmacsha1 *ctx = snew(struct hmacsha1);
  248. ctx->mac.vt = alg;
  249. BinarySink_DELEGATE_INIT(&ctx->mac, &ctx->sha[2]);
  250. return &ctx->mac;
  251. }
  252. static void hmacsha1_free(ssh2_mac *mac)
  253. {
  254. struct hmacsha1 *ctx = container_of(mac, struct hmacsha1, mac);
  255. smemclr(ctx, sizeof(*ctx));
  256. sfree(ctx);
  257. }
  258. static void sha1_key_internal(SHA_State *keys,
  259. const unsigned char *key, int len)
  260. {
  261. unsigned char foo[64];
  262. int i;
  263. memset(foo, 0x36, 64);
  264. for (i = 0; i < len && i < 64; i++)
  265. foo[i] ^= key[i];
  266. SHA_Init(&keys[0]);
  267. put_data(&keys[0], foo, 64);
  268. memset(foo, 0x5C, 64);
  269. for (i = 0; i < len && i < 64; i++)
  270. foo[i] ^= key[i];
  271. SHA_Init(&keys[1]);
  272. put_data(&keys[1], foo, 64);
  273. smemclr(foo, 64); /* burn the evidence */
  274. }
  275. static void hmacsha1_key(ssh2_mac *mac, ptrlen key)
  276. {
  277. struct hmacsha1 *ctx = container_of(mac, struct hmacsha1, mac);
  278. sha1_key_internal(ctx->sha, key.ptr, key.len);
  279. }
  280. static void hmacsha1_start(ssh2_mac *mac)
  281. {
  282. struct hmacsha1 *ctx = container_of(mac, struct hmacsha1, mac);
  283. ctx->sha[2] = ctx->sha[0]; /* structure copy */
  284. BinarySink_COPIED(&ctx->sha[2]);
  285. }
  286. static void hmacsha1_genresult(ssh2_mac *mac, unsigned char *hmac)
  287. {
  288. struct hmacsha1 *ctx = container_of(mac, struct hmacsha1, mac);
  289. SHA_State s;
  290. unsigned char intermediate[20];
  291. s = ctx->sha[2]; /* structure copy */
  292. BinarySink_COPIED(&s);
  293. SHA_Final(&s, intermediate);
  294. s = ctx->sha[1]; /* structure copy */
  295. BinarySink_COPIED(&s);
  296. put_data(&s, intermediate, 20);
  297. SHA_Final(&s, intermediate);
  298. memcpy(hmac, intermediate, ctx->mac.vt->len);
  299. smemclr(intermediate, sizeof(intermediate));
  300. }
  301. void hmac_sha1_simple(const void *key, int keylen,
  302. const void *data, int datalen,
  303. unsigned char *output) {
  304. SHA_State states[2];
  305. unsigned char intermediate[20];
  306. sha1_key_internal(states, key, keylen);
  307. put_data(&states[0], data, datalen);
  308. SHA_Final(&states[0], intermediate);
  309. put_data(&states[1], intermediate, 20);
  310. SHA_Final(&states[1], output);
  311. }
  312. const ssh2_macalg ssh_hmac_sha1 = {
  313. hmacsha1_new, hmacsha1_free, hmacsha1_key,
  314. hmacsha1_start, hmacsha1_genresult,
  315. "hmac-sha1", "[email protected]",
  316. 20, 20,
  317. "HMAC-SHA1"
  318. };
  319. const ssh2_macalg ssh_hmac_sha1_96 = {
  320. hmacsha1_new, hmacsha1_free, hmacsha1_key,
  321. hmacsha1_start, hmacsha1_genresult,
  322. "hmac-sha1-96", "[email protected]",
  323. 12, 20,
  324. "HMAC-SHA1-96"
  325. };
  326. const ssh2_macalg ssh_hmac_sha1_buggy = {
  327. hmacsha1_new, hmacsha1_free, hmacsha1_key,
  328. hmacsha1_start, hmacsha1_genresult,
  329. "hmac-sha1", NULL,
  330. 20, 16,
  331. "bug-compatible HMAC-SHA1"
  332. };
  333. const ssh2_macalg ssh_hmac_sha1_96_buggy = {
  334. hmacsha1_new, hmacsha1_free, hmacsha1_key,
  335. hmacsha1_start, hmacsha1_genresult,
  336. "hmac-sha1-96", NULL,
  337. 12, 16,
  338. "bug-compatible HMAC-SHA1-96"
  339. };
  340. #ifdef COMPILER_SUPPORTS_SHA_NI
  341. #if defined _MSC_VER && defined _M_AMD64
  342. # include <intrin.h>
  343. #endif
  344. /*
  345. * Set target architecture for Clang and GCC
  346. */
  347. #if !defined(__clang__) && defined(__GNUC__)
  348. # pragma GCC target("sha")
  349. # pragma GCC target("sse4.1")
  350. #endif
  351. #if defined(__clang__) || (defined(__GNUC__) && (__GNUC__ >= 5))
  352. # define FUNC_ISA __attribute__ ((target("sse4.1,sha")))
  353. #else
  354. # define FUNC_ISA
  355. #endif
  356. #include <wmmintrin.h>
  357. #include <smmintrin.h>
  358. #include <immintrin.h>
  359. #if defined(__clang__) || defined(__GNUC__)
  360. #include <shaintrin.h>
  361. #endif
  362. /*
  363. * Determinators of CPU type
  364. */
  365. #if defined(__clang__) || defined(__GNUC__)
  366. #include <cpuid.h>
  367. bool supports_sha_ni(void)
  368. {
  369. unsigned int CPUInfo[4];
  370. __cpuid(0, CPUInfo[0], CPUInfo[1], CPUInfo[2], CPUInfo[3]);
  371. if (CPUInfo[0] < 7)
  372. return false;
  373. __cpuid_count(7, 0, CPUInfo[0], CPUInfo[1], CPUInfo[2], CPUInfo[3]);
  374. return CPUInfo[1] & (1 << 29); /* SHA */
  375. }
  376. #else /* defined(__clang__) || defined(__GNUC__) */
  377. bool supports_sha_ni(void)
  378. {
  379. unsigned int CPUInfo[4];
  380. __cpuid(CPUInfo, 0);
  381. if (CPUInfo[0] < 7)
  382. return false;
  383. __cpuidex(CPUInfo, 7, 0);
  384. return CPUInfo[1] & (1 << 29); /* Check SHA */
  385. }
  386. #endif /* defined(__clang__) || defined(__GNUC__) */
  387. /* SHA1 implementation using new instructions
  388. The code is based on Jeffrey Walton's SHA1 implementation:
  389. https://github.com/noloader/SHA-Intrinsics
  390. */
  391. FUNC_ISA
  392. static void sha1_ni_(SHA_State * s, const unsigned char *q, int len)
  393. {
  394. if (s->blkused && s->blkused + len < 64) {
  395. /*
  396. * Trivial case: just add to the block.
  397. */
  398. memcpy(s->block + s->blkused, q, len);
  399. s->blkused += len;
  400. } else {
  401. __m128i ABCD, ABCD_SAVE, E0, E0_SAVE, E1;
  402. const __m128i MASK = _mm_set_epi64x(0x0001020304050607ULL, 0x08090a0b0c0d0e0fULL);
  403. ABCD = _mm_loadu_si128((const __m128i*) s->h);
  404. E0 = _mm_set_epi32(s->h[4], 0, 0, 0);
  405. ABCD = _mm_shuffle_epi32(ABCD, 0x1B);
  406. /*
  407. * We must complete and process at least one block.
  408. */
  409. while (s->blkused + len >= 64)
  410. {
  411. __m128i MSG0, MSG1, MSG2, MSG3;
  412. memcpy(s->block + s->blkused, q, 64 - s->blkused);
  413. q += 64 - s->blkused;
  414. len -= 64 - s->blkused;
  415. /* Save current state */
  416. ABCD_SAVE = ABCD;
  417. E0_SAVE = E0;
  418. /* Rounds 0-3 */
  419. MSG0 = _mm_loadu_si128((const __m128i*)(s->block + 0));
  420. MSG0 = _mm_shuffle_epi8(MSG0, MASK);
  421. E0 = _mm_add_epi32(E0, MSG0);
  422. E1 = ABCD;
  423. ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 0);
  424. /* Rounds 4-7 */
  425. MSG1 = _mm_loadu_si128((const __m128i*)(s->block + 16));
  426. MSG1 = _mm_shuffle_epi8(MSG1, MASK);
  427. E1 = _mm_sha1nexte_epu32(E1, MSG1);
  428. E0 = ABCD;
  429. ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 0);
  430. MSG0 = _mm_sha1msg1_epu32(MSG0, MSG1);
  431. /* Rounds 8-11 */
  432. MSG2 = _mm_loadu_si128((const __m128i*)(s->block + 32));
  433. MSG2 = _mm_shuffle_epi8(MSG2, MASK);
  434. E0 = _mm_sha1nexte_epu32(E0, MSG2);
  435. E1 = ABCD;
  436. ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 0);
  437. MSG1 = _mm_sha1msg1_epu32(MSG1, MSG2);
  438. MSG0 = _mm_xor_si128(MSG0, MSG2);
  439. /* Rounds 12-15 */
  440. MSG3 = _mm_loadu_si128((const __m128i*)(s->block + 48));
  441. MSG3 = _mm_shuffle_epi8(MSG3, MASK);
  442. E1 = _mm_sha1nexte_epu32(E1, MSG3);
  443. E0 = ABCD;
  444. MSG0 = _mm_sha1msg2_epu32(MSG0, MSG3);
  445. ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 0);
  446. MSG2 = _mm_sha1msg1_epu32(MSG2, MSG3);
  447. MSG1 = _mm_xor_si128(MSG1, MSG3);
  448. /* Rounds 16-19 */
  449. E0 = _mm_sha1nexte_epu32(E0, MSG0);
  450. E1 = ABCD;
  451. MSG1 = _mm_sha1msg2_epu32(MSG1, MSG0);
  452. ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 0);
  453. MSG3 = _mm_sha1msg1_epu32(MSG3, MSG0);
  454. MSG2 = _mm_xor_si128(MSG2, MSG0);
  455. /* Rounds 20-23 */
  456. E1 = _mm_sha1nexte_epu32(E1, MSG1);
  457. E0 = ABCD;
  458. MSG2 = _mm_sha1msg2_epu32(MSG2, MSG1);
  459. ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 1);
  460. MSG0 = _mm_sha1msg1_epu32(MSG0, MSG1);
  461. MSG3 = _mm_xor_si128(MSG3, MSG1);
  462. /* Rounds 24-27 */
  463. E0 = _mm_sha1nexte_epu32(E0, MSG2);
  464. E1 = ABCD;
  465. MSG3 = _mm_sha1msg2_epu32(MSG3, MSG2);
  466. ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 1);
  467. MSG1 = _mm_sha1msg1_epu32(MSG1, MSG2);
  468. MSG0 = _mm_xor_si128(MSG0, MSG2);
  469. /* Rounds 28-31 */
  470. E1 = _mm_sha1nexte_epu32(E1, MSG3);
  471. E0 = ABCD;
  472. MSG0 = _mm_sha1msg2_epu32(MSG0, MSG3);
  473. ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 1);
  474. MSG2 = _mm_sha1msg1_epu32(MSG2, MSG3);
  475. MSG1 = _mm_xor_si128(MSG1, MSG3);
  476. /* Rounds 32-35 */
  477. E0 = _mm_sha1nexte_epu32(E0, MSG0);
  478. E1 = ABCD;
  479. MSG1 = _mm_sha1msg2_epu32(MSG1, MSG0);
  480. ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 1);
  481. MSG3 = _mm_sha1msg1_epu32(MSG3, MSG0);
  482. MSG2 = _mm_xor_si128(MSG2, MSG0);
  483. /* Rounds 36-39 */
  484. E1 = _mm_sha1nexte_epu32(E1, MSG1);
  485. E0 = ABCD;
  486. MSG2 = _mm_sha1msg2_epu32(MSG2, MSG1);
  487. ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 1);
  488. MSG0 = _mm_sha1msg1_epu32(MSG0, MSG1);
  489. MSG3 = _mm_xor_si128(MSG3, MSG1);
  490. /* Rounds 40-43 */
  491. E0 = _mm_sha1nexte_epu32(E0, MSG2);
  492. E1 = ABCD;
  493. MSG3 = _mm_sha1msg2_epu32(MSG3, MSG2);
  494. ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 2);
  495. MSG1 = _mm_sha1msg1_epu32(MSG1, MSG2);
  496. MSG0 = _mm_xor_si128(MSG0, MSG2);
  497. /* Rounds 44-47 */
  498. E1 = _mm_sha1nexte_epu32(E1, MSG3);
  499. E0 = ABCD;
  500. MSG0 = _mm_sha1msg2_epu32(MSG0, MSG3);
  501. ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 2);
  502. MSG2 = _mm_sha1msg1_epu32(MSG2, MSG3);
  503. MSG1 = _mm_xor_si128(MSG1, MSG3);
  504. /* Rounds 48-51 */
  505. E0 = _mm_sha1nexte_epu32(E0, MSG0);
  506. E1 = ABCD;
  507. MSG1 = _mm_sha1msg2_epu32(MSG1, MSG0);
  508. ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 2);
  509. MSG3 = _mm_sha1msg1_epu32(MSG3, MSG0);
  510. MSG2 = _mm_xor_si128(MSG2, MSG0);
  511. /* Rounds 52-55 */
  512. E1 = _mm_sha1nexte_epu32(E1, MSG1);
  513. E0 = ABCD;
  514. MSG2 = _mm_sha1msg2_epu32(MSG2, MSG1);
  515. ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 2);
  516. MSG0 = _mm_sha1msg1_epu32(MSG0, MSG1);
  517. MSG3 = _mm_xor_si128(MSG3, MSG1);
  518. /* Rounds 56-59 */
  519. E0 = _mm_sha1nexte_epu32(E0, MSG2);
  520. E1 = ABCD;
  521. MSG3 = _mm_sha1msg2_epu32(MSG3, MSG2);
  522. ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 2);
  523. MSG1 = _mm_sha1msg1_epu32(MSG1, MSG2);
  524. MSG0 = _mm_xor_si128(MSG0, MSG2);
  525. /* Rounds 60-63 */
  526. E1 = _mm_sha1nexte_epu32(E1, MSG3);
  527. E0 = ABCD;
  528. MSG0 = _mm_sha1msg2_epu32(MSG0, MSG3);
  529. ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 3);
  530. MSG2 = _mm_sha1msg1_epu32(MSG2, MSG3);
  531. MSG1 = _mm_xor_si128(MSG1, MSG3);
  532. /* Rounds 64-67 */
  533. E0 = _mm_sha1nexte_epu32(E0, MSG0);
  534. E1 = ABCD;
  535. MSG1 = _mm_sha1msg2_epu32(MSG1, MSG0);
  536. ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 3);
  537. MSG3 = _mm_sha1msg1_epu32(MSG3, MSG0);
  538. MSG2 = _mm_xor_si128(MSG2, MSG0);
  539. /* Rounds 68-71 */
  540. E1 = _mm_sha1nexte_epu32(E1, MSG1);
  541. E0 = ABCD;
  542. MSG2 = _mm_sha1msg2_epu32(MSG2, MSG1);
  543. ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 3);
  544. MSG3 = _mm_xor_si128(MSG3, MSG1);
  545. /* Rounds 72-75 */
  546. E0 = _mm_sha1nexte_epu32(E0, MSG2);
  547. E1 = ABCD;
  548. MSG3 = _mm_sha1msg2_epu32(MSG3, MSG2);
  549. ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 3);
  550. /* Rounds 76-79 */
  551. E1 = _mm_sha1nexte_epu32(E1, MSG3);
  552. E0 = ABCD;
  553. ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 3);
  554. /* Combine state */
  555. E0 = _mm_sha1nexte_epu32(E0, E0_SAVE);
  556. ABCD = _mm_add_epi32(ABCD, ABCD_SAVE);
  557. s->blkused = 0;
  558. }
  559. ABCD = _mm_shuffle_epi32(ABCD, 0x1B);
  560. /* Save state */
  561. _mm_storeu_si128((__m128i*) s->h, ABCD);
  562. s->h[4] = _mm_extract_epi32(E0, 3);
  563. memcpy(s->block, q, len);
  564. s->blkused = len;
  565. }
  566. }
  567. /*
  568. * Workaround LLVM bug https://bugs.llvm.org/show_bug.cgi?id=34980
  569. */
  570. static void sha1_ni(SHA_State * s, const unsigned char *q, int len)
  571. {
  572. sha1_ni_(s, q, len);
  573. }
  574. #else /* COMPILER_SUPPORTS_AES_NI */
  575. static void sha1_ni(SHA_State * s, const unsigned char *q, int len)
  576. {
  577. unreachable("sha1_ni not compiled in");
  578. }
  579. bool supports_sha_ni(void)
  580. {
  581. return false;
  582. }
  583. #endif /* COMPILER_SUPPORTS_AES_NI */