mpint.c 81 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395
  1. #include <assert.h>
  2. #include <limits.h>
  3. #include <stdio.h>
  4. #include "defs.h"
  5. #include "misc.h"
  6. #include "puttymem.h"
  7. #include "mpint.h"
  8. #include "mpint_i.h"
  9. #define SIZE_T_BITS (CHAR_BIT * sizeof(size_t))
  10. /*
  11. * Inline helpers to take min and max of size_t values, used
  12. * throughout this code.
  13. */
  14. static inline size_t size_t_min(size_t a, size_t b)
  15. {
  16. return a < b ? a : b;
  17. }
  18. static inline size_t size_t_max(size_t a, size_t b)
  19. {
  20. return a > b ? a : b;
  21. }
  22. /*
  23. * Helper to fetch a word of data from x with array overflow checking.
  24. * If x is too short to have that word, 0 is returned.
  25. */
  26. static inline BignumInt mp_word(mp_int *x, size_t i)
  27. {
  28. return i < x->nw ? x->w[i] : 0;
  29. }
  30. static mp_int *mp_make_sized(size_t nw)
  31. {
  32. mp_int *x = snew_plus(mp_int, nw * sizeof(BignumInt));
  33. assert(nw); /* we outlaw the zero-word mp_int */
  34. x->nw = nw;
  35. x->w = snew_plus_get_aux(x);
  36. mp_clear(x);
  37. return x;
  38. }
  39. mp_int *mp_new(size_t maxbits)
  40. {
  41. size_t words = (maxbits + BIGNUM_INT_BITS - 1) / BIGNUM_INT_BITS;
  42. return mp_make_sized(words);
  43. }
  44. mp_int *mp_from_integer(uintmax_t n)
  45. {
  46. mp_int *x = mp_make_sized(
  47. (sizeof(n) + BIGNUM_INT_BYTES - 1) / BIGNUM_INT_BYTES);
  48. for (size_t i = 0; i < x->nw; i++)
  49. x->w[i] = n >> (i * BIGNUM_INT_BITS);
  50. return x;
  51. }
  52. size_t mp_max_bytes(mp_int *x)
  53. {
  54. return x->nw * BIGNUM_INT_BYTES;
  55. }
  56. size_t mp_max_bits(mp_int *x)
  57. {
  58. return x->nw * BIGNUM_INT_BITS;
  59. }
  60. void mp_free(mp_int *x)
  61. {
  62. mp_clear(x);
  63. smemclr(x, sizeof(*x));
  64. sfree(x);
  65. }
  66. void mp_dump(FILE *fp, const char *prefix, mp_int *x, const char *suffix)
  67. {
  68. fprintf(fp, "%s0x", prefix);
  69. for (size_t i = mp_max_bytes(x); i-- > 0 ;)
  70. fprintf(fp, "%02X", mp_get_byte(x, i));
  71. fputs(suffix, fp);
  72. }
  73. void mp_copy_into(mp_int *dest, mp_int *src)
  74. {
  75. size_t copy_nw = size_t_min(dest->nw, src->nw);
  76. memmove(dest->w, src->w, copy_nw * sizeof(BignumInt));
  77. smemclr(dest->w + copy_nw, (dest->nw - copy_nw) * sizeof(BignumInt));
  78. }
  79. /*
  80. * Conditional selection is done by negating 'which', to give a mask
  81. * word which is all 1s if which==1 and all 0s if which==0. Then you
  82. * can select between two inputs a,b without data-dependent control
  83. * flow by XORing them to get their difference; ANDing with the mask
  84. * word to replace that difference with 0 if which==0; and XORing that
  85. * into a, which will either turn it into b or leave it alone.
  86. *
  87. * This trick will be used throughout this code and taken as read the
  88. * rest of the time (or else I'd be here all week typing comments),
  89. * but I felt I ought to explain it in words _once_.
  90. */
  91. void mp_select_into(mp_int *dest, mp_int *src0, mp_int *src1,
  92. unsigned which)
  93. {
  94. BignumInt mask = -(BignumInt)(1 & which);
  95. for (size_t i = 0; i < dest->nw; i++) {
  96. BignumInt srcword0 = mp_word(src0, i), srcword1 = mp_word(src1, i);
  97. dest->w[i] = srcword0 ^ ((srcword1 ^ srcword0) & mask);
  98. }
  99. }
  100. void mp_cond_swap(mp_int *x0, mp_int *x1, unsigned swap)
  101. {
  102. assert(x0->nw == x1->nw);
  103. volatile BignumInt mask = -(BignumInt)(1 & swap);
  104. for (size_t i = 0; i < x0->nw; i++) {
  105. BignumInt diff = (x0->w[i] ^ x1->w[i]) & mask;
  106. x0->w[i] ^= diff;
  107. x1->w[i] ^= diff;
  108. }
  109. }
  110. void mp_clear(mp_int *x)
  111. {
  112. smemclr(x->w, x->nw * sizeof(BignumInt));
  113. }
  114. void mp_cond_clear(mp_int *x, unsigned clear)
  115. {
  116. BignumInt mask = ~-(BignumInt)(1 & clear);
  117. for (size_t i = 0; i < x->nw; i++)
  118. x->w[i] &= mask;
  119. }
  120. /*
  121. * Common code between mp_from_bytes_{le,be} which reads bytes in an
  122. * arbitrary arithmetic progression.
  123. */
  124. static mp_int *mp_from_bytes_int(ptrlen bytes, size_t m, size_t c)
  125. {
  126. size_t nw = (bytes.len + BIGNUM_INT_BYTES - 1) / BIGNUM_INT_BYTES;
  127. nw = size_t_max(nw, 1);
  128. mp_int *n = mp_make_sized(nw);
  129. for (size_t i = 0; i < bytes.len; i++)
  130. n->w[i / BIGNUM_INT_BYTES] |=
  131. (BignumInt)(((const unsigned char *)bytes.ptr)[m*i+c]) <<
  132. (8 * (i % BIGNUM_INT_BYTES));
  133. return n;
  134. }
  135. mp_int *mp_from_bytes_le(ptrlen bytes)
  136. {
  137. return mp_from_bytes_int(bytes, 1, 0);
  138. }
  139. mp_int *mp_from_bytes_be(ptrlen bytes)
  140. {
  141. return mp_from_bytes_int(bytes, -1, bytes.len - 1);
  142. }
  143. static mp_int *mp_from_words(size_t nw, const BignumInt *w)
  144. {
  145. mp_int *x = mp_make_sized(nw);
  146. memcpy(x->w, w, x->nw * sizeof(BignumInt));
  147. return x;
  148. }
  149. /*
  150. * Decimal-to-binary conversion: just go through the input string
  151. * adding on the decimal value of each digit, and then multiplying the
  152. * number so far by 10.
  153. */
  154. mp_int *mp_from_decimal_pl(ptrlen decimal)
  155. {
  156. /* 196/59 is an upper bound (and also a continued-fraction
  157. * convergent) for log2(10), so this conservatively estimates the
  158. * number of bits that will be needed to store any number that can
  159. * be written in this many decimal digits. */
  160. assert(decimal.len < (~(size_t)0) / 196);
  161. size_t bits = 196 * decimal.len / 59;
  162. /* Now round that up to words. */
  163. size_t words = bits / BIGNUM_INT_BITS + 1;
  164. mp_int *x = mp_make_sized(words);
  165. for (size_t i = 0; i < decimal.len; i++) {
  166. mp_add_integer_into(x, x, ((char *)decimal.ptr)[i] - '0');
  167. if (i+1 == decimal.len)
  168. break;
  169. mp_mul_integer_into(x, x, 10);
  170. }
  171. return x;
  172. }
  173. mp_int *mp_from_decimal(const char *decimal)
  174. {
  175. return mp_from_decimal_pl(ptrlen_from_asciz(decimal));
  176. }
  177. /*
  178. * Hex-to-binary conversion: _algorithmically_ simpler than decimal
  179. * (none of those multiplications by 10), but there's some fiddly
  180. * bit-twiddling needed to process each hex digit without diverging
  181. * control flow depending on whether it's a letter or a number.
  182. */
  183. mp_int *mp_from_hex_pl(ptrlen hex)
  184. {
  185. assert(hex.len <= (~(size_t)0) / 4);
  186. size_t bits = hex.len * 4;
  187. size_t words = (bits + BIGNUM_INT_BITS - 1) / BIGNUM_INT_BITS;
  188. words = size_t_max(words, 1);
  189. mp_int *x = mp_make_sized(words);
  190. for (size_t nibble = 0; nibble < hex.len; nibble++) {
  191. BignumInt digit = ((char *)hex.ptr)[hex.len-1 - nibble];
  192. BignumInt lmask = ~-((BignumInt)((digit-'a')|('f'-digit))
  193. >> (BIGNUM_INT_BITS-1));
  194. BignumInt umask = ~-((BignumInt)((digit-'A')|('F'-digit))
  195. >> (BIGNUM_INT_BITS-1));
  196. BignumInt digitval = digit - '0';
  197. digitval ^= (digitval ^ (digit - 'a' + 10)) & lmask;
  198. digitval ^= (digitval ^ (digit - 'A' + 10)) & umask;
  199. digitval &= 0xF; /* at least be _slightly_ nice about weird input */
  200. size_t word_idx = nibble / (BIGNUM_INT_BYTES*2);
  201. size_t nibble_within_word = nibble % (BIGNUM_INT_BYTES*2);
  202. x->w[word_idx] |= digitval << (nibble_within_word * 4);
  203. }
  204. return x;
  205. }
  206. mp_int *mp_from_hex(const char *hex)
  207. {
  208. return mp_from_hex_pl(ptrlen_from_asciz(hex));
  209. }
  210. mp_int *mp_copy(mp_int *x)
  211. {
  212. return mp_from_words(x->nw, x->w);
  213. }
  214. uint8_t mp_get_byte(mp_int *x, size_t byte)
  215. {
  216. return 0xFF & (mp_word(x, byte / BIGNUM_INT_BYTES) >>
  217. (8 * (byte % BIGNUM_INT_BYTES)));
  218. }
  219. unsigned mp_get_bit(mp_int *x, size_t bit)
  220. {
  221. return 1 & (mp_word(x, bit / BIGNUM_INT_BITS) >>
  222. (bit % BIGNUM_INT_BITS));
  223. }
  224. uintmax_t mp_get_integer(mp_int *x)
  225. {
  226. uintmax_t toret = 0;
  227. for (size_t i = x->nw; i-- > 0 ;) {
  228. /* Shift in two stages to avoid undefined behaviour if the
  229. * shift count equals the integer width */
  230. toret = (toret << (BIGNUM_INT_BITS/2)) << (BIGNUM_INT_BITS/2);
  231. toret |= x->w[i];
  232. }
  233. return toret;
  234. }
  235. void mp_set_bit(mp_int *x, size_t bit, unsigned val)
  236. {
  237. size_t word = bit / BIGNUM_INT_BITS;
  238. assert(word < x->nw);
  239. unsigned shift = (bit % BIGNUM_INT_BITS);
  240. x->w[word] &= ~((BignumInt)1 << shift);
  241. x->w[word] |= (BignumInt)(val & 1) << shift;
  242. }
  243. /*
  244. * Helper function used here and there to normalise any nonzero input
  245. * value to 1.
  246. */
  247. static inline unsigned normalise_to_1(BignumInt n)
  248. {
  249. n = (n >> 1) | (n & 1); /* ensure top bit is clear */
  250. n = (BignumInt)(-n) >> (BIGNUM_INT_BITS - 1); /* normalise to 0 or 1 */
  251. return n;
  252. }
  253. static inline unsigned normalise_to_1_u64(uint64_t n)
  254. {
  255. n = (n >> 1) | (n & 1); /* ensure top bit is clear */
  256. n = (-n) >> 63; /* normalise to 0 or 1 */
  257. return n;
  258. }
  259. /*
  260. * Find the highest nonzero word in a number. Returns the index of the
  261. * word in x->w, and also a pair of output uint64_t in which that word
  262. * appears in the high one shifted left by 'shift_wanted' bits, the
  263. * words immediately below it occupy the space to the right, and the
  264. * words below _that_ fill up the low one.
  265. *
  266. * If there is no nonzero word at all, the passed-by-reference output
  267. * variables retain their original values.
  268. */
  269. static inline void mp_find_highest_nonzero_word_pair(
  270. mp_int *x, size_t shift_wanted, size_t *index,
  271. uint64_t *hi, uint64_t *lo)
  272. {
  273. uint64_t curr_hi = 0, curr_lo = 0;
  274. for (size_t curr_index = 0; curr_index < x->nw; curr_index++) {
  275. BignumInt curr_word = x->w[curr_index];
  276. unsigned indicator = normalise_to_1(curr_word);
  277. curr_lo = (BIGNUM_INT_BITS < 64 ? (curr_lo >> BIGNUM_INT_BITS) : 0) |
  278. (curr_hi << (64 - BIGNUM_INT_BITS));
  279. curr_hi = (BIGNUM_INT_BITS < 64 ? (curr_hi >> BIGNUM_INT_BITS) : 0) |
  280. ((uint64_t)curr_word << shift_wanted);
  281. if (hi) *hi ^= (curr_hi ^ *hi ) & -(uint64_t)indicator;
  282. if (lo) *lo ^= (curr_lo ^ *lo ) & -(uint64_t)indicator;
  283. if (index) *index ^= (curr_index ^ *index) & -(size_t) indicator;
  284. }
  285. }
  286. size_t mp_get_nbits(mp_int *x)
  287. {
  288. /* Sentinel values in case there are no bits set at all: we
  289. * imagine that there's a word at position -1 (i.e. the topmost
  290. * fraction word) which is all 1s, because that way, we handle a
  291. * zero input by considering its highest set bit to be the top one
  292. * of that word, i.e. just below the units digit, i.e. at bit
  293. * index -1, i.e. so we'll return 0 on output. */
  294. size_t hiword_index = -(size_t)1;
  295. uint64_t hiword64 = ~(BignumInt)0;
  296. /*
  297. * Find the highest nonzero word and its index.
  298. */
  299. mp_find_highest_nonzero_word_pair(x, 0, &hiword_index, &hiword64, NULL);
  300. BignumInt hiword = hiword64; /* in case BignumInt is a narrower type */
  301. /*
  302. * Find the index of the highest set bit within hiword.
  303. */
  304. BignumInt hibit_index = 0;
  305. for (size_t i = (1 << (BIGNUM_INT_BITS_BITS-1)); i != 0; i >>= 1) {
  306. BignumInt shifted_word = hiword >> i;
  307. BignumInt indicator =
  308. (BignumInt)(-shifted_word) >> (BIGNUM_INT_BITS-1);
  309. hiword ^= (shifted_word ^ hiword ) & -indicator;
  310. hibit_index += i & -(size_t)indicator;
  311. }
  312. /*
  313. * Put together the result.
  314. */
  315. return (hiword_index << BIGNUM_INT_BITS_BITS) + hibit_index + 1;
  316. }
  317. /*
  318. * Shared code between the hex and decimal output functions to get rid
  319. * of leading zeroes on the output string. The idea is that we wrote
  320. * out a fixed number of digits and a trailing \0 byte into 'buf', and
  321. * now we want to shift it all left so that the first nonzero digit
  322. * moves to buf[0] (or, if there are no nonzero digits at all, we move
  323. * up by 'maxtrim', so that we return 0 as "0" instead of "").
  324. */
  325. static void trim_leading_zeroes(char *buf, size_t bufsize, size_t maxtrim)
  326. {
  327. size_t trim = maxtrim;
  328. /*
  329. * Look for the first character not equal to '0', to find the
  330. * shift count.
  331. */
  332. if (trim > 0) {
  333. for (size_t pos = trim; pos-- > 0 ;) {
  334. uint8_t diff = buf[pos] ^ '0';
  335. size_t mask = -((((size_t)diff) - 1) >> (SIZE_T_BITS - 1));
  336. trim ^= (trim ^ pos) & ~mask;
  337. }
  338. }
  339. /*
  340. * Now do the shift, in log n passes each of which does a
  341. * conditional shift by 2^i bytes if bit i is set in the shift
  342. * count.
  343. */
  344. uint8_t *ubuf = (uint8_t *)buf;
  345. for (size_t logd = 0; bufsize >> logd; logd++) {
  346. uint8_t mask = -(uint8_t)((trim >> logd) & 1);
  347. size_t d = (size_t)1 << logd;
  348. for (size_t i = 0; i+d < bufsize; i++) {
  349. uint8_t diff = mask & (ubuf[i] ^ ubuf[i+d]);
  350. ubuf[i] ^= diff;
  351. ubuf[i+d] ^= diff;
  352. }
  353. }
  354. }
  355. /*
  356. * Binary to decimal conversion. Our strategy here is to extract each
  357. * decimal digit by finding the input number's residue mod 10, then
  358. * subtract that off to give an exact multiple of 10, which then means
  359. * you can safely divide by 10 by means of shifting right one bit and
  360. * then multiplying by the inverse of 5 mod 2^n.
  361. */
  362. char *mp_get_decimal(mp_int *x_orig)
  363. {
  364. mp_int *x = mp_copy(x_orig), *y = mp_make_sized(x->nw);
  365. /*
  366. * The inverse of 5 mod 2^lots is 0xccccccccccccccccccccd, for an
  367. * appropriate number of 'c's. Manually construct an integer the
  368. * right size.
  369. */
  370. mp_int *inv5 = mp_make_sized(x->nw);
  371. assert(BIGNUM_INT_BITS % 8 == 0);
  372. for (size_t i = 0; i < inv5->nw; i++)
  373. inv5->w[i] = BIGNUM_INT_MASK / 5 * 4;
  374. inv5->w[0]++;
  375. /*
  376. * 146/485 is an upper bound (and also a continued-fraction
  377. * convergent) of log10(2), so this is a conservative estimate of
  378. * the number of decimal digits needed to store a value that fits
  379. * in this many binary bits.
  380. */
  381. assert(x->nw < (~(size_t)1) / (146 * BIGNUM_INT_BITS));
  382. size_t bufsize = size_t_max(x->nw * (146 * BIGNUM_INT_BITS) / 485, 1) + 2;
  383. char *outbuf = snewn(bufsize, char);
  384. outbuf[bufsize - 1] = '\0';
  385. /*
  386. * Loop over the number generating digits from the least
  387. * significant upwards, so that we write to outbuf in reverse
  388. * order.
  389. */
  390. for (size_t pos = bufsize - 1; pos-- > 0 ;) {
  391. /*
  392. * Find the current residue mod 10. We do this by first
  393. * summing the bytes of the number, with all but the lowest
  394. * one multiplied by 6 (because 256^i == 6 mod 10 for all
  395. * i>0). That gives us a single word congruent mod 10 to the
  396. * input number, and then we reduce it further by manual
  397. * multiplication and shifting, just in case the compiler
  398. * target implements the C division operator in a way that has
  399. * input-dependent timing.
  400. */
  401. uint32_t low_digit = 0, maxval = 0, mult = 1;
  402. for (size_t i = 0; i < x->nw; i++) {
  403. for (unsigned j = 0; j < BIGNUM_INT_BYTES; j++) {
  404. low_digit += mult * (0xFF & (x->w[i] >> (8*j)));
  405. maxval += mult * 0xFF;
  406. mult = 6;
  407. }
  408. /*
  409. * For _really_ big numbers, prevent overflow of t by
  410. * periodically folding the top half of the accumulator
  411. * into the bottom half, using the same rule 'multiply by
  412. * 6 when shifting down by one or more whole bytes'.
  413. */
  414. if (maxval > UINT32_MAX - (6 * 0xFF * BIGNUM_INT_BYTES)) {
  415. low_digit = (low_digit & 0xFFFF) + 6 * (low_digit >> 16);
  416. maxval = (maxval & 0xFFFF) + 6 * (maxval >> 16);
  417. }
  418. }
  419. /*
  420. * Final reduction of low_digit. We multiply by 2^32 / 10
  421. * (that's the constant 0x19999999) to get a 64-bit value
  422. * whose top 32 bits are the approximate quotient
  423. * low_digit/10; then we subtract off 10 times that; and
  424. * finally we do one last trial subtraction of 10 by adding 6
  425. * (which sets bit 4 if the number was just over 10) and then
  426. * testing bit 4.
  427. */
  428. low_digit -= 10 * ((0x19999999ULL * low_digit) >> 32);
  429. low_digit -= 10 * ((low_digit + 6) >> 4);
  430. assert(low_digit < 10); /* make sure we did reduce fully */
  431. outbuf[pos] = '0' + low_digit;
  432. /*
  433. * Now subtract off that digit, divide by 2 (using a right
  434. * shift) and by 5 (using the modular inverse), to get the
  435. * next output digit into the units position.
  436. */
  437. mp_sub_integer_into(x, x, low_digit);
  438. mp_rshift_fixed_into(y, x, 1);
  439. mp_mul_into(x, y, inv5);
  440. }
  441. mp_free(x);
  442. mp_free(y);
  443. mp_free(inv5);
  444. trim_leading_zeroes(outbuf, bufsize, bufsize - 2);
  445. return outbuf;
  446. }
  447. /*
  448. * Binary to hex conversion. Reasonably simple (only a spot of bit
  449. * twiddling to choose whether to output a digit or a letter for each
  450. * nibble).
  451. */
  452. static char *mp_get_hex_internal(mp_int *x, uint8_t letter_offset)
  453. {
  454. size_t nibbles = x->nw * BIGNUM_INT_BYTES * 2;
  455. size_t bufsize = nibbles + 1;
  456. char *outbuf = snewn(bufsize, char);
  457. outbuf[nibbles] = '\0';
  458. for (size_t nibble = 0; nibble < nibbles; nibble++) {
  459. size_t word_idx = nibble / (BIGNUM_INT_BYTES*2);
  460. size_t nibble_within_word = nibble % (BIGNUM_INT_BYTES*2);
  461. uint8_t digitval = 0xF & (x->w[word_idx] >> (nibble_within_word * 4));
  462. uint8_t mask = -((digitval + 6) >> 4);
  463. char digit = digitval + '0' + (letter_offset & mask);
  464. outbuf[nibbles-1 - nibble] = digit;
  465. }
  466. trim_leading_zeroes(outbuf, bufsize, nibbles - 1);
  467. return outbuf;
  468. }
  469. char *mp_get_hex(mp_int *x)
  470. {
  471. return mp_get_hex_internal(x, 'a' - ('0'+10));
  472. }
  473. char *mp_get_hex_uppercase(mp_int *x)
  474. {
  475. return mp_get_hex_internal(x, 'A' - ('0'+10));
  476. }
  477. /*
  478. * Routines for reading and writing the SSH-1 and SSH-2 wire formats
  479. * for multiprecision integers, declared in marshal.h.
  480. *
  481. * These can't avoid having control flow dependent on the true bit
  482. * size of the number, because the wire format requires the number of
  483. * output bytes to depend on that.
  484. */
  485. void BinarySink_put_mp_ssh1(BinarySink *bs, mp_int *x)
  486. {
  487. size_t bits = mp_get_nbits(x);
  488. size_t bytes = (bits + 7) / 8;
  489. assert(bits < 0x10000);
  490. put_uint16(bs, bits);
  491. for (size_t i = bytes; i-- > 0 ;)
  492. put_byte(bs, mp_get_byte(x, i));
  493. }
  494. void BinarySink_put_mp_ssh2(BinarySink *bs, mp_int *x)
  495. {
  496. size_t bytes = (mp_get_nbits(x) + 8) / 8;
  497. put_uint32(bs, bytes);
  498. for (size_t i = bytes; i-- > 0 ;)
  499. put_byte(bs, mp_get_byte(x, i));
  500. }
  501. mp_int *BinarySource_get_mp_ssh1(BinarySource *src)
  502. {
  503. unsigned bitc = get_uint16(src);
  504. ptrlen bytes = get_data(src, (bitc + 7) / 8);
  505. if (get_err(src)) {
  506. return mp_from_integer(0);
  507. } else {
  508. mp_int *toret = mp_from_bytes_be(bytes);
  509. /* SSH-1.5 spec says that it's OK for the prefix uint16 to be
  510. * _greater_ than the actual number of bits */
  511. if (mp_get_nbits(toret) > bitc) {
  512. src->err = BSE_INVALID;
  513. mp_free(toret);
  514. toret = mp_from_integer(0);
  515. }
  516. return toret;
  517. }
  518. }
  519. mp_int *BinarySource_get_mp_ssh2(BinarySource *src)
  520. {
  521. ptrlen bytes = get_string(src);
  522. if (get_err(src)) {
  523. return mp_from_integer(0);
  524. } else {
  525. const unsigned char *p = bytes.ptr;
  526. if ((bytes.len > 0 &&
  527. ((p[0] & 0x80) ||
  528. (p[0] == 0 && (bytes.len <= 1 || !(p[1] & 0x80)))))) {
  529. src->err = BSE_INVALID;
  530. return mp_from_integer(0);
  531. }
  532. return mp_from_bytes_be(bytes);
  533. }
  534. }
  535. /*
  536. * Make an mp_int structure whose words array aliases a subinterval of
  537. * some other mp_int. This makes it easy to read or write just the low
  538. * or high words of a number, e.g. to add a number starting from a
  539. * high bit position, or to reduce mod 2^{n*BIGNUM_INT_BITS}.
  540. *
  541. * The convention throughout this code is that when we store an mp_int
  542. * directly by value, we always expect it to be an alias of some kind,
  543. * so its words array won't ever need freeing. Whereas an 'mp_int *'
  544. * has an owner, who knows whether it needs freeing or whether it was
  545. * created by address-taking an alias.
  546. */
  547. static mp_int mp_make_alias(mp_int *in, size_t offset, size_t len)
  548. {
  549. /*
  550. * Bounds-check the offset and length so that we always return
  551. * something valid, even if it's not necessarily the length the
  552. * caller asked for.
  553. */
  554. if (offset > in->nw)
  555. offset = in->nw;
  556. if (len > in->nw - offset)
  557. len = in->nw - offset;
  558. mp_int toret;
  559. toret.nw = len;
  560. toret.w = in->w + offset;
  561. return toret;
  562. }
  563. /*
  564. * A special case of mp_make_alias: in some cases we preallocate a
  565. * large mp_int to use as scratch space (to avoid pointless
  566. * malloc/free churn in recursive or iterative work).
  567. *
  568. * mp_alloc_from_scratch creates an alias of size 'len' to part of
  569. * 'pool', and adjusts 'pool' itself so that further allocations won't
  570. * overwrite that space.
  571. *
  572. * There's no free function to go with this. Typically you just copy
  573. * the pool mp_int by value, allocate from the copy, and when you're
  574. * done with those allocations, throw the copy away and go back to the
  575. * original value of pool. (A mark/release system.)
  576. */
  577. static mp_int mp_alloc_from_scratch(mp_int *pool, size_t len)
  578. {
  579. assert(len <= pool->nw);
  580. mp_int toret = mp_make_alias(pool, 0, len);
  581. *pool = mp_make_alias(pool, len, pool->nw);
  582. return toret;
  583. }
  584. /*
  585. * Internal component common to lots of assorted add/subtract code.
  586. * Reads words from a,b; writes into w_out (which might be NULL if the
  587. * output isn't even needed). Takes an input carry flag in 'carry',
  588. * and returns the output carry. Each word read from b is ANDed with
  589. * b_and and then XORed with b_xor.
  590. *
  591. * So you can implement addition by setting b_and to all 1s and b_xor
  592. * to 0; you can subtract by making b_xor all 1s too (effectively
  593. * bit-flipping b) and also passing 1 as the input carry (to turn
  594. * one's complement into two's complement). And you can do conditional
  595. * add/subtract by choosing b_and to be all 1s or all 0s based on a
  596. * condition, because the value of b will be totally ignored if b_and
  597. * == 0.
  598. */
  599. static BignumCarry mp_add_masked_into(
  600. BignumInt *w_out, size_t rw, mp_int *a, mp_int *b,
  601. BignumInt b_and, BignumInt b_xor, BignumCarry carry)
  602. {
  603. for (size_t i = 0; i < rw; i++) {
  604. BignumInt aword = mp_word(a, i), bword = mp_word(b, i), out;
  605. bword = (bword & b_and) ^ b_xor;
  606. BignumADC(out, carry, aword, bword, carry);
  607. if (w_out)
  608. w_out[i] = out;
  609. }
  610. return carry;
  611. }
  612. /*
  613. * Like the public mp_add_into except that it returns the output carry.
  614. */
  615. static inline BignumCarry mp_add_into_internal(mp_int *r, mp_int *a, mp_int *b)
  616. {
  617. return mp_add_masked_into(r->w, r->nw, a, b, ~(BignumInt)0, 0, 0);
  618. }
  619. void mp_add_into(mp_int *r, mp_int *a, mp_int *b)
  620. {
  621. mp_add_into_internal(r, a, b);
  622. }
  623. void mp_sub_into(mp_int *r, mp_int *a, mp_int *b)
  624. {
  625. mp_add_masked_into(r->w, r->nw, a, b, ~(BignumInt)0, ~(BignumInt)0, 1);
  626. }
  627. void mp_and_into(mp_int *r, mp_int *a, mp_int *b)
  628. {
  629. for (size_t i = 0; i < r->nw; i++) {
  630. BignumInt aword = mp_word(a, i), bword = mp_word(b, i);
  631. r->w[i] = aword & bword;
  632. }
  633. }
  634. void mp_or_into(mp_int *r, mp_int *a, mp_int *b)
  635. {
  636. for (size_t i = 0; i < r->nw; i++) {
  637. BignumInt aword = mp_word(a, i), bword = mp_word(b, i);
  638. r->w[i] = aword | bword;
  639. }
  640. }
  641. void mp_xor_into(mp_int *r, mp_int *a, mp_int *b)
  642. {
  643. for (size_t i = 0; i < r->nw; i++) {
  644. BignumInt aword = mp_word(a, i), bword = mp_word(b, i);
  645. r->w[i] = aword ^ bword;
  646. }
  647. }
  648. void mp_bic_into(mp_int *r, mp_int *a, mp_int *b)
  649. {
  650. for (size_t i = 0; i < r->nw; i++) {
  651. BignumInt aword = mp_word(a, i), bword = mp_word(b, i);
  652. r->w[i] = aword & ~bword;
  653. }
  654. }
  655. static void mp_cond_negate(mp_int *r, mp_int *x, unsigned yes)
  656. {
  657. BignumCarry carry = yes;
  658. BignumInt flip = -(BignumInt)yes;
  659. for (size_t i = 0; i < r->nw; i++) {
  660. BignumInt xword = mp_word(x, i);
  661. xword ^= flip;
  662. BignumADC(r->w[i], carry, 0, xword, carry);
  663. }
  664. }
  665. /*
  666. * Similar to mp_add_masked_into, but takes a C integer instead of an
  667. * mp_int as the masked operand.
  668. */
  669. static BignumCarry mp_add_masked_integer_into(
  670. BignumInt *w_out, size_t rw, mp_int *a, uintmax_t b,
  671. BignumInt b_and, BignumInt b_xor, BignumCarry carry)
  672. {
  673. for (size_t i = 0; i < rw; i++) {
  674. BignumInt aword = mp_word(a, i);
  675. size_t shift = i * BIGNUM_INT_BITS;
  676. BignumInt bword = shift < BIGNUM_INT_BYTES ? b >> shift : 0;
  677. BignumInt out;
  678. bword = (bword ^ b_xor) & b_and;
  679. BignumADC(out, carry, aword, bword, carry);
  680. if (w_out)
  681. w_out[i] = out;
  682. }
  683. return carry;
  684. }
  685. void mp_add_integer_into(mp_int *r, mp_int *a, uintmax_t n)
  686. {
  687. mp_add_masked_integer_into(r->w, r->nw, a, n, ~(BignumInt)0, 0, 0);
  688. }
  689. void mp_sub_integer_into(mp_int *r, mp_int *a, uintmax_t n)
  690. {
  691. mp_add_masked_integer_into(r->w, r->nw, a, n,
  692. ~(BignumInt)0, ~(BignumInt)0, 1);
  693. }
  694. /*
  695. * Sets r to a + n << (word_index * BIGNUM_INT_BITS), treating
  696. * word_index as secret data.
  697. */
  698. static void mp_add_integer_into_shifted_by_words(
  699. mp_int *r, mp_int *a, uintmax_t n, size_t word_index)
  700. {
  701. unsigned indicator = 0;
  702. BignumCarry carry = 0;
  703. for (size_t i = 0; i < r->nw; i++) {
  704. /* indicator becomes 1 when we reach the index that the least
  705. * significant bits of n want to be placed at, and it stays 1
  706. * thereafter. */
  707. indicator |= 1 ^ normalise_to_1(i ^ word_index);
  708. /* If indicator is 1, we add the low bits of n into r, and
  709. * shift n down. If it's 0, we add zero bits into r, and
  710. * leave n alone. */
  711. BignumInt bword = n & -(BignumInt)indicator;
  712. uintmax_t new_n = (BIGNUM_INT_BITS < 64 ? n >> BIGNUM_INT_BITS : 0);
  713. n ^= (n ^ new_n) & -(uintmax_t)indicator;
  714. BignumInt aword = mp_word(a, i);
  715. BignumInt out;
  716. BignumADC(out, carry, aword, bword, carry);
  717. r->w[i] = out;
  718. }
  719. }
  720. void mp_mul_integer_into(mp_int *r, mp_int *a, uint16_t n)
  721. {
  722. BignumInt carry = 0, mult = n;
  723. for (size_t i = 0; i < r->nw; i++) {
  724. BignumInt aword = mp_word(a, i);
  725. BignumMULADD(carry, r->w[i], aword, mult, carry);
  726. }
  727. assert(!carry);
  728. }
  729. void mp_cond_add_into(mp_int *r, mp_int *a, mp_int *b, unsigned yes)
  730. {
  731. BignumInt mask = -(BignumInt)(yes & 1);
  732. mp_add_masked_into(r->w, r->nw, a, b, mask, 0, 0);
  733. }
  734. void mp_cond_sub_into(mp_int *r, mp_int *a, mp_int *b, unsigned yes)
  735. {
  736. BignumInt mask = -(BignumInt)(yes & 1);
  737. mp_add_masked_into(r->w, r->nw, a, b, mask, mask, 1 & mask);
  738. }
  739. /*
  740. * Ordered comparison between unsigned numbers is done by subtracting
  741. * one from the other and looking at the output carry.
  742. */
  743. unsigned mp_cmp_hs(mp_int *a, mp_int *b)
  744. {
  745. size_t rw = size_t_max(a->nw, b->nw);
  746. return mp_add_masked_into(NULL, rw, a, b, ~(BignumInt)0, ~(BignumInt)0, 1);
  747. }
  748. unsigned mp_hs_integer(mp_int *x, uintmax_t n)
  749. {
  750. BignumInt carry = 1;
  751. for (size_t i = 0; i < x->nw; i++) {
  752. size_t shift = i * BIGNUM_INT_BITS;
  753. BignumInt nword = shift < CHAR_BIT*sizeof(n) ? n >> shift : 0;
  754. BignumInt dummy_out;
  755. BignumADC(dummy_out, carry, x->w[i], ~nword, carry);
  756. (void)dummy_out;
  757. }
  758. return carry;
  759. }
  760. /*
  761. * Equality comparison is done by bitwise XOR of the input numbers,
  762. * ORing together all the output words, and normalising the result
  763. * using our careful normalise_to_1 helper function.
  764. */
  765. unsigned mp_cmp_eq(mp_int *a, mp_int *b)
  766. {
  767. BignumInt diff = 0;
  768. for (size_t i = 0, limit = size_t_max(a->nw, b->nw); i < limit; i++)
  769. diff |= mp_word(a, i) ^ mp_word(b, i);
  770. return 1 ^ normalise_to_1(diff); /* return 1 if diff _is_ zero */
  771. }
  772. unsigned mp_eq_integer(mp_int *x, uintmax_t n)
  773. {
  774. BignumInt diff = 0;
  775. for (size_t i = 0; i < x->nw; i++) {
  776. size_t shift = i * BIGNUM_INT_BITS;
  777. BignumInt nword = shift < CHAR_BIT*sizeof(n) ? n >> shift : 0;
  778. diff |= x->w[i] ^ nword;
  779. }
  780. return 1 ^ normalise_to_1(diff); /* return 1 if diff _is_ zero */
  781. }
  782. void mp_neg_into(mp_int *r, mp_int *a)
  783. {
  784. mp_int zero;
  785. zero.nw = 0;
  786. mp_sub_into(r, &zero, a);
  787. }
  788. mp_int *mp_add(mp_int *x, mp_int *y)
  789. {
  790. mp_int *r = mp_make_sized(size_t_max(x->nw, y->nw) + 1);
  791. mp_add_into(r, x, y);
  792. return r;
  793. }
  794. mp_int *mp_sub(mp_int *x, mp_int *y)
  795. {
  796. mp_int *r = mp_make_sized(size_t_max(x->nw, y->nw));
  797. mp_sub_into(r, x, y);
  798. return r;
  799. }
  800. mp_int *mp_neg(mp_int *a)
  801. {
  802. mp_int *r = mp_make_sized(a->nw);
  803. mp_neg_into(r, a);
  804. return r;
  805. }
  806. /*
  807. * Internal routine: multiply and accumulate in the trivial O(N^2)
  808. * way. Sets r <- r + a*b.
  809. */
  810. static void mp_mul_add_simple(mp_int *r, mp_int *a, mp_int *b)
  811. {
  812. BignumInt *aend = a->w + a->nw, *bend = b->w + b->nw, *rend = r->w + r->nw;
  813. for (BignumInt *ap = a->w, *rp = r->w;
  814. ap < aend && rp < rend; ap++, rp++) {
  815. BignumInt adata = *ap, carry = 0, *rq = rp;
  816. for (BignumInt *bp = b->w; bp < bend && rq < rend; bp++, rq++) {
  817. BignumInt bdata = bp < bend ? *bp : 0;
  818. BignumMULADD2(carry, *rq, adata, bdata, *rq, carry);
  819. }
  820. for (; rq < rend; rq++)
  821. BignumADC(*rq, carry, carry, *rq, 0);
  822. }
  823. }
  824. #ifndef KARATSUBA_THRESHOLD /* allow redefinition via -D for testing */
  825. #define KARATSUBA_THRESHOLD 24
  826. #endif
  827. static inline size_t mp_mul_scratchspace_unary(size_t n)
  828. {
  829. /*
  830. * Simplistic and overcautious bound on the amount of scratch
  831. * space that the recursive multiply function will need.
  832. *
  833. * The rationale is: on the main Karatsuba branch of
  834. * mp_mul_internal, which is the most space-intensive one, we
  835. * allocate space for (a0+a1) and (b0+b1) (each just over half the
  836. * input length n) and their product (the sum of those sizes, i.e.
  837. * just over n itself). Then in order to actually compute the
  838. * product, we do a recursive multiplication of size just over n.
  839. *
  840. * If all those 'just over' weren't there, and everything was
  841. * _exactly_ half the length, you'd get the amount of space for a
  842. * size-n multiply defined by the recurrence M(n) = 2n + M(n/2),
  843. * which is satisfied by M(n) = 4n. But instead it's (2n plus a
  844. * word or two) and M(n/2 plus a word or two). On the assumption
  845. * that there's still some constant k such that M(n) <= kn, this
  846. * gives us kn = 2n + w + k(n/2 + w), where w is a small constant
  847. * (one or two words). That simplifies to kn/2 = 2n + (k+1)w, and
  848. * since we don't even _start_ needing scratch space until n is at
  849. * least 50, we can bound 2n + (k+1)w above by 3n, giving k=6.
  850. *
  851. * So I claim that 6n words of scratch space will suffice, and I
  852. * check that by assertion at every stage of the recursion.
  853. */
  854. return n * 6;
  855. }
  856. static size_t mp_mul_scratchspace(size_t rw, size_t aw, size_t bw)
  857. {
  858. size_t inlen = size_t_min(rw, size_t_max(aw, bw));
  859. return mp_mul_scratchspace_unary(inlen);
  860. }
  861. static void mp_mul_internal(mp_int *r, mp_int *a, mp_int *b, mp_int scratch)
  862. {
  863. size_t inlen = size_t_min(r->nw, size_t_max(a->nw, b->nw));
  864. assert(scratch.nw >= mp_mul_scratchspace_unary(inlen));
  865. mp_clear(r);
  866. if (inlen < KARATSUBA_THRESHOLD || a->nw == 0 || b->nw == 0) {
  867. /*
  868. * The input numbers are too small to bother optimising. Go
  869. * straight to the simple primitive approach.
  870. */
  871. mp_mul_add_simple(r, a, b);
  872. return;
  873. }
  874. /*
  875. * Karatsuba divide-and-conquer algorithm. We cut each input in
  876. * half, so that it's expressed as two big 'digits' in a giant
  877. * base D:
  878. *
  879. * a = a_1 D + a_0
  880. * b = b_1 D + b_0
  881. *
  882. * Then the product is of course
  883. *
  884. * ab = a_1 b_1 D^2 + (a_1 b_0 + a_0 b_1) D + a_0 b_0
  885. *
  886. * and we compute the three coefficients by recursively calling
  887. * ourself to do half-length multiplications.
  888. *
  889. * The clever bit that makes this worth doing is that we only need
  890. * _one_ half-length multiplication for the central coefficient
  891. * rather than the two that it obviouly looks like, because we can
  892. * use a single multiplication to compute
  893. *
  894. * (a_1 + a_0) (b_1 + b_0) = a_1 b_1 + a_1 b_0 + a_0 b_1 + a_0 b_0
  895. *
  896. * and then we subtract the other two coefficients (a_1 b_1 and
  897. * a_0 b_0) which we were computing anyway.
  898. *
  899. * Hence we get to multiply two numbers of length N in about three
  900. * times as much work as it takes to multiply numbers of length
  901. * N/2, which is obviously better than the four times as much work
  902. * it would take if we just did a long conventional multiply.
  903. */
  904. /* Break up the input as botlen + toplen, with botlen >= toplen.
  905. * The 'base' D is equal to 2^{botlen * BIGNUM_INT_BITS}. */
  906. size_t toplen = inlen / 2;
  907. size_t botlen = inlen - toplen;
  908. /* Alias bignums that address the two halves of a,b, and useful
  909. * pieces of r. */
  910. mp_int a0 = mp_make_alias(a, 0, botlen);
  911. mp_int b0 = mp_make_alias(b, 0, botlen);
  912. mp_int a1 = mp_make_alias(a, botlen, toplen);
  913. mp_int b1 = mp_make_alias(b, botlen, toplen);
  914. mp_int r0 = mp_make_alias(r, 0, botlen*2);
  915. mp_int r1 = mp_make_alias(r, botlen, r->nw);
  916. mp_int r2 = mp_make_alias(r, botlen*2, r->nw);
  917. /* Recurse to compute a0*b0 and a1*b1, in their correct positions
  918. * in the output bignum. They can't overlap. */
  919. mp_mul_internal(&r0, &a0, &b0, scratch);
  920. mp_mul_internal(&r2, &a1, &b1, scratch);
  921. if (r->nw < inlen*2) {
  922. /*
  923. * The output buffer isn't large enough to require the whole
  924. * product, so some of a1*b1 won't have been stored. In that
  925. * case we won't try to do the full Karatsuba optimisation;
  926. * we'll just recurse again to compute a0*b1 and a1*b0 - or at
  927. * least as much of them as the output buffer size requires -
  928. * and add each one in.
  929. */
  930. mp_int s = mp_alloc_from_scratch(
  931. &scratch, size_t_min(botlen+toplen, r1.nw));
  932. mp_mul_internal(&s, &a0, &b1, scratch);
  933. mp_add_into(&r1, &r1, &s);
  934. mp_mul_internal(&s, &a1, &b0, scratch);
  935. mp_add_into(&r1, &r1, &s);
  936. return;
  937. }
  938. /* a0+a1 and b0+b1 */
  939. mp_int asum = mp_alloc_from_scratch(&scratch, botlen+1);
  940. mp_int bsum = mp_alloc_from_scratch(&scratch, botlen+1);
  941. mp_add_into(&asum, &a0, &a1);
  942. mp_add_into(&bsum, &b0, &b1);
  943. /* Their product */
  944. mp_int product = mp_alloc_from_scratch(&scratch, botlen*2+1);
  945. mp_mul_internal(&product, &asum, &bsum, scratch);
  946. /* Subtract off the outer terms we already have */
  947. mp_sub_into(&product, &product, &r0);
  948. mp_sub_into(&product, &product, &r2);
  949. /* And add it in with the right offset. */
  950. mp_add_into(&r1, &r1, &product);
  951. }
  952. void mp_mul_into(mp_int *r, mp_int *a, mp_int *b)
  953. {
  954. mp_int *scratch = mp_make_sized(mp_mul_scratchspace(r->nw, a->nw, b->nw));
  955. mp_mul_internal(r, a, b, *scratch);
  956. mp_free(scratch);
  957. }
  958. mp_int *mp_mul(mp_int *x, mp_int *y)
  959. {
  960. mp_int *r = mp_make_sized(x->nw + y->nw);
  961. mp_mul_into(r, x, y);
  962. return r;
  963. }
  964. void mp_lshift_fixed_into(mp_int *r, mp_int *a, size_t bits)
  965. {
  966. size_t words = bits / BIGNUM_INT_BITS;
  967. size_t bitoff = bits % BIGNUM_INT_BITS;
  968. for (size_t i = r->nw; i-- > 0 ;) {
  969. if (i < words) {
  970. r->w[i] = 0;
  971. } else {
  972. r->w[i] = mp_word(a, i - words);
  973. if (bitoff != 0) {
  974. r->w[i] <<= bitoff;
  975. if (i > words)
  976. r->w[i] |= mp_word(a, i - words - 1) >>
  977. (BIGNUM_INT_BITS - bitoff);
  978. }
  979. }
  980. }
  981. }
  982. void mp_rshift_fixed_into(mp_int *r, mp_int *a, size_t bits)
  983. {
  984. size_t words = bits / BIGNUM_INT_BITS;
  985. size_t bitoff = bits % BIGNUM_INT_BITS;
  986. for (size_t i = 0; i < r->nw; i++) {
  987. r->w[i] = mp_word(a, i + words);
  988. if (bitoff != 0) {
  989. r->w[i] >>= bitoff;
  990. r->w[i] |= mp_word(a, i + words + 1) << (BIGNUM_INT_BITS - bitoff);
  991. }
  992. }
  993. }
  994. mp_int *mp_rshift_fixed(mp_int *x, size_t bits)
  995. {
  996. size_t words = bits / BIGNUM_INT_BITS;
  997. size_t nw = x->nw - size_t_min(x->nw, words);
  998. mp_int *r = mp_make_sized(size_t_max(nw, 1));
  999. mp_rshift_fixed_into(r, x, bits);
  1000. return r;
  1001. }
  1002. /*
  1003. * Safe right shift is done using the same technique as
  1004. * trim_leading_zeroes above: you make an n-word left shift by
  1005. * composing an appropriate subset of power-of-2-sized shifts, so it
  1006. * takes log_2(n) loop iterations each of which does a different shift
  1007. * by a power of 2 words, using the usual bit twiddling to make the
  1008. * whole shift conditional on the appropriate bit of n.
  1009. */
  1010. mp_int *mp_rshift_safe(mp_int *x, size_t bits)
  1011. {
  1012. size_t wordshift = bits / BIGNUM_INT_BITS;
  1013. size_t bitshift = bits % BIGNUM_INT_BITS;
  1014. mp_int *r = mp_copy(x);
  1015. unsigned clear = (r->nw - wordshift) >> (CHAR_BIT * sizeof(size_t) - 1);
  1016. mp_cond_clear(r, clear);
  1017. for (unsigned bit = 0; r->nw >> bit; bit++) {
  1018. size_t word_offset = 1 << bit;
  1019. BignumInt mask = -(BignumInt)((wordshift >> bit) & 1);
  1020. for (size_t i = 0; i < r->nw; i++) {
  1021. BignumInt w = mp_word(r, i + word_offset);
  1022. r->w[i] ^= (r->w[i] ^ w) & mask;
  1023. }
  1024. }
  1025. /*
  1026. * That's done the shifting by words; now we do the shifting by
  1027. * bits.
  1028. */
  1029. for (unsigned bit = 0; bit < BIGNUM_INT_BITS_BITS; bit++) {
  1030. unsigned shift = 1 << bit, upshift = BIGNUM_INT_BITS - shift;
  1031. BignumInt mask = -(BignumInt)((bitshift >> bit) & 1);
  1032. for (size_t i = 0; i < r->nw; i++) {
  1033. BignumInt w = ((r->w[i] >> shift) | (mp_word(r, i+1) << upshift));
  1034. r->w[i] ^= (r->w[i] ^ w) & mask;
  1035. }
  1036. }
  1037. return r;
  1038. }
  1039. void mp_reduce_mod_2to(mp_int *x, size_t p)
  1040. {
  1041. size_t word = p / BIGNUM_INT_BITS;
  1042. size_t mask = ((size_t)1 << (p % BIGNUM_INT_BITS)) - 1;
  1043. for (; word < x->nw; word++) {
  1044. x->w[word] &= mask;
  1045. mask = 0;
  1046. }
  1047. }
  1048. /*
  1049. * Inverse mod 2^n is computed by an iterative technique which doubles
  1050. * the number of bits at each step.
  1051. */
  1052. mp_int *mp_invert_mod_2to(mp_int *x, size_t p)
  1053. {
  1054. /* Input checks: x must be coprime to the modulus, i.e. odd, and p
  1055. * can't be zero */
  1056. assert(x->nw > 0);
  1057. assert(x->w[0] & 1);
  1058. assert(p > 0);
  1059. size_t rw = (p + BIGNUM_INT_BITS - 1) / BIGNUM_INT_BITS;
  1060. rw = size_t_max(rw, 1);
  1061. mp_int *r = mp_make_sized(rw);
  1062. size_t mul_scratchsize = mp_mul_scratchspace(2*rw, rw, rw);
  1063. mp_int *scratch_orig = mp_make_sized(6 * rw + mul_scratchsize);
  1064. mp_int scratch_per_iter = *scratch_orig;
  1065. mp_int mul_scratch = mp_alloc_from_scratch(
  1066. &scratch_per_iter, mul_scratchsize);
  1067. r->w[0] = 1;
  1068. for (size_t b = 1; b < p; b <<= 1) {
  1069. /*
  1070. * In each step of this iteration, we have the inverse of x
  1071. * mod 2^b, and we want the inverse of x mod 2^{2b}.
  1072. *
  1073. * Write B = 2^b for convenience, so we want x^{-1} mod B^2.
  1074. * Let x = x_0 + B x_1 + k B^2, with 0 <= x_0,x_1 < B.
  1075. *
  1076. * We want to find r_0 and r_1 such that
  1077. * (r_1 B + r_0) (x_1 B + x_0) == 1 (mod B^2)
  1078. *
  1079. * To begin with, we know r_0 must be the inverse mod B of
  1080. * x_0, i.e. of x, i.e. it is the inverse we computed in the
  1081. * previous iteration. So now all we need is r_1.
  1082. *
  1083. * Multiplying out, neglecting multiples of B^2, and writing
  1084. * x_0 r_0 = K B + 1, we have
  1085. *
  1086. * r_1 x_0 B + r_0 x_1 B + K B == 0 (mod B^2)
  1087. * => r_1 x_0 B == - r_0 x_1 B - K B (mod B^2)
  1088. * => r_1 x_0 == - r_0 x_1 - K (mod B)
  1089. * => r_1 == r_0 (- r_0 x_1 - K) (mod B)
  1090. *
  1091. * (the last step because we multiply through by the inverse
  1092. * of x_0, which we already know is r_0).
  1093. */
  1094. mp_int scratch_this_iter = scratch_per_iter;
  1095. size_t Bw = (b + BIGNUM_INT_BITS - 1) / BIGNUM_INT_BITS;
  1096. size_t B2w = (2*b + BIGNUM_INT_BITS - 1) / BIGNUM_INT_BITS;
  1097. /* Start by finding K: multiply x_0 by r_0, and shift down. */
  1098. mp_int x0 = mp_alloc_from_scratch(&scratch_this_iter, Bw);
  1099. mp_copy_into(&x0, x);
  1100. mp_reduce_mod_2to(&x0, b);
  1101. mp_int r0 = mp_make_alias(r, 0, Bw);
  1102. mp_int Kshift = mp_alloc_from_scratch(&scratch_this_iter, B2w);
  1103. mp_mul_internal(&Kshift, &x0, &r0, mul_scratch);
  1104. mp_int K = mp_alloc_from_scratch(&scratch_this_iter, Bw);
  1105. mp_rshift_fixed_into(&K, &Kshift, b);
  1106. /* Now compute the product r_0 x_1, reusing the space of Kshift. */
  1107. mp_int x1 = mp_alloc_from_scratch(&scratch_this_iter, Bw);
  1108. mp_rshift_fixed_into(&x1, x, b);
  1109. mp_reduce_mod_2to(&x1, b);
  1110. mp_int r0x1 = mp_make_alias(&Kshift, 0, Bw);
  1111. mp_mul_internal(&r0x1, &r0, &x1, mul_scratch);
  1112. /* Add K to that. */
  1113. mp_add_into(&r0x1, &r0x1, &K);
  1114. /* Negate it. */
  1115. mp_neg_into(&r0x1, &r0x1);
  1116. /* Multiply by r_0. */
  1117. mp_int r1 = mp_alloc_from_scratch(&scratch_this_iter, Bw);
  1118. mp_mul_internal(&r1, &r0, &r0x1, mul_scratch);
  1119. mp_reduce_mod_2to(&r1, b);
  1120. /* That's our r_1, so add it on to r_0 to get the full inverse
  1121. * output from this iteration. */
  1122. mp_lshift_fixed_into(&K, &r1, (b % BIGNUM_INT_BITS));
  1123. size_t Bpos = b / BIGNUM_INT_BITS;
  1124. mp_int r1_position = mp_make_alias(r, Bpos, B2w-Bpos);
  1125. mp_add_into(&r1_position, &r1_position, &K);
  1126. }
  1127. /* Finally, reduce mod the precise desired number of bits. */
  1128. mp_reduce_mod_2to(r, p);
  1129. mp_free(scratch_orig);
  1130. return r;
  1131. }
  1132. static size_t monty_scratch_size(MontyContext *mc)
  1133. {
  1134. return 3*mc->rw + mc->pw + mp_mul_scratchspace(mc->pw, mc->rw, mc->rw);
  1135. }
  1136. MontyContext *monty_new(mp_int *modulus)
  1137. {
  1138. MontyContext *mc = snew(MontyContext);
  1139. mc->rw = modulus->nw;
  1140. mc->rbits = mc->rw * BIGNUM_INT_BITS;
  1141. mc->pw = mc->rw * 2 + 1;
  1142. mc->m = mp_copy(modulus);
  1143. mc->minus_minv_mod_r = mp_invert_mod_2to(mc->m, mc->rbits);
  1144. mp_neg_into(mc->minus_minv_mod_r, mc->minus_minv_mod_r);
  1145. mp_int *r = mp_make_sized(mc->rw + 1);
  1146. r->w[mc->rw] = 1;
  1147. mc->powers_of_r_mod_m[0] = mp_mod(r, mc->m);
  1148. mp_free(r);
  1149. for (size_t j = 1; j < lenof(mc->powers_of_r_mod_m); j++)
  1150. mc->powers_of_r_mod_m[j] = mp_modmul(
  1151. mc->powers_of_r_mod_m[0], mc->powers_of_r_mod_m[j-1], mc->m);
  1152. mc->scratch = mp_make_sized(monty_scratch_size(mc));
  1153. return mc;
  1154. }
  1155. void monty_free(MontyContext *mc)
  1156. {
  1157. mp_free(mc->m);
  1158. for (size_t j = 0; j < 3; j++)
  1159. mp_free(mc->powers_of_r_mod_m[j]);
  1160. mp_free(mc->minus_minv_mod_r);
  1161. mp_free(mc->scratch);
  1162. smemclr(mc, sizeof(*mc));
  1163. sfree(mc);
  1164. }
  1165. /*
  1166. * The main Montgomery reduction step.
  1167. */
  1168. static mp_int monty_reduce_internal(MontyContext *mc, mp_int *x, mp_int scratch)
  1169. {
  1170. /*
  1171. * The trick with Montgomery reduction is that on the one hand we
  1172. * want to reduce the size of the input by a factor of about r,
  1173. * and on the other hand, the two numbers we just multiplied were
  1174. * both stored with an extra factor of r multiplied in. So we
  1175. * computed ar*br = ab r^2, but we want to return abr, so we need
  1176. * to divide by r - and if we can do that by _actually dividing_
  1177. * by r then this also reduces the size of the number.
  1178. *
  1179. * But we can only do that if the number we're dividing by r is a
  1180. * multiple of r. So first we must add an adjustment to it which
  1181. * clears its bottom 'rbits' bits. That adjustment must be a
  1182. * multiple of m in order to leave the residue mod n unchanged, so
  1183. * the question is, what multiple of m can we add to x to make it
  1184. * congruent to 0 mod r? And the answer is, x * (-m)^{-1} mod r.
  1185. */
  1186. /* x mod r */
  1187. mp_int x_lo = mp_make_alias(x, 0, mc->rbits);
  1188. /* x * (-m)^{-1}, i.e. the number we want to multiply by m */
  1189. mp_int k = mp_alloc_from_scratch(&scratch, mc->rw);
  1190. mp_mul_internal(&k, &x_lo, mc->minus_minv_mod_r, scratch);
  1191. /* m times that, i.e. the number we want to add to x */
  1192. mp_int mk = mp_alloc_from_scratch(&scratch, mc->pw);
  1193. mp_mul_internal(&mk, mc->m, &k, scratch);
  1194. /* Add it to x */
  1195. mp_add_into(&mk, x, &mk);
  1196. /* Reduce mod r, by simply making an alias to the upper words of x */
  1197. mp_int toret = mp_make_alias(&mk, mc->rw, mk.nw - mc->rw);
  1198. /*
  1199. * We'll generally be doing this after a multiplication of two
  1200. * fully reduced values. So our input could be anything up to m^2,
  1201. * and then we added up to rm to it. Hence, the maximum value is
  1202. * rm+m^2, and after dividing by r, that becomes r + m(m/r) < 2r.
  1203. * So a single trial-subtraction will finish reducing to the
  1204. * interval [0,m).
  1205. */
  1206. mp_cond_sub_into(&toret, &toret, mc->m, mp_cmp_hs(&toret, mc->m));
  1207. return toret;
  1208. }
  1209. void monty_mul_into(MontyContext *mc, mp_int *r, mp_int *x, mp_int *y)
  1210. {
  1211. assert(x->nw <= mc->rw);
  1212. assert(y->nw <= mc->rw);
  1213. mp_int scratch = *mc->scratch;
  1214. mp_int tmp = mp_alloc_from_scratch(&scratch, 2*mc->rw);
  1215. mp_mul_into(&tmp, x, y);
  1216. mp_int reduced = monty_reduce_internal(mc, &tmp, scratch);
  1217. mp_copy_into(r, &reduced);
  1218. mp_clear(mc->scratch);
  1219. }
  1220. mp_int *monty_mul(MontyContext *mc, mp_int *x, mp_int *y)
  1221. {
  1222. mp_int *toret = mp_make_sized(mc->rw);
  1223. monty_mul_into(mc, toret, x, y);
  1224. return toret;
  1225. }
  1226. mp_int *monty_modulus(MontyContext *mc)
  1227. {
  1228. return mc->m;
  1229. }
  1230. mp_int *monty_identity(MontyContext *mc)
  1231. {
  1232. return mc->powers_of_r_mod_m[0];
  1233. }
  1234. mp_int *monty_invert(MontyContext *mc, mp_int *x)
  1235. {
  1236. /* Given xr, we want to return x^{-1}r = (xr)^{-1} r^2 =
  1237. * monty_reduce((xr)^{-1} r^3) */
  1238. mp_int *tmp = mp_invert(x, mc->m);
  1239. mp_int *toret = monty_mul(mc, tmp, mc->powers_of_r_mod_m[2]);
  1240. mp_free(tmp);
  1241. return toret;
  1242. }
  1243. /*
  1244. * Importing a number into Montgomery representation involves
  1245. * multiplying it by r and reducing mod m. We use the general-purpose
  1246. * mp_modmul for this, in case the input number is out of range.
  1247. */
  1248. mp_int *monty_import(MontyContext *mc, mp_int *x)
  1249. {
  1250. return mp_modmul(x, mc->powers_of_r_mod_m[0], mc->m);
  1251. }
  1252. void monty_import_into(MontyContext *mc, mp_int *r, mp_int *x)
  1253. {
  1254. mp_int *imported = monty_import(mc, x);
  1255. mp_copy_into(r, imported);
  1256. mp_free(imported);
  1257. }
  1258. /*
  1259. * Exporting a number means multiplying it by r^{-1}, which is exactly
  1260. * what monty_reduce does anyway, so we just do that.
  1261. */
  1262. void monty_export_into(MontyContext *mc, mp_int *r, mp_int *x)
  1263. {
  1264. assert(x->nw <= 2*mc->rw);
  1265. mp_int reduced = monty_reduce_internal(mc, x, *mc->scratch);
  1266. mp_copy_into(r, &reduced);
  1267. mp_clear(mc->scratch);
  1268. }
  1269. mp_int *monty_export(MontyContext *mc, mp_int *x)
  1270. {
  1271. mp_int *toret = mp_make_sized(mc->rw);
  1272. monty_export_into(mc, toret, x);
  1273. return toret;
  1274. }
  1275. static void monty_reduce(MontyContext *mc, mp_int *x)
  1276. {
  1277. mp_int reduced = monty_reduce_internal(mc, x, *mc->scratch);
  1278. mp_copy_into(x, &reduced);
  1279. mp_clear(mc->scratch);
  1280. }
  1281. mp_int *monty_pow(MontyContext *mc, mp_int *base, mp_int *exponent)
  1282. {
  1283. /* square builds up powers of the form base^{2^i}. */
  1284. mp_int *square = mp_copy(base);
  1285. size_t i = 0;
  1286. /* out accumulates the output value. Starts at 1 (in Montgomery
  1287. * representation) and we multiply in each base^{2^i}. */
  1288. mp_int *out = mp_copy(mc->powers_of_r_mod_m[0]);
  1289. /* tmp holds each product we compute and reduce. */
  1290. mp_int *tmp = mp_make_sized(mc->rw * 2);
  1291. while (true) {
  1292. mp_mul_into(tmp, out, square);
  1293. monty_reduce(mc, tmp);
  1294. mp_select_into(out, out, tmp, mp_get_bit(exponent, i));
  1295. if (++i >= exponent->nw * BIGNUM_INT_BITS)
  1296. break;
  1297. mp_mul_into(tmp, square, square);
  1298. monty_reduce(mc, tmp);
  1299. mp_copy_into(square, tmp);
  1300. }
  1301. mp_free(square);
  1302. mp_free(tmp);
  1303. mp_clear(mc->scratch);
  1304. return out;
  1305. }
  1306. mp_int *mp_modpow(mp_int *base, mp_int *exponent, mp_int *modulus)
  1307. {
  1308. assert(modulus->nw > 0);
  1309. assert(modulus->w[0] & 1);
  1310. MontyContext *mc = monty_new(modulus);
  1311. mp_int *m_base = monty_import(mc, base);
  1312. mp_int *m_out = monty_pow(mc, m_base, exponent);
  1313. mp_int *out = monty_export(mc, m_out);
  1314. mp_free(m_base);
  1315. mp_free(m_out);
  1316. monty_free(mc);
  1317. return out;
  1318. }
  1319. /*
  1320. * Given two coprime nonzero input integers a,b, returns two integers
  1321. * A,B such that A*a - B*b = 1. A,B will be the minimal non-negative
  1322. * pair satisfying that criterion, which is equivalent to saying that
  1323. * 0<=A<b and 0<=B<a.
  1324. *
  1325. * This algorithm is an adapted form of Stein's algorithm, which
  1326. * computes gcd(a,b) using only addition and bit shifts (i.e. without
  1327. * needing general division), using the following rules:
  1328. *
  1329. * - if both of a,b are even, divide off a common factor of 2
  1330. * - if one of a,b (WLOG a) is even, then gcd(a,b) = gcd(a/2,b), so
  1331. * just divide a by 2
  1332. * - if both of a,b are odd, then WLOG a>b, and gcd(a,b) =
  1333. * gcd(b,(a-b)/2).
  1334. *
  1335. * For this application, I always expect the actual gcd to be coprime,
  1336. * so we can rule out the 'both even' initial case. So this function
  1337. * just performs a sequence of reductions in the following form:
  1338. *
  1339. * - if a,b are both odd, sort them so that a > b, and replace a with
  1340. * b-a; otherwise sort them so that a is the even one
  1341. * - either way, now a is even and b is odd, so divide a by 2.
  1342. *
  1343. * The big change to Stein's algorithm is that we need the Bezout
  1344. * coefficients as output, not just the gcd. So we need to know how to
  1345. * generate those in each case, based on the coefficients from the
  1346. * reduced pair of numbers:
  1347. *
  1348. * - If a is even, and u,v are such that u*(a/2) + v*b = 1:
  1349. * + if u is also even, then this is just (u/2)*a + v*b = 1
  1350. * + otherwise, (u+b)*(a/2) + (v-a/2)*b is also equal to 1, and
  1351. * since u and b are both odd, (u+b)/2 is an integer, so we have
  1352. * ((u+b)/2)*a + (v-a/2)*b = 1.
  1353. *
  1354. * - If a,b are both odd, and u,v are such that u*b + v*(a-b) = 1,
  1355. * then v*a + (u-v)*b = 1.
  1356. *
  1357. * In the case where we passed from (a,b) to (b,(a-b)/2), we regard it
  1358. * as having first subtracted b from a and then halved a, so both of
  1359. * these transformations must be done in sequence.
  1360. *
  1361. * The code below transforms this from a recursive to an iterative
  1362. * algorithm. We first reduce a,b to 0,1, recording at each stage
  1363. * whether we did the initial subtraction, and whether we had to swap
  1364. * the two values; then we iterate backwards over that record of what
  1365. * we did, applying the above rules for building up the Bezout
  1366. * coefficients as we go. Of course, all the case analysis is done by
  1367. * the usual bit-twiddling conditionalisation to avoid data-dependent
  1368. * control flow.
  1369. *
  1370. * Also, since these mp_ints are generally treated as unsigned, we
  1371. * store the coefficients by absolute value, with the semantics that
  1372. * they always have opposite sign, and in the unwinding loop we keep a
  1373. * bit indicating whether Aa-Bb is currently expected to be +1 or -1,
  1374. * so that we can do one final conditional adjustment if it's -1.
  1375. *
  1376. * Once the reduction rules have managed to reduce the input numbers
  1377. * to (0,1), then they are stable (the next reduction will always
  1378. * divide the even one by 2, which maps 0 to 0). So it doesn't matter
  1379. * if we do more steps of the algorithm than necessary; hence, for
  1380. * constant time, we just need to find the maximum number we could
  1381. * _possibly_ require, and do that many.
  1382. *
  1383. * If a,b < 2^n, at most 2n iterations are required. Proof: consider
  1384. * the quantity Q = log_2(a) + log_2(b). Every step halves one of the
  1385. * numbers (and may also reduce one of them further by doing a
  1386. * subtraction beforehand, but in the worst case, not by much or not
  1387. * at all). So Q reduces by at least 1 per iteration, and it starts
  1388. * off with a value at most 2n.
  1389. *
  1390. * The worst case inputs (I think) are where x=2^{n-1} and y=2^n-1
  1391. * (i.e. x is a power of 2 and y is all 1s). In that situation, the
  1392. * first n-1 steps repeatedly halve x until it's 1, and then there are
  1393. * n further steps each of which subtracts 1 from y and halves it.
  1394. */
  1395. static void mp_bezout_into(mp_int *a_coeff_out, mp_int *b_coeff_out,
  1396. mp_int *a_in, mp_int *b_in)
  1397. {
  1398. size_t nw = size_t_max(1, size_t_max(a_in->nw, b_in->nw));
  1399. /* Make mutable copies of the input numbers */
  1400. mp_int *a = mp_make_sized(nw), *b = mp_make_sized(nw);
  1401. mp_copy_into(a, a_in);
  1402. mp_copy_into(b, b_in);
  1403. /* Space to build up the output coefficients, with an extra word
  1404. * so that intermediate values can overflow off the top and still
  1405. * right-shift back down to the correct value */
  1406. mp_int *ac = mp_make_sized(nw + 1), *bc = mp_make_sized(nw + 1);
  1407. /* And a general-purpose temp register */
  1408. mp_int *tmp = mp_make_sized(nw);
  1409. /* Space to record the sequence of reduction steps to unwind. We
  1410. * make it a BignumInt for no particular reason except that (a)
  1411. * mp_make_sized conveniently zeroes the allocation and mp_free
  1412. * wipes it, and (b) this way I can use mp_dump() if I have to
  1413. * debug this code. */
  1414. size_t steps = 2 * nw * BIGNUM_INT_BITS;
  1415. mp_int *record = mp_make_sized(
  1416. (steps*2 + BIGNUM_INT_BITS - 1) / BIGNUM_INT_BITS);
  1417. for (size_t step = 0; step < steps; step++) {
  1418. /*
  1419. * If a and b are both odd, we want to sort them so that a is
  1420. * larger. But if one is even, we want to sort them so that a
  1421. * is the even one.
  1422. */
  1423. unsigned swap_if_both_odd = mp_cmp_hs(b, a);
  1424. unsigned swap_if_one_even = a->w[0] & 1;
  1425. unsigned both_odd = a->w[0] & b->w[0] & 1;
  1426. unsigned swap = swap_if_one_even ^ (
  1427. (swap_if_both_odd ^ swap_if_one_even) & both_odd);
  1428. mp_cond_swap(a, b, swap);
  1429. /*
  1430. * If a,b are both odd, then a is the larger number, so
  1431. * subtract the smaller one from it.
  1432. */
  1433. mp_cond_sub_into(a, a, b, both_odd);
  1434. /*
  1435. * Now a is even, so divide it by two.
  1436. */
  1437. mp_rshift_fixed_into(a, a, 1);
  1438. /*
  1439. * Record the two 1-bit values both_odd and swap.
  1440. */
  1441. mp_set_bit(record, step*2, both_odd);
  1442. mp_set_bit(record, step*2+1, swap);
  1443. }
  1444. /*
  1445. * Now we expect to have reduced the two numbers to 0 and 1,
  1446. * although we don't know which way round. (But we avoid checking
  1447. * this by assertion; sometimes we'll need to do this computation
  1448. * without giving away that we already know the inputs were bogus.
  1449. * So we'd prefer to just press on and return nonsense.)
  1450. */
  1451. /*
  1452. * So their Bezout coefficients at this point are simply
  1453. * themselves.
  1454. */
  1455. mp_copy_into(ac, a);
  1456. mp_copy_into(bc, b);
  1457. /*
  1458. * We'll maintain the invariant as we unwind that ac * a - bc * b
  1459. * is either +1 or -1, and we'll remember which. (We _could_ keep
  1460. * it at +1 the whole time, but it would cost more work every time
  1461. * round the loop, so it's cheaper to fix that up once at the
  1462. * end.)
  1463. *
  1464. * Initially, the result is +1 if a was the nonzero value after
  1465. * reduction, and -1 if b was.
  1466. */
  1467. unsigned minus_one = b->w[0];
  1468. for (size_t step = steps; step-- > 0 ;) {
  1469. /*
  1470. * Recover the data from the step we're unwinding.
  1471. */
  1472. unsigned both_odd = mp_get_bit(record, step*2);
  1473. unsigned swap = mp_get_bit(record, step*2+1);
  1474. /*
  1475. * Unwind the division: if our coefficient of a is odd, we
  1476. * adjust the coefficients by +b and +a respectively.
  1477. */
  1478. unsigned adjust = ac->w[0] & 1;
  1479. mp_cond_add_into(ac, ac, b, adjust);
  1480. mp_cond_add_into(bc, bc, a, adjust);
  1481. /*
  1482. * Now ac is definitely even, so we divide it by two.
  1483. */
  1484. mp_rshift_fixed_into(ac, ac, 1);
  1485. /*
  1486. * Now unwind the subtraction, if there was one, by adding
  1487. * ac to bc.
  1488. */
  1489. mp_cond_add_into(bc, bc, ac, both_odd);
  1490. /*
  1491. * Undo the transformation of the input numbers, by
  1492. * multiplying a by 2 and then adding b to a (the latter
  1493. * only if both_odd).
  1494. */
  1495. mp_lshift_fixed_into(a, a, 1);
  1496. mp_cond_add_into(a, a, b, both_odd);
  1497. /*
  1498. * Finally, undo the swap. If we do swap, this also
  1499. * reverses the sign of the current result ac*a+bc*b.
  1500. */
  1501. mp_cond_swap(a, b, swap);
  1502. mp_cond_swap(ac, bc, swap);
  1503. minus_one ^= swap;
  1504. }
  1505. /*
  1506. * Now we expect to have recovered the input a,b.
  1507. */
  1508. assert(mp_cmp_eq(a, a_in) & mp_cmp_eq(b, b_in));
  1509. /*
  1510. * But we might find that our current result is -1 instead of +1,
  1511. * that is, we have A',B' such that A'a - B'b = -1.
  1512. *
  1513. * In that situation, we set A = b-A' and B = a-B', giving us
  1514. * Aa-Bb = ab - A'a - ab + B'b = +1.
  1515. */
  1516. mp_sub_into(tmp, b, ac);
  1517. mp_select_into(ac, ac, tmp, minus_one);
  1518. mp_sub_into(tmp, a, bc);
  1519. mp_select_into(bc, bc, tmp, minus_one);
  1520. /*
  1521. * Now we really are done. Return the outputs.
  1522. */
  1523. if (a_coeff_out)
  1524. mp_copy_into(a_coeff_out, ac);
  1525. if (b_coeff_out)
  1526. mp_copy_into(b_coeff_out, bc);
  1527. mp_free(a);
  1528. mp_free(b);
  1529. mp_free(ac);
  1530. mp_free(bc);
  1531. mp_free(tmp);
  1532. mp_free(record);
  1533. }
  1534. mp_int *mp_invert(mp_int *x, mp_int *m)
  1535. {
  1536. mp_int *result = mp_make_sized(m->nw);
  1537. mp_bezout_into(result, NULL, x, m);
  1538. return result;
  1539. }
  1540. static uint32_t recip_approx_32(uint32_t x)
  1541. {
  1542. /*
  1543. * Given an input x in [2^31,2^32), i.e. a uint32_t with its high
  1544. * bit set, this function returns an approximation to 2^63/x,
  1545. * computed using only multiplications and bit shifts just in case
  1546. * the C divide operator has non-constant time (either because the
  1547. * underlying machine instruction does, or because the operator
  1548. * expands to a library function on a CPU without hardware
  1549. * division).
  1550. *
  1551. * The coefficients are derived from those of the degree-9
  1552. * polynomial which is the minimax-optimal approximation to that
  1553. * function on the given interval (generated using the Remez
  1554. * algorithm), converted into integer arithmetic with shifts used
  1555. * to maximise the number of significant bits at every state. (A
  1556. * sort of 'static floating point' - the exponent is statically
  1557. * known at every point in the code, so it never needs to be
  1558. * stored at run time or to influence runtime decisions.)
  1559. *
  1560. * Exhaustive iteration over the whole input space shows the
  1561. * largest possible error to be 1686.54. (The input value
  1562. * attaining that bound is 4226800006 == 0xfbefd986, whose true
  1563. * reciprocal is 2182116973.540... == 0x8210766d.8a6..., whereas
  1564. * this function returns 2182115287 == 0x82106fd7.)
  1565. */
  1566. uint64_t r = 0x92db03d6ULL;
  1567. r = 0xf63e71eaULL - ((r*x) >> 34);
  1568. r = 0xb63721e8ULL - ((r*x) >> 34);
  1569. r = 0x9c2da00eULL - ((r*x) >> 33);
  1570. r = 0xaada0bb8ULL - ((r*x) >> 32);
  1571. r = 0xf75cd403ULL - ((r*x) >> 31);
  1572. r = 0xecf97a41ULL - ((r*x) >> 31);
  1573. r = 0x90d876cdULL - ((r*x) >> 31);
  1574. r = 0x6682799a0ULL - ((r*x) >> 26);
  1575. return r;
  1576. }
  1577. void mp_divmod_into(mp_int *n, mp_int *d, mp_int *q_out, mp_int *r_out)
  1578. {
  1579. assert(!mp_eq_integer(d, 0));
  1580. /*
  1581. * We do division by using Newton-Raphson iteration to converge to
  1582. * the reciprocal of d (or rather, R/d for R a sufficiently large
  1583. * power of 2); then we multiply that reciprocal by n; and we
  1584. * finish up with conditional subtraction.
  1585. *
  1586. * But we have to do it in a fixed number of N-R iterations, so we
  1587. * need some error analysis to know how many we might need.
  1588. *
  1589. * The iteration is derived by defining f(r) = d - R/r.
  1590. * Differentiating gives f'(r) = R/r^2, and the Newton-Raphson
  1591. * formula applied to those functions gives
  1592. *
  1593. * r_{i+1} = r_i - f(r_i) / f'(r_i)
  1594. * = r_i - (d - R/r_i) r_i^2 / R
  1595. * = r_i (2 R - d r_i) / R
  1596. *
  1597. * Now let e_i be the error in a given iteration, in the sense
  1598. * that
  1599. *
  1600. * d r_i = R + e_i
  1601. * i.e. e_i/R = (r_i - r_true) / r_true
  1602. *
  1603. * so e_i is the _relative_ error in r_i.
  1604. *
  1605. * We must also introduce a rounding-error term, because the
  1606. * division by R always gives an integer. This might make the
  1607. * output off by up to 1 (in the negative direction, because
  1608. * right-shifting gives floor of the true quotient). So when we
  1609. * divide by R, we must imagine adding some f in [0,1). Then we
  1610. * have
  1611. *
  1612. * d r_{i+1} = d r_i (2 R - d r_i) / R - d f
  1613. * = (R + e_i) (R - e_i) / R - d f
  1614. * = (R^2 - e_i^2) / R - d f
  1615. * = R - (e_i^2 / R + d f)
  1616. * => e_{i+1} = - (e_i^2 / R + d f)
  1617. *
  1618. * The sum of two positive quantities is bounded above by twice
  1619. * their max, and max |f| = 1, so we can bound this as follows:
  1620. *
  1621. * |e_{i+1}| <= 2 max (e_i^2/R, d)
  1622. * |e_{i+1}/R| <= 2 max ((e_i/R)^2, d/R)
  1623. * log2 |R/e_{i+1}| <= min (2 log2 |R/e_i|, log2 |R/d|) - 1
  1624. *
  1625. * which tells us that the number of 'good' bits - i.e.
  1626. * log2(R/e_i) - very nearly doubles at every iteration (apart
  1627. * from that subtraction of 1), until it gets to the same size as
  1628. * log2(R/d). In other words, the size of R in bits has to be the
  1629. * size of denominator we're putting in, _plus_ the amount of
  1630. * precision we want to get back out.
  1631. *
  1632. * So when we multiply n (the input numerator) by our final
  1633. * reciprocal approximation r, but actually r differs from R/d by
  1634. * up to 2, then it follows that
  1635. *
  1636. * n/d - nr/R = n/d - [ n (R/d + e) ] / R
  1637. * = n/d - [ (n/d) R + n e ] / R
  1638. * = -ne/R
  1639. * => 0 <= n/d - nr/R < 2n/R
  1640. *
  1641. * so our computed quotient can differ from the true n/d by up to
  1642. * 2n/R. Hence, as long as we also choose R large enough that 2n/R
  1643. * is bounded above by a constant, we can guarantee a bounded
  1644. * number of final conditional-subtraction steps.
  1645. */
  1646. /*
  1647. * Get at least 32 of the most significant bits of the input
  1648. * number.
  1649. */
  1650. size_t hiword_index = 0;
  1651. uint64_t hibits = 0, lobits = 0;
  1652. mp_find_highest_nonzero_word_pair(d, 64 - BIGNUM_INT_BITS,
  1653. &hiword_index, &hibits, &lobits);
  1654. /*
  1655. * Make a shifted combination of those two words which puts the
  1656. * topmost bit of the number at bit 63.
  1657. */
  1658. size_t shift_up = 0;
  1659. for (size_t i = BIGNUM_INT_BITS_BITS; i-- > 0;) {
  1660. size_t sl = 1 << i; /* left shift count */
  1661. size_t sr = 64 - sl; /* complementary right-shift count */
  1662. /* Should we shift up? */
  1663. unsigned indicator = 1 ^ normalise_to_1_u64(hibits >> sr);
  1664. /* If we do, what will we get? */
  1665. uint64_t new_hibits = (hibits << sl) | (lobits >> sr);
  1666. uint64_t new_lobits = lobits << sl;
  1667. size_t new_shift_up = shift_up + sl;
  1668. /* Conditionally swap those values in. */
  1669. hibits ^= (hibits ^ new_hibits ) & -(uint64_t)indicator;
  1670. lobits ^= (lobits ^ new_lobits ) & -(uint64_t)indicator;
  1671. shift_up ^= (shift_up ^ new_shift_up ) & -(size_t) indicator;
  1672. }
  1673. /*
  1674. * So now we know the most significant 32 bits of d are at the top
  1675. * of hibits. Approximate the reciprocal of those bits.
  1676. */
  1677. lobits = (uint64_t)recip_approx_32(hibits >> 32) << 32;
  1678. hibits = 0;
  1679. /*
  1680. * And shift that up by as many bits as the input was shifted up
  1681. * just now, so that the product of this approximation and the
  1682. * actual input will be close to a fixed power of two regardless
  1683. * of where the MSB was.
  1684. *
  1685. * I do this in another log n individual passes, partly in case
  1686. * the CPU's register-controlled shift operation isn't
  1687. * time-constant, and also in case the compiler code-generates
  1688. * uint64_t shifts out of a variable number of smaller-word shift
  1689. * instructions, e.g. by splitting up into cases.
  1690. */
  1691. for (size_t i = BIGNUM_INT_BITS_BITS; i-- > 0;) {
  1692. size_t sl = 1 << i; /* left shift count */
  1693. size_t sr = 64 - sl; /* complementary right-shift count */
  1694. /* Should we shift up? */
  1695. unsigned indicator = 1 & (shift_up >> i);
  1696. /* If we do, what will we get? */
  1697. uint64_t new_hibits = (hibits << sl) | (lobits >> sr);
  1698. uint64_t new_lobits = lobits << sl;
  1699. /* Conditionally swap those values in. */
  1700. hibits ^= (hibits ^ new_hibits ) & -(uint64_t)indicator;
  1701. lobits ^= (lobits ^ new_lobits ) & -(uint64_t)indicator;
  1702. }
  1703. /*
  1704. * The product of the 128-bit value now in hibits:lobits with the
  1705. * 128-bit value we originally retrieved in the same variables
  1706. * will be in the vicinity of 2^191. So we'll take log2(R) to be
  1707. * 191, plus a multiple of BIGNUM_INT_BITS large enough to allow R
  1708. * to hold the combined sizes of n and d.
  1709. */
  1710. size_t log2_R;
  1711. {
  1712. size_t max_log2_n = (n->nw + d->nw) * BIGNUM_INT_BITS;
  1713. log2_R = max_log2_n + 3;
  1714. log2_R -= size_t_min(191, log2_R);
  1715. log2_R = (log2_R + BIGNUM_INT_BITS - 1) & ~(BIGNUM_INT_BITS - 1);
  1716. log2_R += 191;
  1717. }
  1718. /* Number of words in a bignum capable of holding numbers the size
  1719. * of twice R. */
  1720. size_t rw = ((log2_R+2) + BIGNUM_INT_BITS - 1) / BIGNUM_INT_BITS;
  1721. /*
  1722. * Now construct our full-sized starting reciprocal approximation.
  1723. */
  1724. mp_int *r_approx = mp_make_sized(rw);
  1725. size_t output_bit_index;
  1726. {
  1727. /* Where in the input number did the input 128-bit value come from? */
  1728. size_t input_bit_index =
  1729. (hiword_index * BIGNUM_INT_BITS) - (128 - BIGNUM_INT_BITS);
  1730. /* So how far do we need to shift our 64-bit output, if the
  1731. * product of those two fixed-size values is 2^191 and we want
  1732. * to make it 2^log2_R instead? */
  1733. output_bit_index = log2_R - 191 - input_bit_index;
  1734. /* If we've done all that right, it should be a whole number
  1735. * of words. */
  1736. assert(output_bit_index % BIGNUM_INT_BITS == 0);
  1737. size_t output_word_index = output_bit_index / BIGNUM_INT_BITS;
  1738. mp_add_integer_into_shifted_by_words(
  1739. r_approx, r_approx, lobits, output_word_index);
  1740. mp_add_integer_into_shifted_by_words(
  1741. r_approx, r_approx, hibits,
  1742. output_word_index + 64 / BIGNUM_INT_BITS);
  1743. }
  1744. /*
  1745. * Make the constant 2*R, which we'll need in the iteration.
  1746. */
  1747. mp_int *two_R = mp_make_sized(rw);
  1748. mp_add_integer_into_shifted_by_words(
  1749. two_R, two_R, (BignumInt)1 << ((log2_R+1) % BIGNUM_INT_BITS),
  1750. (log2_R+1) / BIGNUM_INT_BITS);
  1751. /*
  1752. * Scratch space.
  1753. */
  1754. mp_int *dr = mp_make_sized(rw + d->nw);
  1755. mp_int *diff = mp_make_sized(size_t_max(rw, dr->nw));
  1756. mp_int *product = mp_make_sized(rw + diff->nw);
  1757. size_t scratchsize = size_t_max(
  1758. mp_mul_scratchspace(dr->nw, r_approx->nw, d->nw),
  1759. mp_mul_scratchspace(product->nw, r_approx->nw, diff->nw));
  1760. mp_int *scratch = mp_make_sized(scratchsize);
  1761. mp_int product_shifted = mp_make_alias(
  1762. product, log2_R / BIGNUM_INT_BITS, product->nw);
  1763. /*
  1764. * Initial error estimate: the 32-bit output of recip_approx_32
  1765. * differs by less than 2048 (== 2^11) from the true top 32 bits
  1766. * of the reciprocal, so the relative error is at most 2^11
  1767. * divided by the 32-bit reciprocal, which at worst is 2^11/2^31 =
  1768. * 2^-20. So even in the worst case, we have 20 good bits of
  1769. * reciprocal to start with.
  1770. */
  1771. size_t good_bits = 31 - 11;
  1772. size_t good_bits_needed = BIGNUM_INT_BITS * n->nw + 4; /* add a few */
  1773. /*
  1774. * Now do Newton-Raphson iterations until we have reason to think
  1775. * they're not converging any more.
  1776. */
  1777. while (good_bits < good_bits_needed) {
  1778. /*
  1779. * Compute the next iterate.
  1780. */
  1781. mp_mul_internal(dr, r_approx, d, *scratch);
  1782. mp_sub_into(diff, two_R, dr);
  1783. mp_mul_internal(product, r_approx, diff, *scratch);
  1784. mp_rshift_fixed_into(r_approx, &product_shifted,
  1785. log2_R % BIGNUM_INT_BITS);
  1786. /*
  1787. * Adjust the error estimate.
  1788. */
  1789. good_bits = good_bits * 2 - 1;
  1790. }
  1791. mp_free(dr);
  1792. mp_free(diff);
  1793. mp_free(product);
  1794. mp_free(scratch);
  1795. /*
  1796. * Now we've got our reciprocal, we can compute the quotient, by
  1797. * multiplying in n and then shifting down by log2_R bits.
  1798. */
  1799. mp_int *quotient_full = mp_mul(r_approx, n);
  1800. mp_int quotient_alias = mp_make_alias(
  1801. quotient_full, log2_R / BIGNUM_INT_BITS, quotient_full->nw);
  1802. mp_int *quotient = mp_make_sized(n->nw);
  1803. mp_rshift_fixed_into(quotient, &quotient_alias, log2_R % BIGNUM_INT_BITS);
  1804. /*
  1805. * Next, compute the remainder.
  1806. */
  1807. mp_int *remainder = mp_make_sized(d->nw);
  1808. mp_mul_into(remainder, quotient, d);
  1809. mp_sub_into(remainder, n, remainder);
  1810. /*
  1811. * Finally, two conditional subtractions to fix up any remaining
  1812. * rounding error. (I _think_ one should be enough, but this
  1813. * routine isn't time-critical enough to take chances.)
  1814. */
  1815. unsigned q_correction = 0;
  1816. for (unsigned iter = 0; iter < 2; iter++) {
  1817. unsigned need_correction = mp_cmp_hs(remainder, d);
  1818. mp_cond_sub_into(remainder, remainder, d, need_correction);
  1819. q_correction += need_correction;
  1820. }
  1821. mp_add_integer_into(quotient, quotient, q_correction);
  1822. /*
  1823. * Now we should have a perfect answer, i.e. 0 <= r < d.
  1824. */
  1825. assert(!mp_cmp_hs(remainder, d));
  1826. if (q_out)
  1827. mp_copy_into(q_out, quotient);
  1828. if (r_out)
  1829. mp_copy_into(r_out, remainder);
  1830. mp_free(r_approx);
  1831. mp_free(two_R);
  1832. mp_free(quotient_full);
  1833. mp_free(quotient);
  1834. mp_free(remainder);
  1835. }
  1836. mp_int *mp_div(mp_int *n, mp_int *d)
  1837. {
  1838. mp_int *q = mp_make_sized(n->nw);
  1839. mp_divmod_into(n, d, q, NULL);
  1840. return q;
  1841. }
  1842. mp_int *mp_mod(mp_int *n, mp_int *d)
  1843. {
  1844. mp_int *r = mp_make_sized(d->nw);
  1845. mp_divmod_into(n, d, NULL, r);
  1846. return r;
  1847. }
  1848. mp_int *mp_modmul(mp_int *x, mp_int *y, mp_int *modulus)
  1849. {
  1850. mp_int *product = mp_mul(x, y);
  1851. mp_int *reduced = mp_mod(product, modulus);
  1852. mp_free(product);
  1853. return reduced;
  1854. }
  1855. mp_int *mp_modadd(mp_int *x, mp_int *y, mp_int *modulus)
  1856. {
  1857. mp_int *sum = mp_add(x, y);
  1858. mp_int *reduced = mp_mod(sum, modulus);
  1859. mp_free(sum);
  1860. return reduced;
  1861. }
  1862. mp_int *mp_modsub(mp_int *x, mp_int *y, mp_int *modulus)
  1863. {
  1864. mp_int *diff = mp_make_sized(size_t_max(x->nw, y->nw));
  1865. mp_sub_into(diff, x, y);
  1866. unsigned negate = mp_cmp_hs(y, x);
  1867. mp_cond_negate(diff, diff, negate);
  1868. mp_int *residue = mp_mod(diff, modulus);
  1869. mp_cond_negate(residue, residue, negate);
  1870. /* If we've just negated the residue, then it will be < 0 and need
  1871. * the modulus adding to it to make it positive - *except* if the
  1872. * residue was zero when we negated it. */
  1873. unsigned make_positive = negate & ~mp_eq_integer(residue, 0);
  1874. mp_cond_add_into(residue, residue, modulus, make_positive);
  1875. mp_free(diff);
  1876. return residue;
  1877. }
  1878. static mp_int *mp_modadd_in_range(mp_int *x, mp_int *y, mp_int *modulus)
  1879. {
  1880. mp_int *sum = mp_make_sized(modulus->nw);
  1881. unsigned carry = mp_add_into_internal(sum, x, y);
  1882. mp_cond_sub_into(sum, sum, modulus, carry | mp_cmp_hs(sum, modulus));
  1883. return sum;
  1884. }
  1885. static mp_int *mp_modsub_in_range(mp_int *x, mp_int *y, mp_int *modulus)
  1886. {
  1887. mp_int *diff = mp_make_sized(modulus->nw);
  1888. mp_sub_into(diff, x, y);
  1889. mp_cond_add_into(diff, diff, modulus, 1 ^ mp_cmp_hs(x, y));
  1890. return diff;
  1891. }
  1892. mp_int *monty_add(MontyContext *mc, mp_int *x, mp_int *y)
  1893. {
  1894. return mp_modadd_in_range(x, y, mc->m);
  1895. }
  1896. mp_int *monty_sub(MontyContext *mc, mp_int *x, mp_int *y)
  1897. {
  1898. return mp_modsub_in_range(x, y, mc->m);
  1899. }
  1900. void mp_min_into(mp_int *r, mp_int *x, mp_int *y)
  1901. {
  1902. mp_select_into(r, x, y, mp_cmp_hs(x, y));
  1903. }
  1904. void mp_max_into(mp_int *r, mp_int *x, mp_int *y)
  1905. {
  1906. mp_select_into(r, y, x, mp_cmp_hs(x, y));
  1907. }
  1908. mp_int *mp_min(mp_int *x, mp_int *y)
  1909. {
  1910. mp_int *r = mp_make_sized(size_t_min(x->nw, y->nw));
  1911. mp_min_into(r, x, y);
  1912. return r;
  1913. }
  1914. mp_int *mp_max(mp_int *x, mp_int *y)
  1915. {
  1916. mp_int *r = mp_make_sized(size_t_max(x->nw, y->nw));
  1917. mp_max_into(r, x, y);
  1918. return r;
  1919. }
  1920. mp_int *mp_power_2(size_t power)
  1921. {
  1922. mp_int *x = mp_new(power + 1);
  1923. mp_set_bit(x, power, 1);
  1924. return x;
  1925. }
  1926. struct ModsqrtContext {
  1927. mp_int *p; /* the prime */
  1928. MontyContext *mc; /* for doing arithmetic mod p */
  1929. /* Decompose p-1 as 2^e k, for positive integer e and odd k */
  1930. size_t e;
  1931. mp_int *k;
  1932. mp_int *km1o2; /* (k-1)/2 */
  1933. /* The user-provided value z which is not a quadratic residue mod
  1934. * p, and its kth power. Both in Montgomery form. */
  1935. mp_int *z, *zk;
  1936. };
  1937. ModsqrtContext *modsqrt_new(mp_int *p, mp_int *any_nonsquare_mod_p)
  1938. {
  1939. ModsqrtContext *sc = snew(ModsqrtContext);
  1940. memset(sc, 0, sizeof(ModsqrtContext));
  1941. sc->p = mp_copy(p);
  1942. sc->mc = monty_new(sc->p);
  1943. sc->z = monty_import(sc->mc, any_nonsquare_mod_p);
  1944. /* Find the lowest set bit in p-1. Since this routine expects p to
  1945. * be non-secret (typically a well-known standard elliptic curve
  1946. * parameter), for once we don't need clever bit tricks. */
  1947. for (sc->e = 1; sc->e < BIGNUM_INT_BITS * p->nw; sc->e++)
  1948. if (mp_get_bit(p, sc->e))
  1949. break;
  1950. sc->k = mp_rshift_fixed(p, sc->e);
  1951. sc->km1o2 = mp_rshift_fixed(sc->k, 1);
  1952. /* Leave zk to be filled in lazily, since it's more expensive to
  1953. * compute. If this context turns out never to be needed, we can
  1954. * save the bulk of the setup time this way. */
  1955. return sc;
  1956. }
  1957. static void modsqrt_lazy_setup(ModsqrtContext *sc)
  1958. {
  1959. if (!sc->zk)
  1960. sc->zk = monty_pow(sc->mc, sc->z, sc->k);
  1961. }
  1962. void modsqrt_free(ModsqrtContext *sc)
  1963. {
  1964. monty_free(sc->mc);
  1965. mp_free(sc->p);
  1966. mp_free(sc->z);
  1967. mp_free(sc->k);
  1968. mp_free(sc->km1o2);
  1969. if (sc->zk)
  1970. mp_free(sc->zk);
  1971. sfree(sc);
  1972. }
  1973. mp_int *mp_modsqrt(ModsqrtContext *sc, mp_int *x, unsigned *success)
  1974. {
  1975. mp_int *mx = monty_import(sc->mc, x);
  1976. mp_int *mroot = monty_modsqrt(sc, mx, success);
  1977. mp_free(mx);
  1978. mp_int *root = monty_export(sc->mc, mroot);
  1979. mp_free(mroot);
  1980. return root;
  1981. }
  1982. /*
  1983. * Modular square root, using an algorithm more or less similar to
  1984. * Tonelli-Shanks but adapted for constant time.
  1985. *
  1986. * The basic idea is to write p-1 = k 2^e, where k is odd and e > 0.
  1987. * Then the multiplicative group mod p (call it G) has a sequence of
  1988. * e+1 nested subgroups G = G_0 > G_1 > G_2 > ... > G_e, where each
  1989. * G_i is exactly half the size of G_{i-1} and consists of all the
  1990. * squares of elements in G_{i-1}. So the innermost group G_e has
  1991. * order k, which is odd, and hence within that group you can take a
  1992. * square root by raising to the power (k+1)/2.
  1993. *
  1994. * Our strategy is to iterate over these groups one by one and make
  1995. * sure the number x we're trying to take the square root of is inside
  1996. * each one, by adjusting it if it isn't.
  1997. *
  1998. * Suppose g is a primitive root of p, i.e. a generator of G_0. (We
  1999. * don't actually need to know what g _is_; we just imagine it for the
  2000. * sake of understanding.) Then G_i consists of precisely the (2^i)th
  2001. * powers of g, and hence, you can tell if a number is in G_i if
  2002. * raising it to the power k 2^{e-i} gives 1. So the conceptual
  2003. * algorithm goes: for each i, test whether x is in G_i by that
  2004. * method. If it isn't, then the previous iteration ensured it's in
  2005. * G_{i-1}, so it will be an odd power of g^{2^{i-1}}, and hence
  2006. * multiplying by any other odd power of g^{2^{i-1}} will give x' in
  2007. * G_i. And we have one of those, because our non-square z is an odd
  2008. * power of g, so z^{2^{i-1}} is an odd power of g^{2^{i-1}}.
  2009. *
  2010. * (There's a special case in the very first iteration, where we don't
  2011. * have a G_{i-1}. If it turns out that x is not even in G_1, that
  2012. * means it's not a square, so we set *success to 0. We still run the
  2013. * rest of the algorithm anyway, for the sake of constant time, but we
  2014. * don't give a hoot what it returns.)
  2015. *
  2016. * When we get to the end and have x in G_e, then we can take its
  2017. * square root by raising to (k+1)/2. But of course that's not the
  2018. * square root of the original input - it's only the square root of
  2019. * the adjusted version we produced during the algorithm. To get the
  2020. * true output answer we also have to multiply by a power of z,
  2021. * namely, z to the power of _half_ whatever we've been multiplying in
  2022. * as we go along. (The power of z we multiplied in must have been
  2023. * even, because the case in which we would have multiplied in an odd
  2024. * power of z is the i=0 case, in which we instead set the failure
  2025. * flag.)
  2026. *
  2027. * The code below is an optimised version of that basic idea, in which
  2028. * we _start_ by computing x^k so as to be able to test membership in
  2029. * G_i by only a few squarings rather than a full from-scratch modpow
  2030. * every time; we also start by computing our candidate output value
  2031. * x^{(k+1)/2}. So when the above description says 'adjust x by z^i'
  2032. * for some i, we have to adjust our running values of x^k and
  2033. * x^{(k+1)/2} by z^{ik} and z^{ik/2} respectively (the latter is safe
  2034. * because, as above, i is always even). And it turns out that we
  2035. * don't actually have to store the adjusted version of x itself at
  2036. * all - we _only_ keep those two powers of it.
  2037. */
  2038. mp_int *monty_modsqrt(ModsqrtContext *sc, mp_int *x, unsigned *success)
  2039. {
  2040. modsqrt_lazy_setup(sc);
  2041. mp_int *scratch_to_free = mp_make_sized(3 * sc->mc->rw);
  2042. mp_int scratch = *scratch_to_free;
  2043. /*
  2044. * Compute toret = x^{(k+1)/2}, our starting point for the output
  2045. * square root, and also xk = x^k which we'll use as we go along
  2046. * for knowing when to apply correction factors. We do this by
  2047. * first computing x^{(k-1)/2}, then multiplying it by x, then
  2048. * multiplying the two together.
  2049. */
  2050. mp_int *toret = monty_pow(sc->mc, x, sc->km1o2);
  2051. mp_int xk = mp_alloc_from_scratch(&scratch, sc->mc->rw);
  2052. mp_copy_into(&xk, toret);
  2053. monty_mul_into(sc->mc, toret, toret, x);
  2054. monty_mul_into(sc->mc, &xk, toret, &xk);
  2055. mp_int tmp = mp_alloc_from_scratch(&scratch, sc->mc->rw);
  2056. mp_int power_of_zk = mp_alloc_from_scratch(&scratch, sc->mc->rw);
  2057. mp_copy_into(&power_of_zk, sc->zk);
  2058. for (size_t i = 0; i < sc->e; i++) {
  2059. mp_copy_into(&tmp, &xk);
  2060. for (size_t j = i+1; j < sc->e; j++)
  2061. monty_mul_into(sc->mc, &tmp, &tmp, &tmp);
  2062. unsigned eq1 = mp_cmp_eq(&tmp, monty_identity(sc->mc));
  2063. if (i == 0) {
  2064. /* One special case: if x=0, then no power of x will ever
  2065. * equal 1, but we should still report success on the
  2066. * grounds that 0 does have a square root mod p. */
  2067. *success = eq1 | mp_eq_integer(x, 0);
  2068. } else {
  2069. monty_mul_into(sc->mc, &tmp, toret, &power_of_zk);
  2070. mp_select_into(toret, &tmp, toret, eq1);
  2071. monty_mul_into(sc->mc, &power_of_zk,
  2072. &power_of_zk, &power_of_zk);
  2073. monty_mul_into(sc->mc, &tmp, &xk, &power_of_zk);
  2074. mp_select_into(&xk, &tmp, &xk, eq1);
  2075. }
  2076. }
  2077. mp_free(scratch_to_free);
  2078. return toret;
  2079. }
  2080. mp_int *mp_random_bits_fn(size_t bits, random_read_fn_t random_read)
  2081. {
  2082. size_t bytes = (bits + 7) / 8;
  2083. uint8_t *randbuf = snewn(bytes, uint8_t);
  2084. random_read(randbuf, bytes);
  2085. if (bytes)
  2086. randbuf[0] &= (2 << ((bits-1) & 7)) - 1;
  2087. mp_int *toret = mp_from_bytes_be(make_ptrlen(randbuf, bytes));
  2088. smemclr(randbuf, bytes);
  2089. sfree(randbuf);
  2090. return toret;
  2091. }
  2092. mp_int *mp_random_in_range_fn(mp_int *lo, mp_int *hi, random_read_fn_t rf)
  2093. {
  2094. mp_int *n_outcomes = mp_sub(hi, lo);
  2095. /*
  2096. * It would be nice to generate our random numbers in such a way
  2097. * as to make every possible outcome literally equiprobable. But
  2098. * we can't do that in constant time, so we have to go for a very
  2099. * close approximation instead. I'm going to take the view that a
  2100. * factor of (1+2^-128) between the probabilities of two outcomes
  2101. * is acceptable on the grounds that you'd have to examine so many
  2102. * outputs to even detect it.
  2103. */
  2104. mp_int *unreduced = mp_random_bits_fn(mp_max_bits(n_outcomes) + 128, rf);
  2105. mp_int *reduced = mp_mod(unreduced, n_outcomes);
  2106. mp_add_into(reduced, reduced, lo);
  2107. mp_free(unreduced);
  2108. mp_free(n_outcomes);
  2109. return reduced;
  2110. }