| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269 | /* * Copyright 2016-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License").  You may not use * this file except in compliance with the License.  You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html *//* * Derived from the BLAKE2 reference implementation written by Samuel Neves. * Copyright 2012, Samuel Neves <[email protected]> * More information about the BLAKE2 hash function and its implementations * can be found at https://blake2.net. */#include <assert.h>#include <string.h>#include <openssl/crypto.h>#include "blake2_locl.h"#include "blake2_impl.h"static const uint64_t blake2b_IV[8] ={    0x6a09e667f3bcc908ULL, 0xbb67ae8584caa73bULL,    0x3c6ef372fe94f82bULL, 0xa54ff53a5f1d36f1ULL,    0x510e527fade682d1ULL, 0x9b05688c2b3e6c1fULL,    0x1f83d9abfb41bd6bULL, 0x5be0cd19137e2179ULL};static const uint8_t blake2b_sigma[12][16] ={    {  0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15 } ,    { 14, 10,  4,  8,  9, 15, 13,  6,  1, 12,  0,  2, 11,  7,  5,  3 } ,    { 11,  8, 12,  0,  5,  2, 15, 13, 10, 14,  3,  6,  7,  1,  9,  4 } ,    {  7,  9,  3,  1, 13, 12, 11, 14,  2,  6,  5, 10,  4,  0, 15,  8 } ,    {  9,  0,  5,  7,  2,  4, 10, 15, 14,  1, 11, 12,  6,  8,  3, 13 } ,    {  2, 12,  6, 10,  0, 11,  8,  3,  4, 13,  7,  5, 15, 14,  1,  9 } ,    { 12,  5,  1, 15, 14, 13,  4, 10,  0,  7,  6,  3,  9,  2,  8, 11 } ,    { 13, 11,  7, 14, 12,  1,  3,  9,  5,  0, 15,  4,  8,  6,  2, 10 } ,    {  6, 15, 14,  9, 11,  3,  0,  8, 12,  2, 13,  7,  1,  4, 10,  5 } ,    { 10,  2,  8,  4,  7,  6,  1,  5, 15, 11,  9, 14,  3, 12, 13 , 0 } ,    {  0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15 } ,    { 14, 10,  4,  8,  9, 15, 13,  6,  1, 12,  0,  2, 11,  7,  5,  3 }};/* Set that it's the last block we'll compress */static ossl_inline void blake2b_set_lastblock(BLAKE2B_CTX *S){    S->f[0] = -1;}/* Initialize the hashing state. */static ossl_inline void blake2b_init0(BLAKE2B_CTX *S){    int i;    memset(S, 0, sizeof(BLAKE2B_CTX));    for (i = 0; i < 8; ++i) {        S->h[i] = blake2b_IV[i];    }}/* init xors IV with input parameter block */static void blake2b_init_param(BLAKE2B_CTX *S, const BLAKE2B_PARAM *P){    size_t i;    const uint8_t *p = (const uint8_t *)(P);    blake2b_init0(S);    /* The param struct is carefully hand packed, and should be 64 bytes on     * every platform. */    assert(sizeof(BLAKE2B_PARAM) == 64);    /* IV XOR ParamBlock */    for (i = 0; i < 8; ++i) {        S->h[i] ^= load64(p + sizeof(S->h[i]) * i);    }}/* Initialize the hashing context.  Always returns 1. */int BLAKE2b_Init(BLAKE2B_CTX *c){    BLAKE2B_PARAM P[1];    P->digest_length = BLAKE2B_DIGEST_LENGTH;    P->key_length    = 0;    P->fanout        = 1;    P->depth         = 1;    store32(P->leaf_length, 0);    store64(P->node_offset, 0);    P->node_depth    = 0;    P->inner_length  = 0;    memset(P->reserved, 0, sizeof(P->reserved));    memset(P->salt,     0, sizeof(P->salt));    memset(P->personal, 0, sizeof(P->personal));    blake2b_init_param(c, P);    return 1;}/* Permute the state while xoring in the block of data. */static void blake2b_compress(BLAKE2B_CTX *S,                            const uint8_t *blocks,                            size_t len){    uint64_t m[16];    uint64_t v[16];    int i;    size_t increment;    /*     * There are two distinct usage vectors for this function:     *     * a) BLAKE2b_Update uses it to process complete blocks,     *    possibly more than one at a time;     *     * b) BLAK2b_Final uses it to process last block, always     *    single but possibly incomplete, in which case caller     *    pads input with zeros.     */    assert(len < BLAKE2B_BLOCKBYTES || len % BLAKE2B_BLOCKBYTES == 0);    /*     * Since last block is always processed with separate call,     * |len| not being multiple of complete blocks can be observed     * only with |len| being less than BLAKE2B_BLOCKBYTES ("less"     * including even zero), which is why following assignment doesn't     * have to reside inside the main loop below.     */    increment = len < BLAKE2B_BLOCKBYTES ? len : BLAKE2B_BLOCKBYTES;    for (i = 0; i < 8; ++i) {        v[i] = S->h[i];    }    do {        for (i = 0; i < 16; ++i) {            m[i] = load64(blocks + i * sizeof(m[i]));        }        /* blake2b_increment_counter */        S->t[0] += increment;        S->t[1] += (S->t[0] < increment);        v[8]  = blake2b_IV[0];        v[9]  = blake2b_IV[1];        v[10] = blake2b_IV[2];        v[11] = blake2b_IV[3];        v[12] = S->t[0] ^ blake2b_IV[4];        v[13] = S->t[1] ^ blake2b_IV[5];        v[14] = S->f[0] ^ blake2b_IV[6];        v[15] = S->f[1] ^ blake2b_IV[7];#define G(r,i,a,b,c,d) \        do { \            a = a + b + m[blake2b_sigma[r][2*i+0]]; \            d = rotr64(d ^ a, 32); \            c = c + d; \            b = rotr64(b ^ c, 24); \            a = a + b + m[blake2b_sigma[r][2*i+1]]; \            d = rotr64(d ^ a, 16); \            c = c + d; \            b = rotr64(b ^ c, 63); \        } while (0)#define ROUND(r)  \        do { \            G(r,0,v[ 0],v[ 4],v[ 8],v[12]); \            G(r,1,v[ 1],v[ 5],v[ 9],v[13]); \            G(r,2,v[ 2],v[ 6],v[10],v[14]); \            G(r,3,v[ 3],v[ 7],v[11],v[15]); \            G(r,4,v[ 0],v[ 5],v[10],v[15]); \            G(r,5,v[ 1],v[ 6],v[11],v[12]); \            G(r,6,v[ 2],v[ 7],v[ 8],v[13]); \            G(r,7,v[ 3],v[ 4],v[ 9],v[14]); \        } while (0)#if defined(OPENSSL_SMALL_FOOTPRINT)        /* 3x size reduction on x86_64, almost 7x on ARMv8, 9x on ARMv4 */        for (i = 0; i < 12; i++) {            ROUND(i);        }#else        ROUND(0);        ROUND(1);        ROUND(2);        ROUND(3);        ROUND(4);        ROUND(5);        ROUND(6);        ROUND(7);        ROUND(8);        ROUND(9);        ROUND(10);        ROUND(11);#endif        for (i = 0; i < 8; ++i) {            S->h[i] = v[i] ^= v[i + 8] ^ S->h[i];        }#undef G#undef ROUND        blocks += increment;        len -= increment;    } while (len);}/* Absorb the input data into the hash state.  Always returns 1. */int BLAKE2b_Update(BLAKE2B_CTX *c, const void *data, size_t datalen){    const uint8_t *in = data;    size_t fill;    /*     * Intuitively one would expect intermediate buffer, c->buf, to     * store incomplete blocks. But in this case we are interested to     * temporarily stash even complete blocks, because last one in the     * stream has to be treated in special way, and at this point we     * don't know if last block in *this* call is last one "ever". This     * is the reason for why |datalen| is compared as >, and not >=.     */    fill = sizeof(c->buf) - c->buflen;    if (datalen > fill) {        if (c->buflen) {            memcpy(c->buf + c->buflen, in, fill); /* Fill buffer */            blake2b_compress(c, c->buf, BLAKE2B_BLOCKBYTES);            c->buflen = 0;            in += fill;            datalen -= fill;        }        if (datalen > BLAKE2B_BLOCKBYTES) {            size_t stashlen = datalen % BLAKE2B_BLOCKBYTES;            /*             * If |datalen| is a multiple of the blocksize, stash             * last complete block, it can be final one...             */            stashlen = stashlen ? stashlen : BLAKE2B_BLOCKBYTES;            datalen -= stashlen;            blake2b_compress(c, in, datalen);            in += datalen;            datalen = stashlen;        }    }    assert(datalen <= BLAKE2B_BLOCKBYTES);    memcpy(c->buf + c->buflen, in, datalen);    c->buflen += datalen; /* Be lazy, do not compress */    return 1;}/* * Calculate the final hash and save it in md. * Always returns 1. */int BLAKE2b_Final(unsigned char *md, BLAKE2B_CTX *c){    int i;    blake2b_set_lastblock(c);    /* Padding */    memset(c->buf + c->buflen, 0, sizeof(c->buf) - c->buflen);    blake2b_compress(c, c->buf, c->buflen);    /* Output full hash to message digest */    for (i = 0; i < 8; ++i) {        store64(md + sizeof(c->h[i]) * i, c->h[i]);    }    OPENSSL_cleanse(c, sizeof(BLAKE2B_CTX));    return 1;}
 |