| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166 | 
							- /*
 
-  * Copyright 2002-2018 The OpenSSL Project Authors. All Rights Reserved.
 
-  * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
 
-  *
 
-  * Licensed under the OpenSSL license (the "License").  You may not use
 
-  * this file except in compliance with the License.  You can obtain a copy
 
-  * in the file LICENSE in the source distribution or at
 
-  * https://www.openssl.org/source/license.html
 
-  */
 
- #include <assert.h>
 
- #include <limits.h>
 
- #include <stdio.h>
 
- #include "internal/cryptlib.h"
 
- #include "bn_lcl.h"
 
- #ifndef OPENSSL_NO_EC2M
 
- /*
 
-  * Maximum number of iterations before BN_GF2m_mod_solve_quad_arr should
 
-  * fail.
 
-  */
 
- # define MAX_ITERATIONS 50
 
- # define SQR_nibble(w)   ((((w) & 8) << 3) \
 
-                        |  (((w) & 4) << 2) \
 
-                        |  (((w) & 2) << 1) \
 
-                        |   ((w) & 1))
 
- /* Platform-specific macros to accelerate squaring. */
 
- # if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)
 
- #  define SQR1(w) \
 
-     SQR_nibble((w) >> 60) << 56 | SQR_nibble((w) >> 56) << 48 | \
 
-     SQR_nibble((w) >> 52) << 40 | SQR_nibble((w) >> 48) << 32 | \
 
-     SQR_nibble((w) >> 44) << 24 | SQR_nibble((w) >> 40) << 16 | \
 
-     SQR_nibble((w) >> 36) <<  8 | SQR_nibble((w) >> 32)
 
- #  define SQR0(w) \
 
-     SQR_nibble((w) >> 28) << 56 | SQR_nibble((w) >> 24) << 48 | \
 
-     SQR_nibble((w) >> 20) << 40 | SQR_nibble((w) >> 16) << 32 | \
 
-     SQR_nibble((w) >> 12) << 24 | SQR_nibble((w) >>  8) << 16 | \
 
-     SQR_nibble((w) >>  4) <<  8 | SQR_nibble((w)      )
 
- # endif
 
- # ifdef THIRTY_TWO_BIT
 
- #  define SQR1(w) \
 
-     SQR_nibble((w) >> 28) << 24 | SQR_nibble((w) >> 24) << 16 | \
 
-     SQR_nibble((w) >> 20) <<  8 | SQR_nibble((w) >> 16)
 
- #  define SQR0(w) \
 
-     SQR_nibble((w) >> 12) << 24 | SQR_nibble((w) >>  8) << 16 | \
 
-     SQR_nibble((w) >>  4) <<  8 | SQR_nibble((w)      )
 
- # endif
 
- # if !defined(OPENSSL_BN_ASM_GF2m)
 
- /*
 
-  * Product of two polynomials a, b each with degree < BN_BITS2 - 1, result is
 
-  * a polynomial r with degree < 2 * BN_BITS - 1 The caller MUST ensure that
 
-  * the variables have the right amount of space allocated.
 
-  */
 
- #  ifdef THIRTY_TWO_BIT
 
- static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a,
 
-                             const BN_ULONG b)
 
- {
 
-     register BN_ULONG h, l, s;
 
-     BN_ULONG tab[8], top2b = a >> 30;
 
-     register BN_ULONG a1, a2, a4;
 
-     a1 = a & (0x3FFFFFFF);
 
-     a2 = a1 << 1;
 
-     a4 = a2 << 1;
 
-     tab[0] = 0;
 
-     tab[1] = a1;
 
-     tab[2] = a2;
 
-     tab[3] = a1 ^ a2;
 
-     tab[4] = a4;
 
-     tab[5] = a1 ^ a4;
 
-     tab[6] = a2 ^ a4;
 
-     tab[7] = a1 ^ a2 ^ a4;
 
-     s = tab[b & 0x7];
 
-     l = s;
 
-     s = tab[b >> 3 & 0x7];
 
-     l ^= s << 3;
 
-     h = s >> 29;
 
-     s = tab[b >> 6 & 0x7];
 
-     l ^= s << 6;
 
-     h ^= s >> 26;
 
-     s = tab[b >> 9 & 0x7];
 
-     l ^= s << 9;
 
-     h ^= s >> 23;
 
-     s = tab[b >> 12 & 0x7];
 
-     l ^= s << 12;
 
-     h ^= s >> 20;
 
-     s = tab[b >> 15 & 0x7];
 
-     l ^= s << 15;
 
-     h ^= s >> 17;
 
-     s = tab[b >> 18 & 0x7];
 
-     l ^= s << 18;
 
-     h ^= s >> 14;
 
-     s = tab[b >> 21 & 0x7];
 
-     l ^= s << 21;
 
-     h ^= s >> 11;
 
-     s = tab[b >> 24 & 0x7];
 
-     l ^= s << 24;
 
-     h ^= s >> 8;
 
-     s = tab[b >> 27 & 0x7];
 
-     l ^= s << 27;
 
-     h ^= s >> 5;
 
-     s = tab[b >> 30];
 
-     l ^= s << 30;
 
-     h ^= s >> 2;
 
-     /* compensate for the top two bits of a */
 
-     if (top2b & 01) {
 
-         l ^= b << 30;
 
-         h ^= b >> 2;
 
-     }
 
-     if (top2b & 02) {
 
-         l ^= b << 31;
 
-         h ^= b >> 1;
 
-     }
 
-     *r1 = h;
 
-     *r0 = l;
 
- }
 
- #  endif
 
- #  if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)
 
- static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a,
 
-                             const BN_ULONG b)
 
- {
 
-     register BN_ULONG h, l, s;
 
-     BN_ULONG tab[16], top3b = a >> 61;
 
-     register BN_ULONG a1, a2, a4, a8;
 
-     a1 = a & (0x1FFFFFFFFFFFFFFFULL);
 
-     a2 = a1 << 1;
 
-     a4 = a2 << 1;
 
-     a8 = a4 << 1;
 
-     tab[0] = 0;
 
-     tab[1] = a1;
 
-     tab[2] = a2;
 
-     tab[3] = a1 ^ a2;
 
-     tab[4] = a4;
 
-     tab[5] = a1 ^ a4;
 
-     tab[6] = a2 ^ a4;
 
-     tab[7] = a1 ^ a2 ^ a4;
 
-     tab[8] = a8;
 
-     tab[9] = a1 ^ a8;
 
-     tab[10] = a2 ^ a8;
 
-     tab[11] = a1 ^ a2 ^ a8;
 
-     tab[12] = a4 ^ a8;
 
-     tab[13] = a1 ^ a4 ^ a8;
 
-     tab[14] = a2 ^ a4 ^ a8;
 
-     tab[15] = a1 ^ a2 ^ a4 ^ a8;
 
-     s = tab[b & 0xF];
 
-     l = s;
 
-     s = tab[b >> 4 & 0xF];
 
-     l ^= s << 4;
 
-     h = s >> 60;
 
-     s = tab[b >> 8 & 0xF];
 
-     l ^= s << 8;
 
-     h ^= s >> 56;
 
-     s = tab[b >> 12 & 0xF];
 
-     l ^= s << 12;
 
-     h ^= s >> 52;
 
-     s = tab[b >> 16 & 0xF];
 
-     l ^= s << 16;
 
-     h ^= s >> 48;
 
-     s = tab[b >> 20 & 0xF];
 
-     l ^= s << 20;
 
-     h ^= s >> 44;
 
-     s = tab[b >> 24 & 0xF];
 
-     l ^= s << 24;
 
-     h ^= s >> 40;
 
-     s = tab[b >> 28 & 0xF];
 
-     l ^= s << 28;
 
-     h ^= s >> 36;
 
-     s = tab[b >> 32 & 0xF];
 
-     l ^= s << 32;
 
-     h ^= s >> 32;
 
-     s = tab[b >> 36 & 0xF];
 
-     l ^= s << 36;
 
-     h ^= s >> 28;
 
-     s = tab[b >> 40 & 0xF];
 
-     l ^= s << 40;
 
-     h ^= s >> 24;
 
-     s = tab[b >> 44 & 0xF];
 
-     l ^= s << 44;
 
-     h ^= s >> 20;
 
-     s = tab[b >> 48 & 0xF];
 
-     l ^= s << 48;
 
-     h ^= s >> 16;
 
-     s = tab[b >> 52 & 0xF];
 
-     l ^= s << 52;
 
-     h ^= s >> 12;
 
-     s = tab[b >> 56 & 0xF];
 
-     l ^= s << 56;
 
-     h ^= s >> 8;
 
-     s = tab[b >> 60];
 
-     l ^= s << 60;
 
-     h ^= s >> 4;
 
-     /* compensate for the top three bits of a */
 
-     if (top3b & 01) {
 
-         l ^= b << 61;
 
-         h ^= b >> 3;
 
-     }
 
-     if (top3b & 02) {
 
-         l ^= b << 62;
 
-         h ^= b >> 2;
 
-     }
 
-     if (top3b & 04) {
 
-         l ^= b << 63;
 
-         h ^= b >> 1;
 
-     }
 
-     *r1 = h;
 
-     *r0 = l;
 
- }
 
- #  endif
 
- /*
 
-  * Product of two polynomials a, b each with degree < 2 * BN_BITS2 - 1,
 
-  * result is a polynomial r with degree < 4 * BN_BITS2 - 1 The caller MUST
 
-  * ensure that the variables have the right amount of space allocated.
 
-  */
 
- static void bn_GF2m_mul_2x2(BN_ULONG *r, const BN_ULONG a1, const BN_ULONG a0,
 
-                             const BN_ULONG b1, const BN_ULONG b0)
 
- {
 
-     BN_ULONG m1, m0;
 
-     /* r[3] = h1, r[2] = h0; r[1] = l1; r[0] = l0 */
 
-     bn_GF2m_mul_1x1(r + 3, r + 2, a1, b1);
 
-     bn_GF2m_mul_1x1(r + 1, r, a0, b0);
 
-     bn_GF2m_mul_1x1(&m1, &m0, a0 ^ a1, b0 ^ b1);
 
-     /* Correction on m1 ^= l1 ^ h1; m0 ^= l0 ^ h0; */
 
-     r[2] ^= m1 ^ r[1] ^ r[3];   /* h0 ^= m1 ^ l1 ^ h1; */
 
-     r[1] = r[3] ^ r[2] ^ r[0] ^ m1 ^ m0; /* l1 ^= l0 ^ h0 ^ m0; */
 
- }
 
- # else
 
- void bn_GF2m_mul_2x2(BN_ULONG *r, BN_ULONG a1, BN_ULONG a0, BN_ULONG b1,
 
-                      BN_ULONG b0);
 
- # endif
 
- /*
 
-  * Add polynomials a and b and store result in r; r could be a or b, a and b
 
-  * could be equal; r is the bitwise XOR of a and b.
 
-  */
 
- int BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b)
 
- {
 
-     int i;
 
-     const BIGNUM *at, *bt;
 
-     bn_check_top(a);
 
-     bn_check_top(b);
 
-     if (a->top < b->top) {
 
-         at = b;
 
-         bt = a;
 
-     } else {
 
-         at = a;
 
-         bt = b;
 
-     }
 
-     if (bn_wexpand(r, at->top) == NULL)
 
-         return 0;
 
-     for (i = 0; i < bt->top; i++) {
 
-         r->d[i] = at->d[i] ^ bt->d[i];
 
-     }
 
-     for (; i < at->top; i++) {
 
-         r->d[i] = at->d[i];
 
-     }
 
-     r->top = at->top;
 
-     bn_correct_top(r);
 
-     return 1;
 
- }
 
- /*-
 
-  * Some functions allow for representation of the irreducible polynomials
 
-  * as an int[], say p.  The irreducible f(t) is then of the form:
 
-  *     t^p[0] + t^p[1] + ... + t^p[k]
 
-  * where m = p[0] > p[1] > ... > p[k] = 0.
 
-  */
 
- /* Performs modular reduction of a and store result in r.  r could be a. */
 
- int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const int p[])
 
- {
 
-     int j, k;
 
-     int n, dN, d0, d1;
 
-     BN_ULONG zz, *z;
 
-     bn_check_top(a);
 
-     if (!p[0]) {
 
-         /* reduction mod 1 => return 0 */
 
-         BN_zero(r);
 
-         return 1;
 
-     }
 
-     /*
 
-      * Since the algorithm does reduction in the r value, if a != r, copy the
 
-      * contents of a into r so we can do reduction in r.
 
-      */
 
-     if (a != r) {
 
-         if (!bn_wexpand(r, a->top))
 
-             return 0;
 
-         for (j = 0; j < a->top; j++) {
 
-             r->d[j] = a->d[j];
 
-         }
 
-         r->top = a->top;
 
-     }
 
-     z = r->d;
 
-     /* start reduction */
 
-     dN = p[0] / BN_BITS2;
 
-     for (j = r->top - 1; j > dN;) {
 
-         zz = z[j];
 
-         if (z[j] == 0) {
 
-             j--;
 
-             continue;
 
-         }
 
-         z[j] = 0;
 
-         for (k = 1; p[k] != 0; k++) {
 
-             /* reducing component t^p[k] */
 
-             n = p[0] - p[k];
 
-             d0 = n % BN_BITS2;
 
-             d1 = BN_BITS2 - d0;
 
-             n /= BN_BITS2;
 
-             z[j - n] ^= (zz >> d0);
 
-             if (d0)
 
-                 z[j - n - 1] ^= (zz << d1);
 
-         }
 
-         /* reducing component t^0 */
 
-         n = dN;
 
-         d0 = p[0] % BN_BITS2;
 
-         d1 = BN_BITS2 - d0;
 
-         z[j - n] ^= (zz >> d0);
 
-         if (d0)
 
-             z[j - n - 1] ^= (zz << d1);
 
-     }
 
-     /* final round of reduction */
 
-     while (j == dN) {
 
-         d0 = p[0] % BN_BITS2;
 
-         zz = z[dN] >> d0;
 
-         if (zz == 0)
 
-             break;
 
-         d1 = BN_BITS2 - d0;
 
-         /* clear up the top d1 bits */
 
-         if (d0)
 
-             z[dN] = (z[dN] << d1) >> d1;
 
-         else
 
-             z[dN] = 0;
 
-         z[0] ^= zz;             /* reduction t^0 component */
 
-         for (k = 1; p[k] != 0; k++) {
 
-             BN_ULONG tmp_ulong;
 
-             /* reducing component t^p[k] */
 
-             n = p[k] / BN_BITS2;
 
-             d0 = p[k] % BN_BITS2;
 
-             d1 = BN_BITS2 - d0;
 
-             z[n] ^= (zz << d0);
 
-             if (d0 && (tmp_ulong = zz >> d1))
 
-                 z[n + 1] ^= tmp_ulong;
 
-         }
 
-     }
 
-     bn_correct_top(r);
 
-     return 1;
 
- }
 
- /*
 
-  * Performs modular reduction of a by p and store result in r.  r could be a.
 
-  * This function calls down to the BN_GF2m_mod_arr implementation; this wrapper
 
-  * function is only provided for convenience; for best performance, use the
 
-  * BN_GF2m_mod_arr function.
 
-  */
 
- int BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p)
 
- {
 
-     int ret = 0;
 
-     int arr[6];
 
-     bn_check_top(a);
 
-     bn_check_top(p);
 
-     ret = BN_GF2m_poly2arr(p, arr, OSSL_NELEM(arr));
 
-     if (!ret || ret > (int)OSSL_NELEM(arr)) {
 
-         BNerr(BN_F_BN_GF2M_MOD, BN_R_INVALID_LENGTH);
 
-         return 0;
 
-     }
 
-     ret = BN_GF2m_mod_arr(r, a, arr);
 
-     bn_check_top(r);
 
-     return ret;
 
- }
 
- /*
 
-  * Compute the product of two polynomials a and b, reduce modulo p, and store
 
-  * the result in r.  r could be a or b; a could be b.
 
-  */
 
- int BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
 
-                         const int p[], BN_CTX *ctx)
 
- {
 
-     int zlen, i, j, k, ret = 0;
 
-     BIGNUM *s;
 
-     BN_ULONG x1, x0, y1, y0, zz[4];
 
-     bn_check_top(a);
 
-     bn_check_top(b);
 
-     if (a == b) {
 
-         return BN_GF2m_mod_sqr_arr(r, a, p, ctx);
 
-     }
 
-     BN_CTX_start(ctx);
 
-     if ((s = BN_CTX_get(ctx)) == NULL)
 
-         goto err;
 
-     zlen = a->top + b->top + 4;
 
-     if (!bn_wexpand(s, zlen))
 
-         goto err;
 
-     s->top = zlen;
 
-     for (i = 0; i < zlen; i++)
 
-         s->d[i] = 0;
 
-     for (j = 0; j < b->top; j += 2) {
 
-         y0 = b->d[j];
 
-         y1 = ((j + 1) == b->top) ? 0 : b->d[j + 1];
 
-         for (i = 0; i < a->top; i += 2) {
 
-             x0 = a->d[i];
 
-             x1 = ((i + 1) == a->top) ? 0 : a->d[i + 1];
 
-             bn_GF2m_mul_2x2(zz, x1, x0, y1, y0);
 
-             for (k = 0; k < 4; k++)
 
-                 s->d[i + j + k] ^= zz[k];
 
-         }
 
-     }
 
-     bn_correct_top(s);
 
-     if (BN_GF2m_mod_arr(r, s, p))
 
-         ret = 1;
 
-     bn_check_top(r);
 
-  err:
 
-     BN_CTX_end(ctx);
 
-     return ret;
 
- }
 
- /*
 
-  * Compute the product of two polynomials a and b, reduce modulo p, and store
 
-  * the result in r.  r could be a or b; a could equal b. This function calls
 
-  * down to the BN_GF2m_mod_mul_arr implementation; this wrapper function is
 
-  * only provided for convenience; for best performance, use the
 
-  * BN_GF2m_mod_mul_arr function.
 
-  */
 
- int BN_GF2m_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
 
-                     const BIGNUM *p, BN_CTX *ctx)
 
- {
 
-     int ret = 0;
 
-     const int max = BN_num_bits(p) + 1;
 
-     int *arr = NULL;
 
-     bn_check_top(a);
 
-     bn_check_top(b);
 
-     bn_check_top(p);
 
-     if ((arr = OPENSSL_malloc(sizeof(*arr) * max)) == NULL)
 
-         goto err;
 
-     ret = BN_GF2m_poly2arr(p, arr, max);
 
-     if (!ret || ret > max) {
 
-         BNerr(BN_F_BN_GF2M_MOD_MUL, BN_R_INVALID_LENGTH);
 
-         goto err;
 
-     }
 
-     ret = BN_GF2m_mod_mul_arr(r, a, b, arr, ctx);
 
-     bn_check_top(r);
 
-  err:
 
-     OPENSSL_free(arr);
 
-     return ret;
 
- }
 
- /* Square a, reduce the result mod p, and store it in a.  r could be a. */
 
- int BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const int p[],
 
-                         BN_CTX *ctx)
 
- {
 
-     int i, ret = 0;
 
-     BIGNUM *s;
 
-     bn_check_top(a);
 
-     BN_CTX_start(ctx);
 
-     if ((s = BN_CTX_get(ctx)) == NULL)
 
-         goto err;
 
-     if (!bn_wexpand(s, 2 * a->top))
 
-         goto err;
 
-     for (i = a->top - 1; i >= 0; i--) {
 
-         s->d[2 * i + 1] = SQR1(a->d[i]);
 
-         s->d[2 * i] = SQR0(a->d[i]);
 
-     }
 
-     s->top = 2 * a->top;
 
-     bn_correct_top(s);
 
-     if (!BN_GF2m_mod_arr(r, s, p))
 
-         goto err;
 
-     bn_check_top(r);
 
-     ret = 1;
 
-  err:
 
-     BN_CTX_end(ctx);
 
-     return ret;
 
- }
 
- /*
 
-  * Square a, reduce the result mod p, and store it in a.  r could be a. This
 
-  * function calls down to the BN_GF2m_mod_sqr_arr implementation; this
 
-  * wrapper function is only provided for convenience; for best performance,
 
-  * use the BN_GF2m_mod_sqr_arr function.
 
-  */
 
- int BN_GF2m_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
 
- {
 
-     int ret = 0;
 
-     const int max = BN_num_bits(p) + 1;
 
-     int *arr = NULL;
 
-     bn_check_top(a);
 
-     bn_check_top(p);
 
-     if ((arr = OPENSSL_malloc(sizeof(*arr) * max)) == NULL)
 
-         goto err;
 
-     ret = BN_GF2m_poly2arr(p, arr, max);
 
-     if (!ret || ret > max) {
 
-         BNerr(BN_F_BN_GF2M_MOD_SQR, BN_R_INVALID_LENGTH);
 
-         goto err;
 
-     }
 
-     ret = BN_GF2m_mod_sqr_arr(r, a, arr, ctx);
 
-     bn_check_top(r);
 
-  err:
 
-     OPENSSL_free(arr);
 
-     return ret;
 
- }
 
- /*
 
-  * Invert a, reduce modulo p, and store the result in r. r could be a. Uses
 
-  * Modified Almost Inverse Algorithm (Algorithm 10) from Hankerson, D.,
 
-  * Hernandez, J.L., and Menezes, A.  "Software Implementation of Elliptic
 
-  * Curve Cryptography Over Binary Fields".
 
-  */
 
- static int BN_GF2m_mod_inv_vartime(BIGNUM *r, const BIGNUM *a,
 
-                                    const BIGNUM *p, BN_CTX *ctx)
 
- {
 
-     BIGNUM *b, *c = NULL, *u = NULL, *v = NULL, *tmp;
 
-     int ret = 0;
 
-     bn_check_top(a);
 
-     bn_check_top(p);
 
-     BN_CTX_start(ctx);
 
-     b = BN_CTX_get(ctx);
 
-     c = BN_CTX_get(ctx);
 
-     u = BN_CTX_get(ctx);
 
-     v = BN_CTX_get(ctx);
 
-     if (v == NULL)
 
-         goto err;
 
-     if (!BN_GF2m_mod(u, a, p))
 
-         goto err;
 
-     if (BN_is_zero(u))
 
-         goto err;
 
-     if (!BN_copy(v, p))
 
-         goto err;
 
- # if 0
 
-     if (!BN_one(b))
 
-         goto err;
 
-     while (1) {
 
-         while (!BN_is_odd(u)) {
 
-             if (BN_is_zero(u))
 
-                 goto err;
 
-             if (!BN_rshift1(u, u))
 
-                 goto err;
 
-             if (BN_is_odd(b)) {
 
-                 if (!BN_GF2m_add(b, b, p))
 
-                     goto err;
 
-             }
 
-             if (!BN_rshift1(b, b))
 
-                 goto err;
 
-         }
 
-         if (BN_abs_is_word(u, 1))
 
-             break;
 
-         if (BN_num_bits(u) < BN_num_bits(v)) {
 
-             tmp = u;
 
-             u = v;
 
-             v = tmp;
 
-             tmp = b;
 
-             b = c;
 
-             c = tmp;
 
-         }
 
-         if (!BN_GF2m_add(u, u, v))
 
-             goto err;
 
-         if (!BN_GF2m_add(b, b, c))
 
-             goto err;
 
-     }
 
- # else
 
-     {
 
-         int i;
 
-         int ubits = BN_num_bits(u);
 
-         int vbits = BN_num_bits(v); /* v is copy of p */
 
-         int top = p->top;
 
-         BN_ULONG *udp, *bdp, *vdp, *cdp;
 
-         if (!bn_wexpand(u, top))
 
-             goto err;
 
-         udp = u->d;
 
-         for (i = u->top; i < top; i++)
 
-             udp[i] = 0;
 
-         u->top = top;
 
-         if (!bn_wexpand(b, top))
 
-           goto err;
 
-         bdp = b->d;
 
-         bdp[0] = 1;
 
-         for (i = 1; i < top; i++)
 
-             bdp[i] = 0;
 
-         b->top = top;
 
-         if (!bn_wexpand(c, top))
 
-           goto err;
 
-         cdp = c->d;
 
-         for (i = 0; i < top; i++)
 
-             cdp[i] = 0;
 
-         c->top = top;
 
-         vdp = v->d;             /* It pays off to "cache" *->d pointers,
 
-                                  * because it allows optimizer to be more
 
-                                  * aggressive. But we don't have to "cache"
 
-                                  * p->d, because *p is declared 'const'... */
 
-         while (1) {
 
-             while (ubits && !(udp[0] & 1)) {
 
-                 BN_ULONG u0, u1, b0, b1, mask;
 
-                 u0 = udp[0];
 
-                 b0 = bdp[0];
 
-                 mask = (BN_ULONG)0 - (b0 & 1);
 
-                 b0 ^= p->d[0] & mask;
 
-                 for (i = 0; i < top - 1; i++) {
 
-                     u1 = udp[i + 1];
 
-                     udp[i] = ((u0 >> 1) | (u1 << (BN_BITS2 - 1))) & BN_MASK2;
 
-                     u0 = u1;
 
-                     b1 = bdp[i + 1] ^ (p->d[i + 1] & mask);
 
-                     bdp[i] = ((b0 >> 1) | (b1 << (BN_BITS2 - 1))) & BN_MASK2;
 
-                     b0 = b1;
 
-                 }
 
-                 udp[i] = u0 >> 1;
 
-                 bdp[i] = b0 >> 1;
 
-                 ubits--;
 
-             }
 
-             if (ubits <= BN_BITS2) {
 
-                 if (udp[0] == 0) /* poly was reducible */
 
-                     goto err;
 
-                 if (udp[0] == 1)
 
-                     break;
 
-             }
 
-             if (ubits < vbits) {
 
-                 i = ubits;
 
-                 ubits = vbits;
 
-                 vbits = i;
 
-                 tmp = u;
 
-                 u = v;
 
-                 v = tmp;
 
-                 tmp = b;
 
-                 b = c;
 
-                 c = tmp;
 
-                 udp = vdp;
 
-                 vdp = v->d;
 
-                 bdp = cdp;
 
-                 cdp = c->d;
 
-             }
 
-             for (i = 0; i < top; i++) {
 
-                 udp[i] ^= vdp[i];
 
-                 bdp[i] ^= cdp[i];
 
-             }
 
-             if (ubits == vbits) {
 
-                 BN_ULONG ul;
 
-                 int utop = (ubits - 1) / BN_BITS2;
 
-                 while ((ul = udp[utop]) == 0 && utop)
 
-                     utop--;
 
-                 ubits = utop * BN_BITS2 + BN_num_bits_word(ul);
 
-             }
 
-         }
 
-         bn_correct_top(b);
 
-     }
 
- # endif
 
-     if (!BN_copy(r, b))
 
-         goto err;
 
-     bn_check_top(r);
 
-     ret = 1;
 
-  err:
 
- # ifdef BN_DEBUG                /* BN_CTX_end would complain about the
 
-                                  * expanded form */
 
-     bn_correct_top(c);
 
-     bn_correct_top(u);
 
-     bn_correct_top(v);
 
- # endif
 
-     BN_CTX_end(ctx);
 
-     return ret;
 
- }
 
- /*-
 
-  * Wrapper for BN_GF2m_mod_inv_vartime that blinds the input before calling.
 
-  * This is not constant time.
 
-  * But it does eliminate first order deduction on the input.
 
-  */
 
- int BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
 
- {
 
-     BIGNUM *b = NULL;
 
-     int ret = 0;
 
-     BN_CTX_start(ctx);
 
-     if ((b = BN_CTX_get(ctx)) == NULL)
 
-         goto err;
 
-     /* generate blinding value */
 
-     do {
 
-         if (!BN_priv_rand(b, BN_num_bits(p) - 1,
 
-                           BN_RAND_TOP_ANY, BN_RAND_BOTTOM_ANY))
 
-             goto err;
 
-     } while (BN_is_zero(b));
 
-     /* r := a * b */
 
-     if (!BN_GF2m_mod_mul(r, a, b, p, ctx))
 
-         goto err;
 
-     /* r := 1/(a * b) */
 
-     if (!BN_GF2m_mod_inv_vartime(r, r, p, ctx))
 
-         goto err;
 
-     /* r := b/(a * b) = 1/a */
 
-     if (!BN_GF2m_mod_mul(r, r, b, p, ctx))
 
-         goto err;
 
-     ret = 1;
 
-  err:
 
-     BN_CTX_end(ctx);
 
-     return ret;
 
- }
 
- /*
 
-  * Invert xx, reduce modulo p, and store the result in r. r could be xx.
 
-  * This function calls down to the BN_GF2m_mod_inv implementation; this
 
-  * wrapper function is only provided for convenience; for best performance,
 
-  * use the BN_GF2m_mod_inv function.
 
-  */
 
- int BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *xx, const int p[],
 
-                         BN_CTX *ctx)
 
- {
 
-     BIGNUM *field;
 
-     int ret = 0;
 
-     bn_check_top(xx);
 
-     BN_CTX_start(ctx);
 
-     if ((field = BN_CTX_get(ctx)) == NULL)
 
-         goto err;
 
-     if (!BN_GF2m_arr2poly(p, field))
 
-         goto err;
 
-     ret = BN_GF2m_mod_inv(r, xx, field, ctx);
 
-     bn_check_top(r);
 
-  err:
 
-     BN_CTX_end(ctx);
 
-     return ret;
 
- }
 
- /*
 
-  * Divide y by x, reduce modulo p, and store the result in r. r could be x
 
-  * or y, x could equal y.
 
-  */
 
- int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x,
 
-                     const BIGNUM *p, BN_CTX *ctx)
 
- {
 
-     BIGNUM *xinv = NULL;
 
-     int ret = 0;
 
-     bn_check_top(y);
 
-     bn_check_top(x);
 
-     bn_check_top(p);
 
-     BN_CTX_start(ctx);
 
-     xinv = BN_CTX_get(ctx);
 
-     if (xinv == NULL)
 
-         goto err;
 
-     if (!BN_GF2m_mod_inv(xinv, x, p, ctx))
 
-         goto err;
 
-     if (!BN_GF2m_mod_mul(r, y, xinv, p, ctx))
 
-         goto err;
 
-     bn_check_top(r);
 
-     ret = 1;
 
-  err:
 
-     BN_CTX_end(ctx);
 
-     return ret;
 
- }
 
- /*
 
-  * Divide yy by xx, reduce modulo p, and store the result in r. r could be xx
 
-  * * or yy, xx could equal yy. This function calls down to the
 
-  * BN_GF2m_mod_div implementation; this wrapper function is only provided for
 
-  * convenience; for best performance, use the BN_GF2m_mod_div function.
 
-  */
 
- int BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *yy, const BIGNUM *xx,
 
-                         const int p[], BN_CTX *ctx)
 
- {
 
-     BIGNUM *field;
 
-     int ret = 0;
 
-     bn_check_top(yy);
 
-     bn_check_top(xx);
 
-     BN_CTX_start(ctx);
 
-     if ((field = BN_CTX_get(ctx)) == NULL)
 
-         goto err;
 
-     if (!BN_GF2m_arr2poly(p, field))
 
-         goto err;
 
-     ret = BN_GF2m_mod_div(r, yy, xx, field, ctx);
 
-     bn_check_top(r);
 
-  err:
 
-     BN_CTX_end(ctx);
 
-     return ret;
 
- }
 
- /*
 
-  * Compute the bth power of a, reduce modulo p, and store the result in r.  r
 
-  * could be a. Uses simple square-and-multiply algorithm A.5.1 from IEEE
 
-  * P1363.
 
-  */
 
- int BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
 
-                         const int p[], BN_CTX *ctx)
 
- {
 
-     int ret = 0, i, n;
 
-     BIGNUM *u;
 
-     bn_check_top(a);
 
-     bn_check_top(b);
 
-     if (BN_is_zero(b))
 
-         return BN_one(r);
 
-     if (BN_abs_is_word(b, 1))
 
-         return (BN_copy(r, a) != NULL);
 
-     BN_CTX_start(ctx);
 
-     if ((u = BN_CTX_get(ctx)) == NULL)
 
-         goto err;
 
-     if (!BN_GF2m_mod_arr(u, a, p))
 
-         goto err;
 
-     n = BN_num_bits(b) - 1;
 
-     for (i = n - 1; i >= 0; i--) {
 
-         if (!BN_GF2m_mod_sqr_arr(u, u, p, ctx))
 
-             goto err;
 
-         if (BN_is_bit_set(b, i)) {
 
-             if (!BN_GF2m_mod_mul_arr(u, u, a, p, ctx))
 
-                 goto err;
 
-         }
 
-     }
 
-     if (!BN_copy(r, u))
 
-         goto err;
 
-     bn_check_top(r);
 
-     ret = 1;
 
-  err:
 
-     BN_CTX_end(ctx);
 
-     return ret;
 
- }
 
- /*
 
-  * Compute the bth power of a, reduce modulo p, and store the result in r.  r
 
-  * could be a. This function calls down to the BN_GF2m_mod_exp_arr
 
-  * implementation; this wrapper function is only provided for convenience;
 
-  * for best performance, use the BN_GF2m_mod_exp_arr function.
 
-  */
 
- int BN_GF2m_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
 
-                     const BIGNUM *p, BN_CTX *ctx)
 
- {
 
-     int ret = 0;
 
-     const int max = BN_num_bits(p) + 1;
 
-     int *arr = NULL;
 
-     bn_check_top(a);
 
-     bn_check_top(b);
 
-     bn_check_top(p);
 
-     if ((arr = OPENSSL_malloc(sizeof(*arr) * max)) == NULL)
 
-         goto err;
 
-     ret = BN_GF2m_poly2arr(p, arr, max);
 
-     if (!ret || ret > max) {
 
-         BNerr(BN_F_BN_GF2M_MOD_EXP, BN_R_INVALID_LENGTH);
 
-         goto err;
 
-     }
 
-     ret = BN_GF2m_mod_exp_arr(r, a, b, arr, ctx);
 
-     bn_check_top(r);
 
-  err:
 
-     OPENSSL_free(arr);
 
-     return ret;
 
- }
 
- /*
 
-  * Compute the square root of a, reduce modulo p, and store the result in r.
 
-  * r could be a. Uses exponentiation as in algorithm A.4.1 from IEEE P1363.
 
-  */
 
- int BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a, const int p[],
 
-                          BN_CTX *ctx)
 
- {
 
-     int ret = 0;
 
-     BIGNUM *u;
 
-     bn_check_top(a);
 
-     if (!p[0]) {
 
-         /* reduction mod 1 => return 0 */
 
-         BN_zero(r);
 
-         return 1;
 
-     }
 
-     BN_CTX_start(ctx);
 
-     if ((u = BN_CTX_get(ctx)) == NULL)
 
-         goto err;
 
-     if (!BN_set_bit(u, p[0] - 1))
 
-         goto err;
 
-     ret = BN_GF2m_mod_exp_arr(r, a, u, p, ctx);
 
-     bn_check_top(r);
 
-  err:
 
-     BN_CTX_end(ctx);
 
-     return ret;
 
- }
 
- /*
 
-  * Compute the square root of a, reduce modulo p, and store the result in r.
 
-  * r could be a. This function calls down to the BN_GF2m_mod_sqrt_arr
 
-  * implementation; this wrapper function is only provided for convenience;
 
-  * for best performance, use the BN_GF2m_mod_sqrt_arr function.
 
-  */
 
- int BN_GF2m_mod_sqrt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
 
- {
 
-     int ret = 0;
 
-     const int max = BN_num_bits(p) + 1;
 
-     int *arr = NULL;
 
-     bn_check_top(a);
 
-     bn_check_top(p);
 
-     if ((arr = OPENSSL_malloc(sizeof(*arr) * max)) == NULL)
 
-         goto err;
 
-     ret = BN_GF2m_poly2arr(p, arr, max);
 
-     if (!ret || ret > max) {
 
-         BNerr(BN_F_BN_GF2M_MOD_SQRT, BN_R_INVALID_LENGTH);
 
-         goto err;
 
-     }
 
-     ret = BN_GF2m_mod_sqrt_arr(r, a, arr, ctx);
 
-     bn_check_top(r);
 
-  err:
 
-     OPENSSL_free(arr);
 
-     return ret;
 
- }
 
- /*
 
-  * Find r such that r^2 + r = a mod p.  r could be a. If no r exists returns
 
-  * 0. Uses algorithms A.4.7 and A.4.6 from IEEE P1363.
 
-  */
 
- int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a_, const int p[],
 
-                                BN_CTX *ctx)
 
- {
 
-     int ret = 0, count = 0, j;
 
-     BIGNUM *a, *z, *rho, *w, *w2, *tmp;
 
-     bn_check_top(a_);
 
-     if (!p[0]) {
 
-         /* reduction mod 1 => return 0 */
 
-         BN_zero(r);
 
-         return 1;
 
-     }
 
-     BN_CTX_start(ctx);
 
-     a = BN_CTX_get(ctx);
 
-     z = BN_CTX_get(ctx);
 
-     w = BN_CTX_get(ctx);
 
-     if (w == NULL)
 
-         goto err;
 
-     if (!BN_GF2m_mod_arr(a, a_, p))
 
-         goto err;
 
-     if (BN_is_zero(a)) {
 
-         BN_zero(r);
 
-         ret = 1;
 
-         goto err;
 
-     }
 
-     if (p[0] & 0x1) {           /* m is odd */
 
-         /* compute half-trace of a */
 
-         if (!BN_copy(z, a))
 
-             goto err;
 
-         for (j = 1; j <= (p[0] - 1) / 2; j++) {
 
-             if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx))
 
-                 goto err;
 
-             if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx))
 
-                 goto err;
 
-             if (!BN_GF2m_add(z, z, a))
 
-                 goto err;
 
-         }
 
-     } else {                    /* m is even */
 
-         rho = BN_CTX_get(ctx);
 
-         w2 = BN_CTX_get(ctx);
 
-         tmp = BN_CTX_get(ctx);
 
-         if (tmp == NULL)
 
-             goto err;
 
-         do {
 
-             if (!BN_priv_rand(rho, p[0], BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ANY))
 
-                 goto err;
 
-             if (!BN_GF2m_mod_arr(rho, rho, p))
 
-                 goto err;
 
-             BN_zero(z);
 
-             if (!BN_copy(w, rho))
 
-                 goto err;
 
-             for (j = 1; j <= p[0] - 1; j++) {
 
-                 if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx))
 
-                     goto err;
 
-                 if (!BN_GF2m_mod_sqr_arr(w2, w, p, ctx))
 
-                     goto err;
 
-                 if (!BN_GF2m_mod_mul_arr(tmp, w2, a, p, ctx))
 
-                     goto err;
 
-                 if (!BN_GF2m_add(z, z, tmp))
 
-                     goto err;
 
-                 if (!BN_GF2m_add(w, w2, rho))
 
-                     goto err;
 
-             }
 
-             count++;
 
-         } while (BN_is_zero(w) && (count < MAX_ITERATIONS));
 
-         if (BN_is_zero(w)) {
 
-             BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR, BN_R_TOO_MANY_ITERATIONS);
 
-             goto err;
 
-         }
 
-     }
 
-     if (!BN_GF2m_mod_sqr_arr(w, z, p, ctx))
 
-         goto err;
 
-     if (!BN_GF2m_add(w, z, w))
 
-         goto err;
 
-     if (BN_GF2m_cmp(w, a)) {
 
-         BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR, BN_R_NO_SOLUTION);
 
-         goto err;
 
-     }
 
-     if (!BN_copy(r, z))
 
-         goto err;
 
-     bn_check_top(r);
 
-     ret = 1;
 
-  err:
 
-     BN_CTX_end(ctx);
 
-     return ret;
 
- }
 
- /*
 
-  * Find r such that r^2 + r = a mod p.  r could be a. If no r exists returns
 
-  * 0. This function calls down to the BN_GF2m_mod_solve_quad_arr
 
-  * implementation; this wrapper function is only provided for convenience;
 
-  * for best performance, use the BN_GF2m_mod_solve_quad_arr function.
 
-  */
 
- int BN_GF2m_mod_solve_quad(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
 
-                            BN_CTX *ctx)
 
- {
 
-     int ret = 0;
 
-     const int max = BN_num_bits(p) + 1;
 
-     int *arr = NULL;
 
-     bn_check_top(a);
 
-     bn_check_top(p);
 
-     if ((arr = OPENSSL_malloc(sizeof(*arr) * max)) == NULL)
 
-         goto err;
 
-     ret = BN_GF2m_poly2arr(p, arr, max);
 
-     if (!ret || ret > max) {
 
-         BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD, BN_R_INVALID_LENGTH);
 
-         goto err;
 
-     }
 
-     ret = BN_GF2m_mod_solve_quad_arr(r, a, arr, ctx);
 
-     bn_check_top(r);
 
-  err:
 
-     OPENSSL_free(arr);
 
-     return ret;
 
- }
 
- /*
 
-  * Convert the bit-string representation of a polynomial ( \sum_{i=0}^n a_i *
 
-  * x^i) into an array of integers corresponding to the bits with non-zero
 
-  * coefficient.  Array is terminated with -1. Up to max elements of the array
 
-  * will be filled.  Return value is total number of array elements that would
 
-  * be filled if array was large enough.
 
-  */
 
- int BN_GF2m_poly2arr(const BIGNUM *a, int p[], int max)
 
- {
 
-     int i, j, k = 0;
 
-     BN_ULONG mask;
 
-     if (BN_is_zero(a))
 
-         return 0;
 
-     for (i = a->top - 1; i >= 0; i--) {
 
-         if (!a->d[i])
 
-             /* skip word if a->d[i] == 0 */
 
-             continue;
 
-         mask = BN_TBIT;
 
-         for (j = BN_BITS2 - 1; j >= 0; j--) {
 
-             if (a->d[i] & mask) {
 
-                 if (k < max)
 
-                     p[k] = BN_BITS2 * i + j;
 
-                 k++;
 
-             }
 
-             mask >>= 1;
 
-         }
 
-     }
 
-     if (k < max) {
 
-         p[k] = -1;
 
-         k++;
 
-     }
 
-     return k;
 
- }
 
- /*
 
-  * Convert the coefficient array representation of a polynomial to a
 
-  * bit-string.  The array must be terminated by -1.
 
-  */
 
- int BN_GF2m_arr2poly(const int p[], BIGNUM *a)
 
- {
 
-     int i;
 
-     bn_check_top(a);
 
-     BN_zero(a);
 
-     for (i = 0; p[i] != -1; i++) {
 
-         if (BN_set_bit(a, p[i]) == 0)
 
-             return 0;
 
-     }
 
-     bn_check_top(a);
 
-     return 1;
 
- }
 
- #endif
 
 
  |