| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969 | /* * Copyright 2002-2019 The OpenSSL Project Authors. All Rights Reserved. * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved * * Licensed under the OpenSSL license (the "License").  You may not use * this file except in compliance with the License.  You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */#include <openssl/err.h>#include "internal/bn_int.h"#include "ec_lcl.h"#ifndef OPENSSL_NO_EC2M/* * Initialize a GF(2^m)-based EC_GROUP structure. Note that all other members * are handled by EC_GROUP_new. */int ec_GF2m_simple_group_init(EC_GROUP *group){    group->field = BN_new();    group->a = BN_new();    group->b = BN_new();    if (group->field == NULL || group->a == NULL || group->b == NULL) {        BN_free(group->field);        BN_free(group->a);        BN_free(group->b);        return 0;    }    return 1;}/* * Free a GF(2^m)-based EC_GROUP structure. Note that all other members are * handled by EC_GROUP_free. */void ec_GF2m_simple_group_finish(EC_GROUP *group){    BN_free(group->field);    BN_free(group->a);    BN_free(group->b);}/* * Clear and free a GF(2^m)-based EC_GROUP structure. Note that all other * members are handled by EC_GROUP_clear_free. */void ec_GF2m_simple_group_clear_finish(EC_GROUP *group){    BN_clear_free(group->field);    BN_clear_free(group->a);    BN_clear_free(group->b);    group->poly[0] = 0;    group->poly[1] = 0;    group->poly[2] = 0;    group->poly[3] = 0;    group->poly[4] = 0;    group->poly[5] = -1;}/* * Copy a GF(2^m)-based EC_GROUP structure. Note that all other members are * handled by EC_GROUP_copy. */int ec_GF2m_simple_group_copy(EC_GROUP *dest, const EC_GROUP *src){    if (!BN_copy(dest->field, src->field))        return 0;    if (!BN_copy(dest->a, src->a))        return 0;    if (!BN_copy(dest->b, src->b))        return 0;    dest->poly[0] = src->poly[0];    dest->poly[1] = src->poly[1];    dest->poly[2] = src->poly[2];    dest->poly[3] = src->poly[3];    dest->poly[4] = src->poly[4];    dest->poly[5] = src->poly[5];    if (bn_wexpand(dest->a, (int)(dest->poly[0] + BN_BITS2 - 1) / BN_BITS2) ==        NULL)        return 0;    if (bn_wexpand(dest->b, (int)(dest->poly[0] + BN_BITS2 - 1) / BN_BITS2) ==        NULL)        return 0;    bn_set_all_zero(dest->a);    bn_set_all_zero(dest->b);    return 1;}/* Set the curve parameters of an EC_GROUP structure. */int ec_GF2m_simple_group_set_curve(EC_GROUP *group,                                   const BIGNUM *p, const BIGNUM *a,                                   const BIGNUM *b, BN_CTX *ctx){    int ret = 0, i;    /* group->field */    if (!BN_copy(group->field, p))        goto err;    i = BN_GF2m_poly2arr(group->field, group->poly, 6) - 1;    if ((i != 5) && (i != 3)) {        ECerr(EC_F_EC_GF2M_SIMPLE_GROUP_SET_CURVE, EC_R_UNSUPPORTED_FIELD);        goto err;    }    /* group->a */    if (!BN_GF2m_mod_arr(group->a, a, group->poly))        goto err;    if (bn_wexpand(group->a, (int)(group->poly[0] + BN_BITS2 - 1) / BN_BITS2)        == NULL)        goto err;    bn_set_all_zero(group->a);    /* group->b */    if (!BN_GF2m_mod_arr(group->b, b, group->poly))        goto err;    if (bn_wexpand(group->b, (int)(group->poly[0] + BN_BITS2 - 1) / BN_BITS2)        == NULL)        goto err;    bn_set_all_zero(group->b);    ret = 1; err:    return ret;}/* * Get the curve parameters of an EC_GROUP structure. If p, a, or b are NULL * then there values will not be set but the method will return with success. */int ec_GF2m_simple_group_get_curve(const EC_GROUP *group, BIGNUM *p,                                   BIGNUM *a, BIGNUM *b, BN_CTX *ctx){    int ret = 0;    if (p != NULL) {        if (!BN_copy(p, group->field))            return 0;    }    if (a != NULL) {        if (!BN_copy(a, group->a))            goto err;    }    if (b != NULL) {        if (!BN_copy(b, group->b))            goto err;    }    ret = 1; err:    return ret;}/* * Gets the degree of the field.  For a curve over GF(2^m) this is the value * m. */int ec_GF2m_simple_group_get_degree(const EC_GROUP *group){    return BN_num_bits(group->field) - 1;}/* * Checks the discriminant of the curve. y^2 + x*y = x^3 + a*x^2 + b is an * elliptic curve <=> b != 0 (mod p) */int ec_GF2m_simple_group_check_discriminant(const EC_GROUP *group,                                            BN_CTX *ctx){    int ret = 0;    BIGNUM *b;    BN_CTX *new_ctx = NULL;    if (ctx == NULL) {        ctx = new_ctx = BN_CTX_new();        if (ctx == NULL) {            ECerr(EC_F_EC_GF2M_SIMPLE_GROUP_CHECK_DISCRIMINANT,                  ERR_R_MALLOC_FAILURE);            goto err;        }    }    BN_CTX_start(ctx);    b = BN_CTX_get(ctx);    if (b == NULL)        goto err;    if (!BN_GF2m_mod_arr(b, group->b, group->poly))        goto err;    /*     * check the discriminant: y^2 + x*y = x^3 + a*x^2 + b is an elliptic     * curve <=> b != 0 (mod p)     */    if (BN_is_zero(b))        goto err;    ret = 1; err:    BN_CTX_end(ctx);    BN_CTX_free(new_ctx);    return ret;}/* Initializes an EC_POINT. */int ec_GF2m_simple_point_init(EC_POINT *point){    point->X = BN_new();    point->Y = BN_new();    point->Z = BN_new();    if (point->X == NULL || point->Y == NULL || point->Z == NULL) {        BN_free(point->X);        BN_free(point->Y);        BN_free(point->Z);        return 0;    }    return 1;}/* Frees an EC_POINT. */void ec_GF2m_simple_point_finish(EC_POINT *point){    BN_free(point->X);    BN_free(point->Y);    BN_free(point->Z);}/* Clears and frees an EC_POINT. */void ec_GF2m_simple_point_clear_finish(EC_POINT *point){    BN_clear_free(point->X);    BN_clear_free(point->Y);    BN_clear_free(point->Z);    point->Z_is_one = 0;}/* * Copy the contents of one EC_POINT into another.  Assumes dest is * initialized. */int ec_GF2m_simple_point_copy(EC_POINT *dest, const EC_POINT *src){    if (!BN_copy(dest->X, src->X))        return 0;    if (!BN_copy(dest->Y, src->Y))        return 0;    if (!BN_copy(dest->Z, src->Z))        return 0;    dest->Z_is_one = src->Z_is_one;    dest->curve_name = src->curve_name;    return 1;}/* * Set an EC_POINT to the point at infinity. A point at infinity is * represented by having Z=0. */int ec_GF2m_simple_point_set_to_infinity(const EC_GROUP *group,                                         EC_POINT *point){    point->Z_is_one = 0;    BN_zero(point->Z);    return 1;}/* * Set the coordinates of an EC_POINT using affine coordinates. Note that * the simple implementation only uses affine coordinates. */int ec_GF2m_simple_point_set_affine_coordinates(const EC_GROUP *group,                                                EC_POINT *point,                                                const BIGNUM *x,                                                const BIGNUM *y, BN_CTX *ctx){    int ret = 0;    if (x == NULL || y == NULL) {        ECerr(EC_F_EC_GF2M_SIMPLE_POINT_SET_AFFINE_COORDINATES,              ERR_R_PASSED_NULL_PARAMETER);        return 0;    }    if (!BN_copy(point->X, x))        goto err;    BN_set_negative(point->X, 0);    if (!BN_copy(point->Y, y))        goto err;    BN_set_negative(point->Y, 0);    if (!BN_copy(point->Z, BN_value_one()))        goto err;    BN_set_negative(point->Z, 0);    point->Z_is_one = 1;    ret = 1; err:    return ret;}/* * Gets the affine coordinates of an EC_POINT. Note that the simple * implementation only uses affine coordinates. */int ec_GF2m_simple_point_get_affine_coordinates(const EC_GROUP *group,                                                const EC_POINT *point,                                                BIGNUM *x, BIGNUM *y,                                                BN_CTX *ctx){    int ret = 0;    if (EC_POINT_is_at_infinity(group, point)) {        ECerr(EC_F_EC_GF2M_SIMPLE_POINT_GET_AFFINE_COORDINATES,              EC_R_POINT_AT_INFINITY);        return 0;    }    if (BN_cmp(point->Z, BN_value_one())) {        ECerr(EC_F_EC_GF2M_SIMPLE_POINT_GET_AFFINE_COORDINATES,              ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);        return 0;    }    if (x != NULL) {        if (!BN_copy(x, point->X))            goto err;        BN_set_negative(x, 0);    }    if (y != NULL) {        if (!BN_copy(y, point->Y))            goto err;        BN_set_negative(y, 0);    }    ret = 1; err:    return ret;}/* * Computes a + b and stores the result in r.  r could be a or b, a could be * b. Uses algorithm A.10.2 of IEEE P1363. */int ec_GF2m_simple_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,                       const EC_POINT *b, BN_CTX *ctx){    BN_CTX *new_ctx = NULL;    BIGNUM *x0, *y0, *x1, *y1, *x2, *y2, *s, *t;    int ret = 0;    if (EC_POINT_is_at_infinity(group, a)) {        if (!EC_POINT_copy(r, b))            return 0;        return 1;    }    if (EC_POINT_is_at_infinity(group, b)) {        if (!EC_POINT_copy(r, a))            return 0;        return 1;    }    if (ctx == NULL) {        ctx = new_ctx = BN_CTX_new();        if (ctx == NULL)            return 0;    }    BN_CTX_start(ctx);    x0 = BN_CTX_get(ctx);    y0 = BN_CTX_get(ctx);    x1 = BN_CTX_get(ctx);    y1 = BN_CTX_get(ctx);    x2 = BN_CTX_get(ctx);    y2 = BN_CTX_get(ctx);    s = BN_CTX_get(ctx);    t = BN_CTX_get(ctx);    if (t == NULL)        goto err;    if (a->Z_is_one) {        if (!BN_copy(x0, a->X))            goto err;        if (!BN_copy(y0, a->Y))            goto err;    } else {        if (!EC_POINT_get_affine_coordinates(group, a, x0, y0, ctx))            goto err;    }    if (b->Z_is_one) {        if (!BN_copy(x1, b->X))            goto err;        if (!BN_copy(y1, b->Y))            goto err;    } else {        if (!EC_POINT_get_affine_coordinates(group, b, x1, y1, ctx))            goto err;    }    if (BN_GF2m_cmp(x0, x1)) {        if (!BN_GF2m_add(t, x0, x1))            goto err;        if (!BN_GF2m_add(s, y0, y1))            goto err;        if (!group->meth->field_div(group, s, s, t, ctx))            goto err;        if (!group->meth->field_sqr(group, x2, s, ctx))            goto err;        if (!BN_GF2m_add(x2, x2, group->a))            goto err;        if (!BN_GF2m_add(x2, x2, s))            goto err;        if (!BN_GF2m_add(x2, x2, t))            goto err;    } else {        if (BN_GF2m_cmp(y0, y1) || BN_is_zero(x1)) {            if (!EC_POINT_set_to_infinity(group, r))                goto err;            ret = 1;            goto err;        }        if (!group->meth->field_div(group, s, y1, x1, ctx))            goto err;        if (!BN_GF2m_add(s, s, x1))            goto err;        if (!group->meth->field_sqr(group, x2, s, ctx))            goto err;        if (!BN_GF2m_add(x2, x2, s))            goto err;        if (!BN_GF2m_add(x2, x2, group->a))            goto err;    }    if (!BN_GF2m_add(y2, x1, x2))        goto err;    if (!group->meth->field_mul(group, y2, y2, s, ctx))        goto err;    if (!BN_GF2m_add(y2, y2, x2))        goto err;    if (!BN_GF2m_add(y2, y2, y1))        goto err;    if (!EC_POINT_set_affine_coordinates(group, r, x2, y2, ctx))        goto err;    ret = 1; err:    BN_CTX_end(ctx);    BN_CTX_free(new_ctx);    return ret;}/* * Computes 2 * a and stores the result in r.  r could be a. Uses algorithm * A.10.2 of IEEE P1363. */int ec_GF2m_simple_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,                       BN_CTX *ctx){    return ec_GF2m_simple_add(group, r, a, a, ctx);}int ec_GF2m_simple_invert(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx){    if (EC_POINT_is_at_infinity(group, point) || BN_is_zero(point->Y))        /* point is its own inverse */        return 1;    if (!EC_POINT_make_affine(group, point, ctx))        return 0;    return BN_GF2m_add(point->Y, point->X, point->Y);}/* Indicates whether the given point is the point at infinity. */int ec_GF2m_simple_is_at_infinity(const EC_GROUP *group,                                  const EC_POINT *point){    return BN_is_zero(point->Z);}/*- * Determines whether the given EC_POINT is an actual point on the curve defined * in the EC_GROUP.  A point is valid if it satisfies the Weierstrass equation: *      y^2 + x*y = x^3 + a*x^2 + b. */int ec_GF2m_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point,                               BN_CTX *ctx){    int ret = -1;    BN_CTX *new_ctx = NULL;    BIGNUM *lh, *y2;    int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *,                      const BIGNUM *, BN_CTX *);    int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);    if (EC_POINT_is_at_infinity(group, point))        return 1;    field_mul = group->meth->field_mul;    field_sqr = group->meth->field_sqr;    /* only support affine coordinates */    if (!point->Z_is_one)        return -1;    if (ctx == NULL) {        ctx = new_ctx = BN_CTX_new();        if (ctx == NULL)            return -1;    }    BN_CTX_start(ctx);    y2 = BN_CTX_get(ctx);    lh = BN_CTX_get(ctx);    if (lh == NULL)        goto err;    /*-     * We have a curve defined by a Weierstrass equation     *      y^2 + x*y = x^3 + a*x^2 + b.     *  <=> x^3 + a*x^2 + x*y + b + y^2 = 0     *  <=> ((x + a) * x + y ) * x + b + y^2 = 0     */    if (!BN_GF2m_add(lh, point->X, group->a))        goto err;    if (!field_mul(group, lh, lh, point->X, ctx))        goto err;    if (!BN_GF2m_add(lh, lh, point->Y))        goto err;    if (!field_mul(group, lh, lh, point->X, ctx))        goto err;    if (!BN_GF2m_add(lh, lh, group->b))        goto err;    if (!field_sqr(group, y2, point->Y, ctx))        goto err;    if (!BN_GF2m_add(lh, lh, y2))        goto err;    ret = BN_is_zero(lh); err:    BN_CTX_end(ctx);    BN_CTX_free(new_ctx);    return ret;}/*- * Indicates whether two points are equal. * Return values: *  -1   error *   0   equal (in affine coordinates) *   1   not equal */int ec_GF2m_simple_cmp(const EC_GROUP *group, const EC_POINT *a,                       const EC_POINT *b, BN_CTX *ctx){    BIGNUM *aX, *aY, *bX, *bY;    BN_CTX *new_ctx = NULL;    int ret = -1;    if (EC_POINT_is_at_infinity(group, a)) {        return EC_POINT_is_at_infinity(group, b) ? 0 : 1;    }    if (EC_POINT_is_at_infinity(group, b))        return 1;    if (a->Z_is_one && b->Z_is_one) {        return ((BN_cmp(a->X, b->X) == 0) && BN_cmp(a->Y, b->Y) == 0) ? 0 : 1;    }    if (ctx == NULL) {        ctx = new_ctx = BN_CTX_new();        if (ctx == NULL)            return -1;    }    BN_CTX_start(ctx);    aX = BN_CTX_get(ctx);    aY = BN_CTX_get(ctx);    bX = BN_CTX_get(ctx);    bY = BN_CTX_get(ctx);    if (bY == NULL)        goto err;    if (!EC_POINT_get_affine_coordinates(group, a, aX, aY, ctx))        goto err;    if (!EC_POINT_get_affine_coordinates(group, b, bX, bY, ctx))        goto err;    ret = ((BN_cmp(aX, bX) == 0) && BN_cmp(aY, bY) == 0) ? 0 : 1; err:    BN_CTX_end(ctx);    BN_CTX_free(new_ctx);    return ret;}/* Forces the given EC_POINT to internally use affine coordinates. */int ec_GF2m_simple_make_affine(const EC_GROUP *group, EC_POINT *point,                               BN_CTX *ctx){    BN_CTX *new_ctx = NULL;    BIGNUM *x, *y;    int ret = 0;    if (point->Z_is_one || EC_POINT_is_at_infinity(group, point))        return 1;    if (ctx == NULL) {        ctx = new_ctx = BN_CTX_new();        if (ctx == NULL)            return 0;    }    BN_CTX_start(ctx);    x = BN_CTX_get(ctx);    y = BN_CTX_get(ctx);    if (y == NULL)        goto err;    if (!EC_POINT_get_affine_coordinates(group, point, x, y, ctx))        goto err;    if (!BN_copy(point->X, x))        goto err;    if (!BN_copy(point->Y, y))        goto err;    if (!BN_one(point->Z))        goto err;    point->Z_is_one = 1;    ret = 1; err:    BN_CTX_end(ctx);    BN_CTX_free(new_ctx);    return ret;}/* * Forces each of the EC_POINTs in the given array to use affine coordinates. */int ec_GF2m_simple_points_make_affine(const EC_GROUP *group, size_t num,                                      EC_POINT *points[], BN_CTX *ctx){    size_t i;    for (i = 0; i < num; i++) {        if (!group->meth->make_affine(group, points[i], ctx))            return 0;    }    return 1;}/* Wrapper to simple binary polynomial field multiplication implementation. */int ec_GF2m_simple_field_mul(const EC_GROUP *group, BIGNUM *r,                             const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx){    return BN_GF2m_mod_mul_arr(r, a, b, group->poly, ctx);}/* Wrapper to simple binary polynomial field squaring implementation. */int ec_GF2m_simple_field_sqr(const EC_GROUP *group, BIGNUM *r,                             const BIGNUM *a, BN_CTX *ctx){    return BN_GF2m_mod_sqr_arr(r, a, group->poly, ctx);}/* Wrapper to simple binary polynomial field division implementation. */int ec_GF2m_simple_field_div(const EC_GROUP *group, BIGNUM *r,                             const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx){    return BN_GF2m_mod_div(r, a, b, group->field, ctx);}/*- * Lopez-Dahab ladder, pre step. * See e.g. "Guide to ECC" Alg 3.40. * Modified to blind s and r independently. * s:= p, r := 2p */staticint ec_GF2m_simple_ladder_pre(const EC_GROUP *group,                              EC_POINT *r, EC_POINT *s,                              EC_POINT *p, BN_CTX *ctx){    /* if p is not affine, something is wrong */    if (p->Z_is_one == 0)        return 0;    /* s blinding: make sure lambda (s->Z here) is not zero */    do {        if (!BN_priv_rand(s->Z, BN_num_bits(group->field) - 1,                          BN_RAND_TOP_ANY, BN_RAND_BOTTOM_ANY)) {            ECerr(EC_F_EC_GF2M_SIMPLE_LADDER_PRE, ERR_R_BN_LIB);            return 0;        }    } while (BN_is_zero(s->Z));    /* if field_encode defined convert between representations */    if ((group->meth->field_encode != NULL         && !group->meth->field_encode(group, s->Z, s->Z, ctx))        || !group->meth->field_mul(group, s->X, p->X, s->Z, ctx))        return 0;    /* r blinding: make sure lambda (r->Y here for storage) is not zero */    do {        if (!BN_priv_rand(r->Y, BN_num_bits(group->field) - 1,                          BN_RAND_TOP_ANY, BN_RAND_BOTTOM_ANY)) {            ECerr(EC_F_EC_GF2M_SIMPLE_LADDER_PRE, ERR_R_BN_LIB);            return 0;        }    } while (BN_is_zero(r->Y));    if ((group->meth->field_encode != NULL         && !group->meth->field_encode(group, r->Y, r->Y, ctx))        || !group->meth->field_sqr(group, r->Z, p->X, ctx)        || !group->meth->field_sqr(group, r->X, r->Z, ctx)        || !BN_GF2m_add(r->X, r->X, group->b)        || !group->meth->field_mul(group, r->Z, r->Z, r->Y, ctx)        || !group->meth->field_mul(group, r->X, r->X, r->Y, ctx))        return 0;    s->Z_is_one = 0;    r->Z_is_one = 0;    return 1;}/*- * Ladder step: differential addition-and-doubling, mixed Lopez-Dahab coords. * http://www.hyperelliptic.org/EFD/g12o/auto-code/shortw/xz/ladder/mladd-2003-s.op3 * s := r + s, r := 2r */staticint ec_GF2m_simple_ladder_step(const EC_GROUP *group,                               EC_POINT *r, EC_POINT *s,                               EC_POINT *p, BN_CTX *ctx){    if (!group->meth->field_mul(group, r->Y, r->Z, s->X, ctx)        || !group->meth->field_mul(group, s->X, r->X, s->Z, ctx)        || !group->meth->field_sqr(group, s->Y, r->Z, ctx)        || !group->meth->field_sqr(group, r->Z, r->X, ctx)        || !BN_GF2m_add(s->Z, r->Y, s->X)        || !group->meth->field_sqr(group, s->Z, s->Z, ctx)        || !group->meth->field_mul(group, s->X, r->Y, s->X, ctx)        || !group->meth->field_mul(group, r->Y, s->Z, p->X, ctx)        || !BN_GF2m_add(s->X, s->X, r->Y)        || !group->meth->field_sqr(group, r->Y, r->Z, ctx)        || !group->meth->field_mul(group, r->Z, r->Z, s->Y, ctx)        || !group->meth->field_sqr(group, s->Y, s->Y, ctx)        || !group->meth->field_mul(group, s->Y, s->Y, group->b, ctx)        || !BN_GF2m_add(r->X, r->Y, s->Y))        return 0;    return 1;}/*- * Recover affine (x,y) result from Lopez-Dahab r and s, affine p. * See e.g. "Fast Multiplication on Elliptic Curves over GF(2**m) * without Precomputation" (Lopez and Dahab, CHES 1999), * Appendix Alg Mxy. */staticint ec_GF2m_simple_ladder_post(const EC_GROUP *group,                               EC_POINT *r, EC_POINT *s,                               EC_POINT *p, BN_CTX *ctx){    int ret = 0;    BIGNUM *t0, *t1, *t2 = NULL;    if (BN_is_zero(r->Z))        return EC_POINT_set_to_infinity(group, r);    if (BN_is_zero(s->Z)) {        if (!EC_POINT_copy(r, p)            || !EC_POINT_invert(group, r, ctx)) {            ECerr(EC_F_EC_GF2M_SIMPLE_LADDER_POST, ERR_R_EC_LIB);            return 0;        }        return 1;    }    BN_CTX_start(ctx);    t0 = BN_CTX_get(ctx);    t1 = BN_CTX_get(ctx);    t2 = BN_CTX_get(ctx);    if (t2 == NULL) {        ECerr(EC_F_EC_GF2M_SIMPLE_LADDER_POST, ERR_R_MALLOC_FAILURE);        goto err;    }    if (!group->meth->field_mul(group, t0, r->Z, s->Z, ctx)        || !group->meth->field_mul(group, t1, p->X, r->Z, ctx)        || !BN_GF2m_add(t1, r->X, t1)        || !group->meth->field_mul(group, t2, p->X, s->Z, ctx)        || !group->meth->field_mul(group, r->Z, r->X, t2, ctx)        || !BN_GF2m_add(t2, t2, s->X)        || !group->meth->field_mul(group, t1, t1, t2, ctx)        || !group->meth->field_sqr(group, t2, p->X, ctx)        || !BN_GF2m_add(t2, p->Y, t2)        || !group->meth->field_mul(group, t2, t2, t0, ctx)        || !BN_GF2m_add(t1, t2, t1)        || !group->meth->field_mul(group, t2, p->X, t0, ctx)        || !group->meth->field_inv(group, t2, t2, ctx)        || !group->meth->field_mul(group, t1, t1, t2, ctx)        || !group->meth->field_mul(group, r->X, r->Z, t2, ctx)        || !BN_GF2m_add(t2, p->X, r->X)        || !group->meth->field_mul(group, t2, t2, t1, ctx)        || !BN_GF2m_add(r->Y, p->Y, t2)        || !BN_one(r->Z))        goto err;    r->Z_is_one = 1;    /* GF(2^m) field elements should always have BIGNUM::neg = 0 */    BN_set_negative(r->X, 0);    BN_set_negative(r->Y, 0);    ret = 1; err:    BN_CTX_end(ctx);    return ret;}staticint ec_GF2m_simple_points_mul(const EC_GROUP *group, EC_POINT *r,                              const BIGNUM *scalar, size_t num,                              const EC_POINT *points[],                              const BIGNUM *scalars[],                              BN_CTX *ctx){    int ret = 0;    EC_POINT *t = NULL;    /*-     * We limit use of the ladder only to the following cases:     * - r := scalar * G     *   Fixed point mul: scalar != NULL && num == 0;     * - r := scalars[0] * points[0]     *   Variable point mul: scalar == NULL && num == 1;     * - r := scalar * G + scalars[0] * points[0]     *   used, e.g., in ECDSA verification: scalar != NULL && num == 1     *     * In any other case (num > 1) we use the default wNAF implementation.     *     * We also let the default implementation handle degenerate cases like group     * order or cofactor set to 0.     */    if (num > 1 || BN_is_zero(group->order) || BN_is_zero(group->cofactor))        return ec_wNAF_mul(group, r, scalar, num, points, scalars, ctx);    if (scalar != NULL && num == 0)        /* Fixed point multiplication */        return ec_scalar_mul_ladder(group, r, scalar, NULL, ctx);    if (scalar == NULL && num == 1)        /* Variable point multiplication */        return ec_scalar_mul_ladder(group, r, scalars[0], points[0], ctx);    /*-     * Double point multiplication:     *  r := scalar * G + scalars[0] * points[0]     */    if ((t = EC_POINT_new(group)) == NULL) {        ECerr(EC_F_EC_GF2M_SIMPLE_POINTS_MUL, ERR_R_MALLOC_FAILURE);        return 0;    }    if (!ec_scalar_mul_ladder(group, t, scalar, NULL, ctx)        || !ec_scalar_mul_ladder(group, r, scalars[0], points[0], ctx)        || !EC_POINT_add(group, r, t, r, ctx))        goto err;    ret = 1; err:    EC_POINT_free(t);    return ret;}/*- * Computes the multiplicative inverse of a in GF(2^m), storing the result in r. * If a is zero (or equivalent), you'll get a EC_R_CANNOT_INVERT error. * SCA hardening is with blinding: BN_GF2m_mod_inv does that. */static int ec_GF2m_simple_field_inv(const EC_GROUP *group, BIGNUM *r,                                    const BIGNUM *a, BN_CTX *ctx){    int ret;    if (!(ret = BN_GF2m_mod_inv(r, a, group->field, ctx)))        ECerr(EC_F_EC_GF2M_SIMPLE_FIELD_INV, EC_R_CANNOT_INVERT);    return ret;}const EC_METHOD *EC_GF2m_simple_method(void){    static const EC_METHOD ret = {        EC_FLAGS_DEFAULT_OCT,        NID_X9_62_characteristic_two_field,        ec_GF2m_simple_group_init,        ec_GF2m_simple_group_finish,        ec_GF2m_simple_group_clear_finish,        ec_GF2m_simple_group_copy,        ec_GF2m_simple_group_set_curve,        ec_GF2m_simple_group_get_curve,        ec_GF2m_simple_group_get_degree,        ec_group_simple_order_bits,        ec_GF2m_simple_group_check_discriminant,        ec_GF2m_simple_point_init,        ec_GF2m_simple_point_finish,        ec_GF2m_simple_point_clear_finish,        ec_GF2m_simple_point_copy,        ec_GF2m_simple_point_set_to_infinity,        0, /* set_Jprojective_coordinates_GFp */        0, /* get_Jprojective_coordinates_GFp */        ec_GF2m_simple_point_set_affine_coordinates,        ec_GF2m_simple_point_get_affine_coordinates,        0, /* point_set_compressed_coordinates */        0, /* point2oct */        0, /* oct2point */        ec_GF2m_simple_add,        ec_GF2m_simple_dbl,        ec_GF2m_simple_invert,        ec_GF2m_simple_is_at_infinity,        ec_GF2m_simple_is_on_curve,        ec_GF2m_simple_cmp,        ec_GF2m_simple_make_affine,        ec_GF2m_simple_points_make_affine,        ec_GF2m_simple_points_mul,        0, /* precompute_mult */        0, /* have_precompute_mult */        ec_GF2m_simple_field_mul,        ec_GF2m_simple_field_sqr,        ec_GF2m_simple_field_div,        ec_GF2m_simple_field_inv,        0, /* field_encode */        0, /* field_decode */        0, /* field_set_to_one */        ec_key_simple_priv2oct,        ec_key_simple_oct2priv,        0, /* set private */        ec_key_simple_generate_key,        ec_key_simple_check_key,        ec_key_simple_generate_public_key,        0, /* keycopy */        0, /* keyfinish */        ecdh_simple_compute_key,        0, /* field_inverse_mod_ord */        0, /* blind_coordinates */        ec_GF2m_simple_ladder_pre,        ec_GF2m_simple_ladder_step,        ec_GF2m_simple_ladder_post    };    return &ret;}#endif
 |