| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687 | /* * Copyright 2001-2019 The OpenSSL Project Authors. All Rights Reserved. * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved * * Licensed under the OpenSSL license (the "License").  You may not use * this file except in compliance with the License.  You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */#include <openssl/err.h>#include <openssl/symhacks.h>#include "ec_lcl.h"const EC_METHOD *EC_GFp_simple_method(void){    static const EC_METHOD ret = {        EC_FLAGS_DEFAULT_OCT,        NID_X9_62_prime_field,        ec_GFp_simple_group_init,        ec_GFp_simple_group_finish,        ec_GFp_simple_group_clear_finish,        ec_GFp_simple_group_copy,        ec_GFp_simple_group_set_curve,        ec_GFp_simple_group_get_curve,        ec_GFp_simple_group_get_degree,        ec_group_simple_order_bits,        ec_GFp_simple_group_check_discriminant,        ec_GFp_simple_point_init,        ec_GFp_simple_point_finish,        ec_GFp_simple_point_clear_finish,        ec_GFp_simple_point_copy,        ec_GFp_simple_point_set_to_infinity,        ec_GFp_simple_set_Jprojective_coordinates_GFp,        ec_GFp_simple_get_Jprojective_coordinates_GFp,        ec_GFp_simple_point_set_affine_coordinates,        ec_GFp_simple_point_get_affine_coordinates,        0, 0, 0,        ec_GFp_simple_add,        ec_GFp_simple_dbl,        ec_GFp_simple_invert,        ec_GFp_simple_is_at_infinity,        ec_GFp_simple_is_on_curve,        ec_GFp_simple_cmp,        ec_GFp_simple_make_affine,        ec_GFp_simple_points_make_affine,        0 /* mul */ ,        0 /* precompute_mult */ ,        0 /* have_precompute_mult */ ,        ec_GFp_simple_field_mul,        ec_GFp_simple_field_sqr,        0 /* field_div */ ,        ec_GFp_simple_field_inv,        0 /* field_encode */ ,        0 /* field_decode */ ,        0,                      /* field_set_to_one */        ec_key_simple_priv2oct,        ec_key_simple_oct2priv,        0, /* set private */        ec_key_simple_generate_key,        ec_key_simple_check_key,        ec_key_simple_generate_public_key,        0, /* keycopy */        0, /* keyfinish */        ecdh_simple_compute_key,        0, /* field_inverse_mod_ord */        ec_GFp_simple_blind_coordinates,        ec_GFp_simple_ladder_pre,        ec_GFp_simple_ladder_step,        ec_GFp_simple_ladder_post    };    return &ret;}/* * Most method functions in this file are designed to work with * non-trivial representations of field elements if necessary * (see ecp_mont.c): while standard modular addition and subtraction * are used, the field_mul and field_sqr methods will be used for * multiplication, and field_encode and field_decode (if defined) * will be used for converting between representations. * * Functions ec_GFp_simple_points_make_affine() and * ec_GFp_simple_point_get_affine_coordinates() specifically assume * that if a non-trivial representation is used, it is a Montgomery * representation (i.e. 'encoding' means multiplying by some factor R). */int ec_GFp_simple_group_init(EC_GROUP *group){    group->field = BN_new();    group->a = BN_new();    group->b = BN_new();    if (group->field == NULL || group->a == NULL || group->b == NULL) {        BN_free(group->field);        BN_free(group->a);        BN_free(group->b);        return 0;    }    group->a_is_minus3 = 0;    return 1;}void ec_GFp_simple_group_finish(EC_GROUP *group){    BN_free(group->field);    BN_free(group->a);    BN_free(group->b);}void ec_GFp_simple_group_clear_finish(EC_GROUP *group){    BN_clear_free(group->field);    BN_clear_free(group->a);    BN_clear_free(group->b);}int ec_GFp_simple_group_copy(EC_GROUP *dest, const EC_GROUP *src){    if (!BN_copy(dest->field, src->field))        return 0;    if (!BN_copy(dest->a, src->a))        return 0;    if (!BN_copy(dest->b, src->b))        return 0;    dest->a_is_minus3 = src->a_is_minus3;    return 1;}int ec_GFp_simple_group_set_curve(EC_GROUP *group,                                  const BIGNUM *p, const BIGNUM *a,                                  const BIGNUM *b, BN_CTX *ctx){    int ret = 0;    BN_CTX *new_ctx = NULL;    BIGNUM *tmp_a;    /* p must be a prime > 3 */    if (BN_num_bits(p) <= 2 || !BN_is_odd(p)) {        ECerr(EC_F_EC_GFP_SIMPLE_GROUP_SET_CURVE, EC_R_INVALID_FIELD);        return 0;    }    if (ctx == NULL) {        ctx = new_ctx = BN_CTX_new();        if (ctx == NULL)            return 0;    }    BN_CTX_start(ctx);    tmp_a = BN_CTX_get(ctx);    if (tmp_a == NULL)        goto err;    /* group->field */    if (!BN_copy(group->field, p))        goto err;    BN_set_negative(group->field, 0);    /* group->a */    if (!BN_nnmod(tmp_a, a, p, ctx))        goto err;    if (group->meth->field_encode) {        if (!group->meth->field_encode(group, group->a, tmp_a, ctx))            goto err;    } else if (!BN_copy(group->a, tmp_a))        goto err;    /* group->b */    if (!BN_nnmod(group->b, b, p, ctx))        goto err;    if (group->meth->field_encode)        if (!group->meth->field_encode(group, group->b, group->b, ctx))            goto err;    /* group->a_is_minus3 */    if (!BN_add_word(tmp_a, 3))        goto err;    group->a_is_minus3 = (0 == BN_cmp(tmp_a, group->field));    ret = 1; err:    BN_CTX_end(ctx);    BN_CTX_free(new_ctx);    return ret;}int ec_GFp_simple_group_get_curve(const EC_GROUP *group, BIGNUM *p, BIGNUM *a,                                  BIGNUM *b, BN_CTX *ctx){    int ret = 0;    BN_CTX *new_ctx = NULL;    if (p != NULL) {        if (!BN_copy(p, group->field))            return 0;    }    if (a != NULL || b != NULL) {        if (group->meth->field_decode) {            if (ctx == NULL) {                ctx = new_ctx = BN_CTX_new();                if (ctx == NULL)                    return 0;            }            if (a != NULL) {                if (!group->meth->field_decode(group, a, group->a, ctx))                    goto err;            }            if (b != NULL) {                if (!group->meth->field_decode(group, b, group->b, ctx))                    goto err;            }        } else {            if (a != NULL) {                if (!BN_copy(a, group->a))                    goto err;            }            if (b != NULL) {                if (!BN_copy(b, group->b))                    goto err;            }        }    }    ret = 1; err:    BN_CTX_free(new_ctx);    return ret;}int ec_GFp_simple_group_get_degree(const EC_GROUP *group){    return BN_num_bits(group->field);}int ec_GFp_simple_group_check_discriminant(const EC_GROUP *group, BN_CTX *ctx){    int ret = 0;    BIGNUM *a, *b, *order, *tmp_1, *tmp_2;    const BIGNUM *p = group->field;    BN_CTX *new_ctx = NULL;    if (ctx == NULL) {        ctx = new_ctx = BN_CTX_new();        if (ctx == NULL) {            ECerr(EC_F_EC_GFP_SIMPLE_GROUP_CHECK_DISCRIMINANT,                  ERR_R_MALLOC_FAILURE);            goto err;        }    }    BN_CTX_start(ctx);    a = BN_CTX_get(ctx);    b = BN_CTX_get(ctx);    tmp_1 = BN_CTX_get(ctx);    tmp_2 = BN_CTX_get(ctx);    order = BN_CTX_get(ctx);    if (order == NULL)        goto err;    if (group->meth->field_decode) {        if (!group->meth->field_decode(group, a, group->a, ctx))            goto err;        if (!group->meth->field_decode(group, b, group->b, ctx))            goto err;    } else {        if (!BN_copy(a, group->a))            goto err;        if (!BN_copy(b, group->b))            goto err;    }    /*-     * check the discriminant:     * y^2 = x^3 + a*x + b is an elliptic curve <=> 4*a^3 + 27*b^2 != 0 (mod p)     * 0 =< a, b < p     */    if (BN_is_zero(a)) {        if (BN_is_zero(b))            goto err;    } else if (!BN_is_zero(b)) {        if (!BN_mod_sqr(tmp_1, a, p, ctx))            goto err;        if (!BN_mod_mul(tmp_2, tmp_1, a, p, ctx))            goto err;        if (!BN_lshift(tmp_1, tmp_2, 2))            goto err;        /* tmp_1 = 4*a^3 */        if (!BN_mod_sqr(tmp_2, b, p, ctx))            goto err;        if (!BN_mul_word(tmp_2, 27))            goto err;        /* tmp_2 = 27*b^2 */        if (!BN_mod_add(a, tmp_1, tmp_2, p, ctx))            goto err;        if (BN_is_zero(a))            goto err;    }    ret = 1; err:    BN_CTX_end(ctx);    BN_CTX_free(new_ctx);    return ret;}int ec_GFp_simple_point_init(EC_POINT *point){    point->X = BN_new();    point->Y = BN_new();    point->Z = BN_new();    point->Z_is_one = 0;    if (point->X == NULL || point->Y == NULL || point->Z == NULL) {        BN_free(point->X);        BN_free(point->Y);        BN_free(point->Z);        return 0;    }    return 1;}void ec_GFp_simple_point_finish(EC_POINT *point){    BN_free(point->X);    BN_free(point->Y);    BN_free(point->Z);}void ec_GFp_simple_point_clear_finish(EC_POINT *point){    BN_clear_free(point->X);    BN_clear_free(point->Y);    BN_clear_free(point->Z);    point->Z_is_one = 0;}int ec_GFp_simple_point_copy(EC_POINT *dest, const EC_POINT *src){    if (!BN_copy(dest->X, src->X))        return 0;    if (!BN_copy(dest->Y, src->Y))        return 0;    if (!BN_copy(dest->Z, src->Z))        return 0;    dest->Z_is_one = src->Z_is_one;    dest->curve_name = src->curve_name;    return 1;}int ec_GFp_simple_point_set_to_infinity(const EC_GROUP *group,                                        EC_POINT *point){    point->Z_is_one = 0;    BN_zero(point->Z);    return 1;}int ec_GFp_simple_set_Jprojective_coordinates_GFp(const EC_GROUP *group,                                                  EC_POINT *point,                                                  const BIGNUM *x,                                                  const BIGNUM *y,                                                  const BIGNUM *z,                                                  BN_CTX *ctx){    BN_CTX *new_ctx = NULL;    int ret = 0;    if (ctx == NULL) {        ctx = new_ctx = BN_CTX_new();        if (ctx == NULL)            return 0;    }    if (x != NULL) {        if (!BN_nnmod(point->X, x, group->field, ctx))            goto err;        if (group->meth->field_encode) {            if (!group->meth->field_encode(group, point->X, point->X, ctx))                goto err;        }    }    if (y != NULL) {        if (!BN_nnmod(point->Y, y, group->field, ctx))            goto err;        if (group->meth->field_encode) {            if (!group->meth->field_encode(group, point->Y, point->Y, ctx))                goto err;        }    }    if (z != NULL) {        int Z_is_one;        if (!BN_nnmod(point->Z, z, group->field, ctx))            goto err;        Z_is_one = BN_is_one(point->Z);        if (group->meth->field_encode) {            if (Z_is_one && (group->meth->field_set_to_one != 0)) {                if (!group->meth->field_set_to_one(group, point->Z, ctx))                    goto err;            } else {                if (!group->                    meth->field_encode(group, point->Z, point->Z, ctx))                    goto err;            }        }        point->Z_is_one = Z_is_one;    }    ret = 1; err:    BN_CTX_free(new_ctx);    return ret;}int ec_GFp_simple_get_Jprojective_coordinates_GFp(const EC_GROUP *group,                                                  const EC_POINT *point,                                                  BIGNUM *x, BIGNUM *y,                                                  BIGNUM *z, BN_CTX *ctx){    BN_CTX *new_ctx = NULL;    int ret = 0;    if (group->meth->field_decode != 0) {        if (ctx == NULL) {            ctx = new_ctx = BN_CTX_new();            if (ctx == NULL)                return 0;        }        if (x != NULL) {            if (!group->meth->field_decode(group, x, point->X, ctx))                goto err;        }        if (y != NULL) {            if (!group->meth->field_decode(group, y, point->Y, ctx))                goto err;        }        if (z != NULL) {            if (!group->meth->field_decode(group, z, point->Z, ctx))                goto err;        }    } else {        if (x != NULL) {            if (!BN_copy(x, point->X))                goto err;        }        if (y != NULL) {            if (!BN_copy(y, point->Y))                goto err;        }        if (z != NULL) {            if (!BN_copy(z, point->Z))                goto err;        }    }    ret = 1; err:    BN_CTX_free(new_ctx);    return ret;}int ec_GFp_simple_point_set_affine_coordinates(const EC_GROUP *group,                                               EC_POINT *point,                                               const BIGNUM *x,                                               const BIGNUM *y, BN_CTX *ctx){    if (x == NULL || y == NULL) {        /*         * unlike for projective coordinates, we do not tolerate this         */        ECerr(EC_F_EC_GFP_SIMPLE_POINT_SET_AFFINE_COORDINATES,              ERR_R_PASSED_NULL_PARAMETER);        return 0;    }    return EC_POINT_set_Jprojective_coordinates_GFp(group, point, x, y,                                                    BN_value_one(), ctx);}int ec_GFp_simple_point_get_affine_coordinates(const EC_GROUP *group,                                               const EC_POINT *point,                                               BIGNUM *x, BIGNUM *y,                                               BN_CTX *ctx){    BN_CTX *new_ctx = NULL;    BIGNUM *Z, *Z_1, *Z_2, *Z_3;    const BIGNUM *Z_;    int ret = 0;    if (EC_POINT_is_at_infinity(group, point)) {        ECerr(EC_F_EC_GFP_SIMPLE_POINT_GET_AFFINE_COORDINATES,              EC_R_POINT_AT_INFINITY);        return 0;    }    if (ctx == NULL) {        ctx = new_ctx = BN_CTX_new();        if (ctx == NULL)            return 0;    }    BN_CTX_start(ctx);    Z = BN_CTX_get(ctx);    Z_1 = BN_CTX_get(ctx);    Z_2 = BN_CTX_get(ctx);    Z_3 = BN_CTX_get(ctx);    if (Z_3 == NULL)        goto err;    /* transform  (X, Y, Z)  into  (x, y) := (X/Z^2, Y/Z^3) */    if (group->meth->field_decode) {        if (!group->meth->field_decode(group, Z, point->Z, ctx))            goto err;        Z_ = Z;    } else {        Z_ = point->Z;    }    if (BN_is_one(Z_)) {        if (group->meth->field_decode) {            if (x != NULL) {                if (!group->meth->field_decode(group, x, point->X, ctx))                    goto err;            }            if (y != NULL) {                if (!group->meth->field_decode(group, y, point->Y, ctx))                    goto err;            }        } else {            if (x != NULL) {                if (!BN_copy(x, point->X))                    goto err;            }            if (y != NULL) {                if (!BN_copy(y, point->Y))                    goto err;            }        }    } else {        if (!group->meth->field_inv(group, Z_1, Z_, ctx)) {            ECerr(EC_F_EC_GFP_SIMPLE_POINT_GET_AFFINE_COORDINATES,                  ERR_R_BN_LIB);            goto err;        }        if (group->meth->field_encode == 0) {            /* field_sqr works on standard representation */            if (!group->meth->field_sqr(group, Z_2, Z_1, ctx))                goto err;        } else {            if (!BN_mod_sqr(Z_2, Z_1, group->field, ctx))                goto err;        }        if (x != NULL) {            /*             * in the Montgomery case, field_mul will cancel out Montgomery             * factor in X:             */            if (!group->meth->field_mul(group, x, point->X, Z_2, ctx))                goto err;        }        if (y != NULL) {            if (group->meth->field_encode == 0) {                /*                 * field_mul works on standard representation                 */                if (!group->meth->field_mul(group, Z_3, Z_2, Z_1, ctx))                    goto err;            } else {                if (!BN_mod_mul(Z_3, Z_2, Z_1, group->field, ctx))                    goto err;            }            /*             * in the Montgomery case, field_mul will cancel out Montgomery             * factor in Y:             */            if (!group->meth->field_mul(group, y, point->Y, Z_3, ctx))                goto err;        }    }    ret = 1; err:    BN_CTX_end(ctx);    BN_CTX_free(new_ctx);    return ret;}int ec_GFp_simple_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,                      const EC_POINT *b, BN_CTX *ctx){    int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *,                      const BIGNUM *, BN_CTX *);    int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);    const BIGNUM *p;    BN_CTX *new_ctx = NULL;    BIGNUM *n0, *n1, *n2, *n3, *n4, *n5, *n6;    int ret = 0;    if (a == b)        return EC_POINT_dbl(group, r, a, ctx);    if (EC_POINT_is_at_infinity(group, a))        return EC_POINT_copy(r, b);    if (EC_POINT_is_at_infinity(group, b))        return EC_POINT_copy(r, a);    field_mul = group->meth->field_mul;    field_sqr = group->meth->field_sqr;    p = group->field;    if (ctx == NULL) {        ctx = new_ctx = BN_CTX_new();        if (ctx == NULL)            return 0;    }    BN_CTX_start(ctx);    n0 = BN_CTX_get(ctx);    n1 = BN_CTX_get(ctx);    n2 = BN_CTX_get(ctx);    n3 = BN_CTX_get(ctx);    n4 = BN_CTX_get(ctx);    n5 = BN_CTX_get(ctx);    n6 = BN_CTX_get(ctx);    if (n6 == NULL)        goto end;    /*     * Note that in this function we must not read components of 'a' or 'b'     * once we have written the corresponding components of 'r'. ('r' might     * be one of 'a' or 'b'.)     */    /* n1, n2 */    if (b->Z_is_one) {        if (!BN_copy(n1, a->X))            goto end;        if (!BN_copy(n2, a->Y))            goto end;        /* n1 = X_a */        /* n2 = Y_a */    } else {        if (!field_sqr(group, n0, b->Z, ctx))            goto end;        if (!field_mul(group, n1, a->X, n0, ctx))            goto end;        /* n1 = X_a * Z_b^2 */        if (!field_mul(group, n0, n0, b->Z, ctx))            goto end;        if (!field_mul(group, n2, a->Y, n0, ctx))            goto end;        /* n2 = Y_a * Z_b^3 */    }    /* n3, n4 */    if (a->Z_is_one) {        if (!BN_copy(n3, b->X))            goto end;        if (!BN_copy(n4, b->Y))            goto end;        /* n3 = X_b */        /* n4 = Y_b */    } else {        if (!field_sqr(group, n0, a->Z, ctx))            goto end;        if (!field_mul(group, n3, b->X, n0, ctx))            goto end;        /* n3 = X_b * Z_a^2 */        if (!field_mul(group, n0, n0, a->Z, ctx))            goto end;        if (!field_mul(group, n4, b->Y, n0, ctx))            goto end;        /* n4 = Y_b * Z_a^3 */    }    /* n5, n6 */    if (!BN_mod_sub_quick(n5, n1, n3, p))        goto end;    if (!BN_mod_sub_quick(n6, n2, n4, p))        goto end;    /* n5 = n1 - n3 */    /* n6 = n2 - n4 */    if (BN_is_zero(n5)) {        if (BN_is_zero(n6)) {            /* a is the same point as b */            BN_CTX_end(ctx);            ret = EC_POINT_dbl(group, r, a, ctx);            ctx = NULL;            goto end;        } else {            /* a is the inverse of b */            BN_zero(r->Z);            r->Z_is_one = 0;            ret = 1;            goto end;        }    }    /* 'n7', 'n8' */    if (!BN_mod_add_quick(n1, n1, n3, p))        goto end;    if (!BN_mod_add_quick(n2, n2, n4, p))        goto end;    /* 'n7' = n1 + n3 */    /* 'n8' = n2 + n4 */    /* Z_r */    if (a->Z_is_one && b->Z_is_one) {        if (!BN_copy(r->Z, n5))            goto end;    } else {        if (a->Z_is_one) {            if (!BN_copy(n0, b->Z))                goto end;        } else if (b->Z_is_one) {            if (!BN_copy(n0, a->Z))                goto end;        } else {            if (!field_mul(group, n0, a->Z, b->Z, ctx))                goto end;        }        if (!field_mul(group, r->Z, n0, n5, ctx))            goto end;    }    r->Z_is_one = 0;    /* Z_r = Z_a * Z_b * n5 */    /* X_r */    if (!field_sqr(group, n0, n6, ctx))        goto end;    if (!field_sqr(group, n4, n5, ctx))        goto end;    if (!field_mul(group, n3, n1, n4, ctx))        goto end;    if (!BN_mod_sub_quick(r->X, n0, n3, p))        goto end;    /* X_r = n6^2 - n5^2 * 'n7' */    /* 'n9' */    if (!BN_mod_lshift1_quick(n0, r->X, p))        goto end;    if (!BN_mod_sub_quick(n0, n3, n0, p))        goto end;    /* n9 = n5^2 * 'n7' - 2 * X_r */    /* Y_r */    if (!field_mul(group, n0, n0, n6, ctx))        goto end;    if (!field_mul(group, n5, n4, n5, ctx))        goto end;               /* now n5 is n5^3 */    if (!field_mul(group, n1, n2, n5, ctx))        goto end;    if (!BN_mod_sub_quick(n0, n0, n1, p))        goto end;    if (BN_is_odd(n0))        if (!BN_add(n0, n0, p))            goto end;    /* now  0 <= n0 < 2*p,  and n0 is even */    if (!BN_rshift1(r->Y, n0))        goto end;    /* Y_r = (n6 * 'n9' - 'n8' * 'n5^3') / 2 */    ret = 1; end:    BN_CTX_end(ctx);    BN_CTX_free(new_ctx);    return ret;}int ec_GFp_simple_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,                      BN_CTX *ctx){    int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *,                      const BIGNUM *, BN_CTX *);    int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);    const BIGNUM *p;    BN_CTX *new_ctx = NULL;    BIGNUM *n0, *n1, *n2, *n3;    int ret = 0;    if (EC_POINT_is_at_infinity(group, a)) {        BN_zero(r->Z);        r->Z_is_one = 0;        return 1;    }    field_mul = group->meth->field_mul;    field_sqr = group->meth->field_sqr;    p = group->field;    if (ctx == NULL) {        ctx = new_ctx = BN_CTX_new();        if (ctx == NULL)            return 0;    }    BN_CTX_start(ctx);    n0 = BN_CTX_get(ctx);    n1 = BN_CTX_get(ctx);    n2 = BN_CTX_get(ctx);    n3 = BN_CTX_get(ctx);    if (n3 == NULL)        goto err;    /*     * Note that in this function we must not read components of 'a' once we     * have written the corresponding components of 'r'. ('r' might the same     * as 'a'.)     */    /* n1 */    if (a->Z_is_one) {        if (!field_sqr(group, n0, a->X, ctx))            goto err;        if (!BN_mod_lshift1_quick(n1, n0, p))            goto err;        if (!BN_mod_add_quick(n0, n0, n1, p))            goto err;        if (!BN_mod_add_quick(n1, n0, group->a, p))            goto err;        /* n1 = 3 * X_a^2 + a_curve */    } else if (group->a_is_minus3) {        if (!field_sqr(group, n1, a->Z, ctx))            goto err;        if (!BN_mod_add_quick(n0, a->X, n1, p))            goto err;        if (!BN_mod_sub_quick(n2, a->X, n1, p))            goto err;        if (!field_mul(group, n1, n0, n2, ctx))            goto err;        if (!BN_mod_lshift1_quick(n0, n1, p))            goto err;        if (!BN_mod_add_quick(n1, n0, n1, p))            goto err;        /*-         * n1 = 3 * (X_a + Z_a^2) * (X_a - Z_a^2)         *    = 3 * X_a^2 - 3 * Z_a^4         */    } else {        if (!field_sqr(group, n0, a->X, ctx))            goto err;        if (!BN_mod_lshift1_quick(n1, n0, p))            goto err;        if (!BN_mod_add_quick(n0, n0, n1, p))            goto err;        if (!field_sqr(group, n1, a->Z, ctx))            goto err;        if (!field_sqr(group, n1, n1, ctx))            goto err;        if (!field_mul(group, n1, n1, group->a, ctx))            goto err;        if (!BN_mod_add_quick(n1, n1, n0, p))            goto err;        /* n1 = 3 * X_a^2 + a_curve * Z_a^4 */    }    /* Z_r */    if (a->Z_is_one) {        if (!BN_copy(n0, a->Y))            goto err;    } else {        if (!field_mul(group, n0, a->Y, a->Z, ctx))            goto err;    }    if (!BN_mod_lshift1_quick(r->Z, n0, p))        goto err;    r->Z_is_one = 0;    /* Z_r = 2 * Y_a * Z_a */    /* n2 */    if (!field_sqr(group, n3, a->Y, ctx))        goto err;    if (!field_mul(group, n2, a->X, n3, ctx))        goto err;    if (!BN_mod_lshift_quick(n2, n2, 2, p))        goto err;    /* n2 = 4 * X_a * Y_a^2 */    /* X_r */    if (!BN_mod_lshift1_quick(n0, n2, p))        goto err;    if (!field_sqr(group, r->X, n1, ctx))        goto err;    if (!BN_mod_sub_quick(r->X, r->X, n0, p))        goto err;    /* X_r = n1^2 - 2 * n2 */    /* n3 */    if (!field_sqr(group, n0, n3, ctx))        goto err;    if (!BN_mod_lshift_quick(n3, n0, 3, p))        goto err;    /* n3 = 8 * Y_a^4 */    /* Y_r */    if (!BN_mod_sub_quick(n0, n2, r->X, p))        goto err;    if (!field_mul(group, n0, n1, n0, ctx))        goto err;    if (!BN_mod_sub_quick(r->Y, n0, n3, p))        goto err;    /* Y_r = n1 * (n2 - X_r) - n3 */    ret = 1; err:    BN_CTX_end(ctx);    BN_CTX_free(new_ctx);    return ret;}int ec_GFp_simple_invert(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx){    if (EC_POINT_is_at_infinity(group, point) || BN_is_zero(point->Y))        /* point is its own inverse */        return 1;    return BN_usub(point->Y, group->field, point->Y);}int ec_GFp_simple_is_at_infinity(const EC_GROUP *group, const EC_POINT *point){    return BN_is_zero(point->Z);}int ec_GFp_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point,                              BN_CTX *ctx){    int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *,                      const BIGNUM *, BN_CTX *);    int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);    const BIGNUM *p;    BN_CTX *new_ctx = NULL;    BIGNUM *rh, *tmp, *Z4, *Z6;    int ret = -1;    if (EC_POINT_is_at_infinity(group, point))        return 1;    field_mul = group->meth->field_mul;    field_sqr = group->meth->field_sqr;    p = group->field;    if (ctx == NULL) {        ctx = new_ctx = BN_CTX_new();        if (ctx == NULL)            return -1;    }    BN_CTX_start(ctx);    rh = BN_CTX_get(ctx);    tmp = BN_CTX_get(ctx);    Z4 = BN_CTX_get(ctx);    Z6 = BN_CTX_get(ctx);    if (Z6 == NULL)        goto err;    /*-     * We have a curve defined by a Weierstrass equation     *      y^2 = x^3 + a*x + b.     * The point to consider is given in Jacobian projective coordinates     * where  (X, Y, Z)  represents  (x, y) = (X/Z^2, Y/Z^3).     * Substituting this and multiplying by  Z^6  transforms the above equation into     *      Y^2 = X^3 + a*X*Z^4 + b*Z^6.     * To test this, we add up the right-hand side in 'rh'.     */    /* rh := X^2 */    if (!field_sqr(group, rh, point->X, ctx))        goto err;    if (!point->Z_is_one) {        if (!field_sqr(group, tmp, point->Z, ctx))            goto err;        if (!field_sqr(group, Z4, tmp, ctx))            goto err;        if (!field_mul(group, Z6, Z4, tmp, ctx))            goto err;        /* rh := (rh + a*Z^4)*X */        if (group->a_is_minus3) {            if (!BN_mod_lshift1_quick(tmp, Z4, p))                goto err;            if (!BN_mod_add_quick(tmp, tmp, Z4, p))                goto err;            if (!BN_mod_sub_quick(rh, rh, tmp, p))                goto err;            if (!field_mul(group, rh, rh, point->X, ctx))                goto err;        } else {            if (!field_mul(group, tmp, Z4, group->a, ctx))                goto err;            if (!BN_mod_add_quick(rh, rh, tmp, p))                goto err;            if (!field_mul(group, rh, rh, point->X, ctx))                goto err;        }        /* rh := rh + b*Z^6 */        if (!field_mul(group, tmp, group->b, Z6, ctx))            goto err;        if (!BN_mod_add_quick(rh, rh, tmp, p))            goto err;    } else {        /* point->Z_is_one */        /* rh := (rh + a)*X */        if (!BN_mod_add_quick(rh, rh, group->a, p))            goto err;        if (!field_mul(group, rh, rh, point->X, ctx))            goto err;        /* rh := rh + b */        if (!BN_mod_add_quick(rh, rh, group->b, p))            goto err;    }    /* 'lh' := Y^2 */    if (!field_sqr(group, tmp, point->Y, ctx))        goto err;    ret = (0 == BN_ucmp(tmp, rh)); err:    BN_CTX_end(ctx);    BN_CTX_free(new_ctx);    return ret;}int ec_GFp_simple_cmp(const EC_GROUP *group, const EC_POINT *a,                      const EC_POINT *b, BN_CTX *ctx){    /*-     * return values:     *  -1   error     *   0   equal (in affine coordinates)     *   1   not equal     */    int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *,                      const BIGNUM *, BN_CTX *);    int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);    BN_CTX *new_ctx = NULL;    BIGNUM *tmp1, *tmp2, *Za23, *Zb23;    const BIGNUM *tmp1_, *tmp2_;    int ret = -1;    if (EC_POINT_is_at_infinity(group, a)) {        return EC_POINT_is_at_infinity(group, b) ? 0 : 1;    }    if (EC_POINT_is_at_infinity(group, b))        return 1;    if (a->Z_is_one && b->Z_is_one) {        return ((BN_cmp(a->X, b->X) == 0) && BN_cmp(a->Y, b->Y) == 0) ? 0 : 1;    }    field_mul = group->meth->field_mul;    field_sqr = group->meth->field_sqr;    if (ctx == NULL) {        ctx = new_ctx = BN_CTX_new();        if (ctx == NULL)            return -1;    }    BN_CTX_start(ctx);    tmp1 = BN_CTX_get(ctx);    tmp2 = BN_CTX_get(ctx);    Za23 = BN_CTX_get(ctx);    Zb23 = BN_CTX_get(ctx);    if (Zb23 == NULL)        goto end;    /*-     * We have to decide whether     *     (X_a/Z_a^2, Y_a/Z_a^3) = (X_b/Z_b^2, Y_b/Z_b^3),     * or equivalently, whether     *     (X_a*Z_b^2, Y_a*Z_b^3) = (X_b*Z_a^2, Y_b*Z_a^3).     */    if (!b->Z_is_one) {        if (!field_sqr(group, Zb23, b->Z, ctx))            goto end;        if (!field_mul(group, tmp1, a->X, Zb23, ctx))            goto end;        tmp1_ = tmp1;    } else        tmp1_ = a->X;    if (!a->Z_is_one) {        if (!field_sqr(group, Za23, a->Z, ctx))            goto end;        if (!field_mul(group, tmp2, b->X, Za23, ctx))            goto end;        tmp2_ = tmp2;    } else        tmp2_ = b->X;    /* compare  X_a*Z_b^2  with  X_b*Z_a^2 */    if (BN_cmp(tmp1_, tmp2_) != 0) {        ret = 1;                /* points differ */        goto end;    }    if (!b->Z_is_one) {        if (!field_mul(group, Zb23, Zb23, b->Z, ctx))            goto end;        if (!field_mul(group, tmp1, a->Y, Zb23, ctx))            goto end;        /* tmp1_ = tmp1 */    } else        tmp1_ = a->Y;    if (!a->Z_is_one) {        if (!field_mul(group, Za23, Za23, a->Z, ctx))            goto end;        if (!field_mul(group, tmp2, b->Y, Za23, ctx))            goto end;        /* tmp2_ = tmp2 */    } else        tmp2_ = b->Y;    /* compare  Y_a*Z_b^3  with  Y_b*Z_a^3 */    if (BN_cmp(tmp1_, tmp2_) != 0) {        ret = 1;                /* points differ */        goto end;    }    /* points are equal */    ret = 0; end:    BN_CTX_end(ctx);    BN_CTX_free(new_ctx);    return ret;}int ec_GFp_simple_make_affine(const EC_GROUP *group, EC_POINT *point,                              BN_CTX *ctx){    BN_CTX *new_ctx = NULL;    BIGNUM *x, *y;    int ret = 0;    if (point->Z_is_one || EC_POINT_is_at_infinity(group, point))        return 1;    if (ctx == NULL) {        ctx = new_ctx = BN_CTX_new();        if (ctx == NULL)            return 0;    }    BN_CTX_start(ctx);    x = BN_CTX_get(ctx);    y = BN_CTX_get(ctx);    if (y == NULL)        goto err;    if (!EC_POINT_get_affine_coordinates(group, point, x, y, ctx))        goto err;    if (!EC_POINT_set_affine_coordinates(group, point, x, y, ctx))        goto err;    if (!point->Z_is_one) {        ECerr(EC_F_EC_GFP_SIMPLE_MAKE_AFFINE, ERR_R_INTERNAL_ERROR);        goto err;    }    ret = 1; err:    BN_CTX_end(ctx);    BN_CTX_free(new_ctx);    return ret;}int ec_GFp_simple_points_make_affine(const EC_GROUP *group, size_t num,                                     EC_POINT *points[], BN_CTX *ctx){    BN_CTX *new_ctx = NULL;    BIGNUM *tmp, *tmp_Z;    BIGNUM **prod_Z = NULL;    size_t i;    int ret = 0;    if (num == 0)        return 1;    if (ctx == NULL) {        ctx = new_ctx = BN_CTX_new();        if (ctx == NULL)            return 0;    }    BN_CTX_start(ctx);    tmp = BN_CTX_get(ctx);    tmp_Z = BN_CTX_get(ctx);    if (tmp_Z == NULL)        goto err;    prod_Z = OPENSSL_malloc(num * sizeof(prod_Z[0]));    if (prod_Z == NULL)        goto err;    for (i = 0; i < num; i++) {        prod_Z[i] = BN_new();        if (prod_Z[i] == NULL)            goto err;    }    /*     * Set each prod_Z[i] to the product of points[0]->Z .. points[i]->Z,     * skipping any zero-valued inputs (pretend that they're 1).     */    if (!BN_is_zero(points[0]->Z)) {        if (!BN_copy(prod_Z[0], points[0]->Z))            goto err;    } else {        if (group->meth->field_set_to_one != 0) {            if (!group->meth->field_set_to_one(group, prod_Z[0], ctx))                goto err;        } else {            if (!BN_one(prod_Z[0]))                goto err;        }    }    for (i = 1; i < num; i++) {        if (!BN_is_zero(points[i]->Z)) {            if (!group->                meth->field_mul(group, prod_Z[i], prod_Z[i - 1], points[i]->Z,                                ctx))                goto err;        } else {            if (!BN_copy(prod_Z[i], prod_Z[i - 1]))                goto err;        }    }    /*     * Now use a single explicit inversion to replace every non-zero     * points[i]->Z by its inverse.     */    if (!group->meth->field_inv(group, tmp, prod_Z[num - 1], ctx)) {        ECerr(EC_F_EC_GFP_SIMPLE_POINTS_MAKE_AFFINE, ERR_R_BN_LIB);        goto err;    }    if (group->meth->field_encode != 0) {        /*         * In the Montgomery case, we just turned R*H (representing H) into         * 1/(R*H), but we need R*(1/H) (representing 1/H); i.e. we need to         * multiply by the Montgomery factor twice.         */        if (!group->meth->field_encode(group, tmp, tmp, ctx))            goto err;        if (!group->meth->field_encode(group, tmp, tmp, ctx))            goto err;    }    for (i = num - 1; i > 0; --i) {        /*         * Loop invariant: tmp is the product of the inverses of points[0]->Z         * .. points[i]->Z (zero-valued inputs skipped).         */        if (!BN_is_zero(points[i]->Z)) {            /*             * Set tmp_Z to the inverse of points[i]->Z (as product of Z             * inverses 0 .. i, Z values 0 .. i - 1).             */            if (!group->                meth->field_mul(group, tmp_Z, prod_Z[i - 1], tmp, ctx))                goto err;            /*             * Update tmp to satisfy the loop invariant for i - 1.             */            if (!group->meth->field_mul(group, tmp, tmp, points[i]->Z, ctx))                goto err;            /* Replace points[i]->Z by its inverse. */            if (!BN_copy(points[i]->Z, tmp_Z))                goto err;        }    }    if (!BN_is_zero(points[0]->Z)) {        /* Replace points[0]->Z by its inverse. */        if (!BN_copy(points[0]->Z, tmp))            goto err;    }    /* Finally, fix up the X and Y coordinates for all points. */    for (i = 0; i < num; i++) {        EC_POINT *p = points[i];        if (!BN_is_zero(p->Z)) {            /* turn  (X, Y, 1/Z)  into  (X/Z^2, Y/Z^3, 1) */            if (!group->meth->field_sqr(group, tmp, p->Z, ctx))                goto err;            if (!group->meth->field_mul(group, p->X, p->X, tmp, ctx))                goto err;            if (!group->meth->field_mul(group, tmp, tmp, p->Z, ctx))                goto err;            if (!group->meth->field_mul(group, p->Y, p->Y, tmp, ctx))                goto err;            if (group->meth->field_set_to_one != 0) {                if (!group->meth->field_set_to_one(group, p->Z, ctx))                    goto err;            } else {                if (!BN_one(p->Z))                    goto err;            }            p->Z_is_one = 1;        }    }    ret = 1; err:    BN_CTX_end(ctx);    BN_CTX_free(new_ctx);    if (prod_Z != NULL) {        for (i = 0; i < num; i++) {            if (prod_Z[i] == NULL)                break;            BN_clear_free(prod_Z[i]);        }        OPENSSL_free(prod_Z);    }    return ret;}int ec_GFp_simple_field_mul(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,                            const BIGNUM *b, BN_CTX *ctx){    return BN_mod_mul(r, a, b, group->field, ctx);}int ec_GFp_simple_field_sqr(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,                            BN_CTX *ctx){    return BN_mod_sqr(r, a, group->field, ctx);}/*- * Computes the multiplicative inverse of a in GF(p), storing the result in r. * If a is zero (or equivalent), you'll get a EC_R_CANNOT_INVERT error. * Since we don't have a Mont structure here, SCA hardening is with blinding. */int ec_GFp_simple_field_inv(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,                            BN_CTX *ctx){    BIGNUM *e = NULL;    BN_CTX *new_ctx = NULL;    int ret = 0;    if (ctx == NULL && (ctx = new_ctx = BN_CTX_secure_new()) == NULL)        return 0;    BN_CTX_start(ctx);    if ((e = BN_CTX_get(ctx)) == NULL)        goto err;    do {        if (!BN_priv_rand_range(e, group->field))        goto err;    } while (BN_is_zero(e));    /* r := a * e */    if (!group->meth->field_mul(group, r, a, e, ctx))        goto err;    /* r := 1/(a * e) */    if (!BN_mod_inverse(r, r, group->field, ctx)) {        ECerr(EC_F_EC_GFP_SIMPLE_FIELD_INV, EC_R_CANNOT_INVERT);        goto err;    }    /* r := e/(a * e) = 1/a */    if (!group->meth->field_mul(group, r, r, e, ctx))        goto err;    ret = 1; err:    BN_CTX_end(ctx);    BN_CTX_free(new_ctx);    return ret;}/*- * Apply randomization of EC point projective coordinates: * *   (X, Y ,Z ) = (lambda^2*X, lambda^3*Y, lambda*Z) *   lambda = [1,group->field) * */int ec_GFp_simple_blind_coordinates(const EC_GROUP *group, EC_POINT *p,                                    BN_CTX *ctx){    int ret = 0;    BIGNUM *lambda = NULL;    BIGNUM *temp = NULL;    BN_CTX_start(ctx);    lambda = BN_CTX_get(ctx);    temp = BN_CTX_get(ctx);    if (temp == NULL) {        ECerr(EC_F_EC_GFP_SIMPLE_BLIND_COORDINATES, ERR_R_MALLOC_FAILURE);        goto err;    }    /* make sure lambda is not zero */    do {        if (!BN_priv_rand_range(lambda, group->field)) {            ECerr(EC_F_EC_GFP_SIMPLE_BLIND_COORDINATES, ERR_R_BN_LIB);            goto err;        }    } while (BN_is_zero(lambda));    /* if field_encode defined convert between representations */    if (group->meth->field_encode != NULL        && !group->meth->field_encode(group, lambda, lambda, ctx))        goto err;    if (!group->meth->field_mul(group, p->Z, p->Z, lambda, ctx))        goto err;    if (!group->meth->field_sqr(group, temp, lambda, ctx))        goto err;    if (!group->meth->field_mul(group, p->X, p->X, temp, ctx))        goto err;    if (!group->meth->field_mul(group, temp, temp, lambda, ctx))        goto err;    if (!group->meth->field_mul(group, p->Y, p->Y, temp, ctx))        goto err;    p->Z_is_one = 0;    ret = 1; err:    BN_CTX_end(ctx);    return ret;}/*- * Set s := p, r := 2p. * * For doubling we use Formula 3 from Izu-Takagi "A fast parallel elliptic curve * multiplication resistant against side channel attacks" appendix, as described * at * https://hyperelliptic.org/EFD/g1p/auto-shortw-xz.html#doubling-dbl-2002-it-2 * * The input point p will be in randomized Jacobian projective coords: *      x = X/Z**2, y=Y/Z**3 * * The output points p, s, and r are converted to standard (homogeneous) * projective coords: *      x = X/Z, y=Y/Z */int ec_GFp_simple_ladder_pre(const EC_GROUP *group,                             EC_POINT *r, EC_POINT *s,                             EC_POINT *p, BN_CTX *ctx){    BIGNUM *t1, *t2, *t3, *t4, *t5, *t6 = NULL;    t1 = r->Z;    t2 = r->Y;    t3 = s->X;    t4 = r->X;    t5 = s->Y;    t6 = s->Z;    /* convert p: (X,Y,Z) -> (XZ,Y,Z**3) */    if (!group->meth->field_mul(group, p->X, p->X, p->Z, ctx)        || !group->meth->field_sqr(group, t1, p->Z, ctx)        || !group->meth->field_mul(group, p->Z, p->Z, t1, ctx)        /* r := 2p */        || !group->meth->field_sqr(group, t2, p->X, ctx)        || !group->meth->field_sqr(group, t3, p->Z, ctx)        || !group->meth->field_mul(group, t4, t3, group->a, ctx)        || !BN_mod_sub_quick(t5, t2, t4, group->field)        || !BN_mod_add_quick(t2, t2, t4, group->field)        || !group->meth->field_sqr(group, t5, t5, ctx)        || !group->meth->field_mul(group, t6, t3, group->b, ctx)        || !group->meth->field_mul(group, t1, p->X, p->Z, ctx)        || !group->meth->field_mul(group, t4, t1, t6, ctx)        || !BN_mod_lshift_quick(t4, t4, 3, group->field)        /* r->X coord output */        || !BN_mod_sub_quick(r->X, t5, t4, group->field)        || !group->meth->field_mul(group, t1, t1, t2, ctx)        || !group->meth->field_mul(group, t2, t3, t6, ctx)        || !BN_mod_add_quick(t1, t1, t2, group->field)        /* r->Z coord output */        || !BN_mod_lshift_quick(r->Z, t1, 2, group->field)        || !EC_POINT_copy(s, p))        return 0;    r->Z_is_one = 0;    s->Z_is_one = 0;    p->Z_is_one = 0;    return 1;}/*- * Differential addition-and-doubling using  Eq. (9) and (10) from Izu-Takagi * "A fast parallel elliptic curve multiplication resistant against side channel * attacks", as described at * https://hyperelliptic.org/EFD/g1p/auto-shortw-xz.html#ladder-ladd-2002-it-4 */int ec_GFp_simple_ladder_step(const EC_GROUP *group,                              EC_POINT *r, EC_POINT *s,                              EC_POINT *p, BN_CTX *ctx){    int ret = 0;    BIGNUM *t0, *t1, *t2, *t3, *t4, *t5, *t6, *t7 = NULL;    BN_CTX_start(ctx);    t0 = BN_CTX_get(ctx);    t1 = BN_CTX_get(ctx);    t2 = BN_CTX_get(ctx);    t3 = BN_CTX_get(ctx);    t4 = BN_CTX_get(ctx);    t5 = BN_CTX_get(ctx);    t6 = BN_CTX_get(ctx);    t7 = BN_CTX_get(ctx);    if (t7 == NULL        || !group->meth->field_mul(group, t0, r->X, s->X, ctx)        || !group->meth->field_mul(group, t1, r->Z, s->Z, ctx)        || !group->meth->field_mul(group, t2, r->X, s->Z, ctx)        || !group->meth->field_mul(group, t3, r->Z, s->X, ctx)        || !group->meth->field_mul(group, t4, group->a, t1, ctx)        || !BN_mod_add_quick(t0, t0, t4, group->field)        || !BN_mod_add_quick(t4, t3, t2, group->field)        || !group->meth->field_mul(group, t0, t4, t0, ctx)        || !group->meth->field_sqr(group, t1, t1, ctx)        || !BN_mod_lshift_quick(t7, group->b, 2, group->field)        || !group->meth->field_mul(group, t1, t7, t1, ctx)        || !BN_mod_lshift1_quick(t0, t0, group->field)        || !BN_mod_add_quick(t0, t1, t0, group->field)        || !BN_mod_sub_quick(t1, t2, t3, group->field)        || !group->meth->field_sqr(group, t1, t1, ctx)        || !group->meth->field_mul(group, t3, t1, p->X, ctx)        || !group->meth->field_mul(group, t0, p->Z, t0, ctx)        /* s->X coord output */        || !BN_mod_sub_quick(s->X, t0, t3, group->field)        /* s->Z coord output */        || !group->meth->field_mul(group, s->Z, p->Z, t1, ctx)        || !group->meth->field_sqr(group, t3, r->X, ctx)        || !group->meth->field_sqr(group, t2, r->Z, ctx)        || !group->meth->field_mul(group, t4, t2, group->a, ctx)        || !BN_mod_add_quick(t5, r->X, r->Z, group->field)        || !group->meth->field_sqr(group, t5, t5, ctx)        || !BN_mod_sub_quick(t5, t5, t3, group->field)        || !BN_mod_sub_quick(t5, t5, t2, group->field)        || !BN_mod_sub_quick(t6, t3, t4, group->field)        || !group->meth->field_sqr(group, t6, t6, ctx)        || !group->meth->field_mul(group, t0, t2, t5, ctx)        || !group->meth->field_mul(group, t0, t7, t0, ctx)        /* r->X coord output */        || !BN_mod_sub_quick(r->X, t6, t0, group->field)        || !BN_mod_add_quick(t6, t3, t4, group->field)        || !group->meth->field_sqr(group, t3, t2, ctx)        || !group->meth->field_mul(group, t7, t3, t7, ctx)        || !group->meth->field_mul(group, t5, t5, t6, ctx)        || !BN_mod_lshift1_quick(t5, t5, group->field)        /* r->Z coord output */        || !BN_mod_add_quick(r->Z, t7, t5, group->field))        goto err;    ret = 1; err:    BN_CTX_end(ctx);    return ret;}/*- * Recovers the y-coordinate of r using Eq. (8) from Brier-Joye, "Weierstrass * Elliptic Curves and Side-Channel Attacks", modified to work in projective * coordinates and return r in Jacobian projective coordinates. * * X4 = two*Y1*X2*Z3*Z2*Z1; * Y4 = two*b*Z3*SQR(Z2*Z1) + Z3*(a*Z2*Z1+X1*X2)*(X1*Z2+X2*Z1) - X3*SQR(X1*Z2-X2*Z1); * Z4 = two*Y1*Z3*SQR(Z2)*Z1; * * Z4 != 0 because: *  - Z1==0 implies p is at infinity, which would have caused an early exit in *    the caller; *  - Z2==0 implies r is at infinity (handled by the BN_is_zero(r->Z) branch); *  - Z3==0 implies s is at infinity (handled by the BN_is_zero(s->Z) branch); *  - Y1==0 implies p has order 2, so either r or s are infinity and handled by *    one of the BN_is_zero(...) branches. */int ec_GFp_simple_ladder_post(const EC_GROUP *group,                              EC_POINT *r, EC_POINT *s,                              EC_POINT *p, BN_CTX *ctx){    int ret = 0;    BIGNUM *t0, *t1, *t2, *t3, *t4, *t5, *t6 = NULL;    if (BN_is_zero(r->Z))        return EC_POINT_set_to_infinity(group, r);    if (BN_is_zero(s->Z)) {        /* (X,Y,Z) -> (XZ,YZ**2,Z) */        if (!group->meth->field_mul(group, r->X, p->X, p->Z, ctx)            || !group->meth->field_sqr(group, r->Z, p->Z, ctx)            || !group->meth->field_mul(group, r->Y, p->Y, r->Z, ctx)            || !BN_copy(r->Z, p->Z)            || !EC_POINT_invert(group, r, ctx))            return 0;        return 1;    }    BN_CTX_start(ctx);    t0 = BN_CTX_get(ctx);    t1 = BN_CTX_get(ctx);    t2 = BN_CTX_get(ctx);    t3 = BN_CTX_get(ctx);    t4 = BN_CTX_get(ctx);    t5 = BN_CTX_get(ctx);    t6 = BN_CTX_get(ctx);    if (t6 == NULL        || !BN_mod_lshift1_quick(t0, p->Y, group->field)        || !group->meth->field_mul(group, t1, r->X, p->Z, ctx)        || !group->meth->field_mul(group, t2, r->Z, s->Z, ctx)        || !group->meth->field_mul(group, t2, t1, t2, ctx)        || !group->meth->field_mul(group, t3, t2, t0, ctx)        || !group->meth->field_mul(group, t2, r->Z, p->Z, ctx)        || !group->meth->field_sqr(group, t4, t2, ctx)        || !BN_mod_lshift1_quick(t5, group->b, group->field)        || !group->meth->field_mul(group, t4, t4, t5, ctx)        || !group->meth->field_mul(group, t6, t2, group->a, ctx)        || !group->meth->field_mul(group, t5, r->X, p->X, ctx)        || !BN_mod_add_quick(t5, t6, t5, group->field)        || !group->meth->field_mul(group, t6, r->Z, p->X, ctx)        || !BN_mod_add_quick(t2, t6, t1, group->field)        || !group->meth->field_mul(group, t5, t5, t2, ctx)        || !BN_mod_sub_quick(t6, t6, t1, group->field)        || !group->meth->field_sqr(group, t6, t6, ctx)        || !group->meth->field_mul(group, t6, t6, s->X, ctx)        || !BN_mod_add_quick(t4, t5, t4, group->field)        || !group->meth->field_mul(group, t4, t4, s->Z, ctx)        || !BN_mod_sub_quick(t4, t4, t6, group->field)        || !group->meth->field_sqr(group, t5, r->Z, ctx)        || !group->meth->field_mul(group, r->Z, p->Z, s->Z, ctx)        || !group->meth->field_mul(group, r->Z, t5, r->Z, ctx)        || !group->meth->field_mul(group, r->Z, r->Z, t0, ctx)        /* t3 := X, t4 := Y */        /* (X,Y,Z) -> (XZ,YZ**2,Z) */        || !group->meth->field_mul(group, r->X, t3, r->Z, ctx)        || !group->meth->field_sqr(group, t3, r->Z, ctx)        || !group->meth->field_mul(group, r->Y, t4, t3, ctx))        goto err;    ret = 1; err:    BN_CTX_end(ctx);    return ret;}
 |