| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266 | /* * Copyright 2017-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License").  You may not use * this file except in compliance with the License.  You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */#include <stdlib.h>#include <string.h>#include <openssl/hmac.h>#include <openssl/kdf.h>#include <openssl/evp.h>#include "internal/cryptlib.h"#include "internal/evp_int.h"#ifndef OPENSSL_NO_SCRYPTstatic int atou64(const char *nptr, uint64_t *result);typedef struct {    unsigned char *pass;    size_t pass_len;    unsigned char *salt;    size_t salt_len;    uint64_t N, r, p;    uint64_t maxmem_bytes;} SCRYPT_PKEY_CTX;/* Custom uint64_t parser since we do not have strtoull */static int atou64(const char *nptr, uint64_t *result){    uint64_t value = 0;    while (*nptr) {        unsigned int digit;        uint64_t new_value;        if ((*nptr < '0') || (*nptr > '9')) {            return 0;        }        digit = (unsigned int)(*nptr - '0');        new_value = (value * 10) + digit;        if ((new_value < digit) || ((new_value - digit) / 10 != value)) {            /* Overflow */            return 0;        }        value = new_value;        nptr++;    }    *result = value;    return 1;}static int pkey_scrypt_init(EVP_PKEY_CTX *ctx){    SCRYPT_PKEY_CTX *kctx;    kctx = OPENSSL_zalloc(sizeof(*kctx));    if (kctx == NULL) {        KDFerr(KDF_F_PKEY_SCRYPT_INIT, ERR_R_MALLOC_FAILURE);        return 0;    }    /* Default values are the most conservative recommendation given in the     * original paper of C. Percival. Derivation uses roughly 1 GiB of memory     * for this parameter choice (approx. 128 * r * (N + p) bytes).     */    kctx->N = 1 << 20;    kctx->r = 8;    kctx->p = 1;    kctx->maxmem_bytes = 1025 * 1024 * 1024;    ctx->data = kctx;    return 1;}static void pkey_scrypt_cleanup(EVP_PKEY_CTX *ctx){    SCRYPT_PKEY_CTX *kctx = ctx->data;    OPENSSL_clear_free(kctx->salt, kctx->salt_len);    OPENSSL_clear_free(kctx->pass, kctx->pass_len);    OPENSSL_free(kctx);}static int pkey_scrypt_set_membuf(unsigned char **buffer, size_t *buflen,                                  const unsigned char *new_buffer,                                  const int new_buflen){    if (new_buffer == NULL)        return 1;    if (new_buflen < 0)        return 0;    if (*buffer != NULL)        OPENSSL_clear_free(*buffer, *buflen);    if (new_buflen > 0) {        *buffer = OPENSSL_memdup(new_buffer, new_buflen);    } else {        *buffer = OPENSSL_malloc(1);    }    if (*buffer == NULL) {        KDFerr(KDF_F_PKEY_SCRYPT_SET_MEMBUF, ERR_R_MALLOC_FAILURE);        return 0;    }    *buflen = new_buflen;    return 1;}static int is_power_of_two(uint64_t value){    return (value != 0) && ((value & (value - 1)) == 0);}static int pkey_scrypt_ctrl(EVP_PKEY_CTX *ctx, int type, int p1, void *p2){    SCRYPT_PKEY_CTX *kctx = ctx->data;    uint64_t u64_value;    switch (type) {    case EVP_PKEY_CTRL_PASS:        return pkey_scrypt_set_membuf(&kctx->pass, &kctx->pass_len, p2, p1);    case EVP_PKEY_CTRL_SCRYPT_SALT:        return pkey_scrypt_set_membuf(&kctx->salt, &kctx->salt_len, p2, p1);    case EVP_PKEY_CTRL_SCRYPT_N:        u64_value = *((uint64_t *)p2);        if ((u64_value <= 1) || !is_power_of_two(u64_value))            return 0;        kctx->N = u64_value;        return 1;    case EVP_PKEY_CTRL_SCRYPT_R:        u64_value = *((uint64_t *)p2);        if (u64_value < 1)            return 0;        kctx->r = u64_value;        return 1;    case EVP_PKEY_CTRL_SCRYPT_P:        u64_value = *((uint64_t *)p2);        if (u64_value < 1)            return 0;        kctx->p = u64_value;        return 1;    case EVP_PKEY_CTRL_SCRYPT_MAXMEM_BYTES:        u64_value = *((uint64_t *)p2);        if (u64_value < 1)            return 0;        kctx->maxmem_bytes = u64_value;        return 1;    default:        return -2;    }}static int pkey_scrypt_ctrl_uint64(EVP_PKEY_CTX *ctx, int type,                                   const char *value){    uint64_t int_value;    if (!atou64(value, &int_value)) {        KDFerr(KDF_F_PKEY_SCRYPT_CTRL_UINT64, KDF_R_VALUE_ERROR);        return 0;    }    return pkey_scrypt_ctrl(ctx, type, 0, &int_value);}static int pkey_scrypt_ctrl_str(EVP_PKEY_CTX *ctx, const char *type,                                const char *value){    if (value == NULL) {        KDFerr(KDF_F_PKEY_SCRYPT_CTRL_STR, KDF_R_VALUE_MISSING);        return 0;    }    if (strcmp(type, "pass") == 0)        return EVP_PKEY_CTX_str2ctrl(ctx, EVP_PKEY_CTRL_PASS, value);    if (strcmp(type, "hexpass") == 0)        return EVP_PKEY_CTX_hex2ctrl(ctx, EVP_PKEY_CTRL_PASS, value);    if (strcmp(type, "salt") == 0)        return EVP_PKEY_CTX_str2ctrl(ctx, EVP_PKEY_CTRL_SCRYPT_SALT, value);    if (strcmp(type, "hexsalt") == 0)        return EVP_PKEY_CTX_hex2ctrl(ctx, EVP_PKEY_CTRL_SCRYPT_SALT, value);    if (strcmp(type, "N") == 0)        return pkey_scrypt_ctrl_uint64(ctx, EVP_PKEY_CTRL_SCRYPT_N, value);    if (strcmp(type, "r") == 0)        return pkey_scrypt_ctrl_uint64(ctx, EVP_PKEY_CTRL_SCRYPT_R, value);    if (strcmp(type, "p") == 0)        return pkey_scrypt_ctrl_uint64(ctx, EVP_PKEY_CTRL_SCRYPT_P, value);    if (strcmp(type, "maxmem_bytes") == 0)        return pkey_scrypt_ctrl_uint64(ctx, EVP_PKEY_CTRL_SCRYPT_MAXMEM_BYTES,                                       value);    KDFerr(KDF_F_PKEY_SCRYPT_CTRL_STR, KDF_R_UNKNOWN_PARAMETER_TYPE);    return -2;}static int pkey_scrypt_derive(EVP_PKEY_CTX *ctx, unsigned char *key,                              size_t *keylen){    SCRYPT_PKEY_CTX *kctx = ctx->data;    if (kctx->pass == NULL) {        KDFerr(KDF_F_PKEY_SCRYPT_DERIVE, KDF_R_MISSING_PASS);        return 0;    }    if (kctx->salt == NULL) {        KDFerr(KDF_F_PKEY_SCRYPT_DERIVE, KDF_R_MISSING_SALT);        return 0;    }    return EVP_PBE_scrypt((char *)kctx->pass, kctx->pass_len, kctx->salt,                          kctx->salt_len, kctx->N, kctx->r, kctx->p,                          kctx->maxmem_bytes, key, *keylen);}const EVP_PKEY_METHOD scrypt_pkey_meth = {    EVP_PKEY_SCRYPT,    0,    pkey_scrypt_init,    0,    pkey_scrypt_cleanup,    0, 0,    0, 0,    0,    0,    0,    0,    0, 0,    0, 0, 0, 0,    0, 0,    0, 0,    0,    pkey_scrypt_derive,    pkey_scrypt_ctrl,    pkey_scrypt_ctrl_str};#endif
 |